1/* 2 * Low-level CPU initialisation 3 * Based on arch/arm/kernel/head.S 4 * 5 * Copyright (C) 1994-2002 Russell King 6 * Copyright (C) 2003-2012 ARM Ltd. 7 * Authors: Catalin Marinas <catalin.marinas@arm.com> 8 * Will Deacon <will.deacon@arm.com> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 */ 22 23#include <linux/linkage.h> 24#include <linux/init.h> 25 26#include <asm/assembler.h> 27#include <asm/ptrace.h> 28#include <asm/asm-offsets.h> 29#include <asm/cache.h> 30#include <asm/cputype.h> 31#include <asm/memory.h> 32#include <asm/thread_info.h> 33#include <asm/pgtable-hwdef.h> 34#include <asm/pgtable.h> 35#include <asm/page.h> 36#include <asm/virt.h> 37 38/* 39 * swapper_pg_dir is the virtual address of the initial page table. We place 40 * the page tables 3 * PAGE_SIZE below KERNEL_RAM_VADDR. The idmap_pg_dir has 41 * 2 pages and is placed below swapper_pg_dir. 42 */ 43#define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET) 44 45#if (KERNEL_RAM_VADDR & 0xfffff) != 0x80000 46#error KERNEL_RAM_VADDR must start at 0xXXX80000 47#endif 48 49#define SWAPPER_DIR_SIZE (3 * PAGE_SIZE) 50#define IDMAP_DIR_SIZE (2 * PAGE_SIZE) 51 52 .globl swapper_pg_dir 53 .equ swapper_pg_dir, KERNEL_RAM_VADDR - SWAPPER_DIR_SIZE 54 55 .globl idmap_pg_dir 56 .equ idmap_pg_dir, swapper_pg_dir - IDMAP_DIR_SIZE 57 58 .macro pgtbl, ttb0, ttb1, phys 59 add \ttb1, \phys, #TEXT_OFFSET - SWAPPER_DIR_SIZE 60 sub \ttb0, \ttb1, #IDMAP_DIR_SIZE 61 .endm 62 63#ifdef CONFIG_ARM64_64K_PAGES 64#define BLOCK_SHIFT PAGE_SHIFT 65#define BLOCK_SIZE PAGE_SIZE 66#else 67#define BLOCK_SHIFT SECTION_SHIFT 68#define BLOCK_SIZE SECTION_SIZE 69#endif 70 71#define KERNEL_START KERNEL_RAM_VADDR 72#define KERNEL_END _end 73 74/* 75 * Initial memory map attributes. 76 */ 77#ifndef CONFIG_SMP 78#define PTE_FLAGS PTE_TYPE_PAGE | PTE_AF 79#define PMD_FLAGS PMD_TYPE_SECT | PMD_SECT_AF 80#else 81#define PTE_FLAGS PTE_TYPE_PAGE | PTE_AF | PTE_SHARED 82#define PMD_FLAGS PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S 83#endif 84 85#ifdef CONFIG_ARM64_64K_PAGES 86#define MM_MMUFLAGS PTE_ATTRINDX(MT_NORMAL) | PTE_FLAGS 87#else 88#define MM_MMUFLAGS PMD_ATTRINDX(MT_NORMAL) | PMD_FLAGS 89#endif 90 91/* 92 * Kernel startup entry point. 93 * --------------------------- 94 * 95 * The requirements are: 96 * MMU = off, D-cache = off, I-cache = on or off, 97 * x0 = physical address to the FDT blob. 98 * 99 * This code is mostly position independent so you call this at 100 * __pa(PAGE_OFFSET + TEXT_OFFSET). 101 * 102 * Note that the callee-saved registers are used for storing variables 103 * that are useful before the MMU is enabled. The allocations are described 104 * in the entry routines. 105 */ 106 __HEAD 107 108 /* 109 * DO NOT MODIFY. Image header expected by Linux boot-loaders. 110 */ 111#ifdef CONFIG_EFI 112efi_head: 113 /* 114 * This add instruction has no meaningful effect except that 115 * its opcode forms the magic "MZ" signature required by UEFI. 116 */ 117 add x13, x18, #0x16 118 b stext 119#else 120 b stext // branch to kernel start, magic 121 .long 0 // reserved 122#endif 123 .quad TEXT_OFFSET // Image load offset from start of RAM 124 .quad 0 // reserved 125 .quad 0 // reserved 126 .quad 0 // reserved 127 .quad 0 // reserved 128 .quad 0 // reserved 129 .byte 0x41 // Magic number, "ARM\x64" 130 .byte 0x52 131 .byte 0x4d 132 .byte 0x64 133#ifdef CONFIG_EFI 134 .long pe_header - efi_head // Offset to the PE header. 135#else 136 .word 0 // reserved 137#endif 138 139#ifdef CONFIG_EFI 140 .align 3 141pe_header: 142 .ascii "PE" 143 .short 0 144coff_header: 145 .short 0xaa64 // AArch64 146 .short 2 // nr_sections 147 .long 0 // TimeDateStamp 148 .long 0 // PointerToSymbolTable 149 .long 1 // NumberOfSymbols 150 .short section_table - optional_header // SizeOfOptionalHeader 151 .short 0x206 // Characteristics. 152 // IMAGE_FILE_DEBUG_STRIPPED | 153 // IMAGE_FILE_EXECUTABLE_IMAGE | 154 // IMAGE_FILE_LINE_NUMS_STRIPPED 155optional_header: 156 .short 0x20b // PE32+ format 157 .byte 0x02 // MajorLinkerVersion 158 .byte 0x14 // MinorLinkerVersion 159 .long _edata - stext // SizeOfCode 160 .long 0 // SizeOfInitializedData 161 .long 0 // SizeOfUninitializedData 162 .long efi_stub_entry - efi_head // AddressOfEntryPoint 163 .long stext - efi_head // BaseOfCode 164 165extra_header_fields: 166 .quad 0 // ImageBase 167 .long 0x20 // SectionAlignment 168 .long 0x8 // FileAlignment 169 .short 0 // MajorOperatingSystemVersion 170 .short 0 // MinorOperatingSystemVersion 171 .short 0 // MajorImageVersion 172 .short 0 // MinorImageVersion 173 .short 0 // MajorSubsystemVersion 174 .short 0 // MinorSubsystemVersion 175 .long 0 // Win32VersionValue 176 177 .long _edata - efi_head // SizeOfImage 178 179 // Everything before the kernel image is considered part of the header 180 .long stext - efi_head // SizeOfHeaders 181 .long 0 // CheckSum 182 .short 0xa // Subsystem (EFI application) 183 .short 0 // DllCharacteristics 184 .quad 0 // SizeOfStackReserve 185 .quad 0 // SizeOfStackCommit 186 .quad 0 // SizeOfHeapReserve 187 .quad 0 // SizeOfHeapCommit 188 .long 0 // LoaderFlags 189 .long 0x6 // NumberOfRvaAndSizes 190 191 .quad 0 // ExportTable 192 .quad 0 // ImportTable 193 .quad 0 // ResourceTable 194 .quad 0 // ExceptionTable 195 .quad 0 // CertificationTable 196 .quad 0 // BaseRelocationTable 197 198 // Section table 199section_table: 200 201 /* 202 * The EFI application loader requires a relocation section 203 * because EFI applications must be relocatable. This is a 204 * dummy section as far as we are concerned. 205 */ 206 .ascii ".reloc" 207 .byte 0 208 .byte 0 // end of 0 padding of section name 209 .long 0 210 .long 0 211 .long 0 // SizeOfRawData 212 .long 0 // PointerToRawData 213 .long 0 // PointerToRelocations 214 .long 0 // PointerToLineNumbers 215 .short 0 // NumberOfRelocations 216 .short 0 // NumberOfLineNumbers 217 .long 0x42100040 // Characteristics (section flags) 218 219 220 .ascii ".text" 221 .byte 0 222 .byte 0 223 .byte 0 // end of 0 padding of section name 224 .long _edata - stext // VirtualSize 225 .long stext - efi_head // VirtualAddress 226 .long _edata - stext // SizeOfRawData 227 .long stext - efi_head // PointerToRawData 228 229 .long 0 // PointerToRelocations (0 for executables) 230 .long 0 // PointerToLineNumbers (0 for executables) 231 .short 0 // NumberOfRelocations (0 for executables) 232 .short 0 // NumberOfLineNumbers (0 for executables) 233 .long 0xe0500020 // Characteristics (section flags) 234 .align 5 235#endif 236 237ENTRY(stext) 238 mov x21, x0 // x21=FDT 239 bl el2_setup // Drop to EL1, w20=cpu_boot_mode 240 bl __calc_phys_offset // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET 241 bl set_cpu_boot_mode_flag 242 mrs x22, midr_el1 // x22=cpuid 243 mov x0, x22 244 bl lookup_processor_type 245 mov x23, x0 // x23=current cpu_table 246 cbz x23, __error_p // invalid processor (x23=0)? 247 bl __vet_fdt 248 bl __create_page_tables // x25=TTBR0, x26=TTBR1 249 /* 250 * The following calls CPU specific code in a position independent 251 * manner. See arch/arm64/mm/proc.S for details. x23 = base of 252 * cpu_info structure selected by lookup_processor_type above. 253 * On return, the CPU will be ready for the MMU to be turned on and 254 * the TCR will have been set. 255 */ 256 ldr x27, __switch_data // address to jump to after 257 // MMU has been enabled 258 adr lr, __enable_mmu // return (PIC) address 259 ldr x12, [x23, #CPU_INFO_SETUP] 260 add x12, x12, x28 // __virt_to_phys 261 br x12 // initialise processor 262ENDPROC(stext) 263 264/* 265 * If we're fortunate enough to boot at EL2, ensure that the world is 266 * sane before dropping to EL1. 267 * 268 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if 269 * booted in EL1 or EL2 respectively. 270 */ 271ENTRY(el2_setup) 272 mrs x0, CurrentEL 273 cmp x0, #CurrentEL_EL2 274 b.ne 1f 275 mrs x0, sctlr_el2 276CPU_BE( orr x0, x0, #(1 << 25) ) // Set the EE bit for EL2 277CPU_LE( bic x0, x0, #(1 << 25) ) // Clear the EE bit for EL2 278 msr sctlr_el2, x0 279 b 2f 2801: mrs x0, sctlr_el1 281CPU_BE( orr x0, x0, #(3 << 24) ) // Set the EE and E0E bits for EL1 282CPU_LE( bic x0, x0, #(3 << 24) ) // Clear the EE and E0E bits for EL1 283 msr sctlr_el1, x0 284 mov w20, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1 285 isb 286 ret 287 288 /* Hyp configuration. */ 2892: mov x0, #(1 << 31) // 64-bit EL1 290 msr hcr_el2, x0 291 292 /* Generic timers. */ 293 mrs x0, cnthctl_el2 294 orr x0, x0, #3 // Enable EL1 physical timers 295 msr cnthctl_el2, x0 296 msr cntvoff_el2, xzr // Clear virtual offset 297 298 /* Populate ID registers. */ 299 mrs x0, midr_el1 300 mrs x1, mpidr_el1 301 msr vpidr_el2, x0 302 msr vmpidr_el2, x1 303 304 /* sctlr_el1 */ 305 mov x0, #0x0800 // Set/clear RES{1,0} bits 306CPU_BE( movk x0, #0x33d0, lsl #16 ) // Set EE and E0E on BE systems 307CPU_LE( movk x0, #0x30d0, lsl #16 ) // Clear EE and E0E on LE systems 308 msr sctlr_el1, x0 309 310 /* Coprocessor traps. */ 311 mov x0, #0x33ff 312 msr cptr_el2, x0 // Disable copro. traps to EL2 313 314#ifdef CONFIG_COMPAT 315 msr hstr_el2, xzr // Disable CP15 traps to EL2 316#endif 317 318 /* Stage-2 translation */ 319 msr vttbr_el2, xzr 320 321 /* Hypervisor stub */ 322 adr x0, __hyp_stub_vectors 323 msr vbar_el2, x0 324 325 /* spsr */ 326 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ 327 PSR_MODE_EL1h) 328 msr spsr_el2, x0 329 msr elr_el2, lr 330 mov w20, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 331 eret 332ENDPROC(el2_setup) 333 334/* 335 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed 336 * in x20. See arch/arm64/include/asm/virt.h for more info. 337 */ 338ENTRY(set_cpu_boot_mode_flag) 339 ldr x1, =__boot_cpu_mode // Compute __boot_cpu_mode 340 add x1, x1, x28 341 cmp w20, #BOOT_CPU_MODE_EL2 342 b.ne 1f 343 add x1, x1, #4 3441: str w20, [x1] // This CPU has booted in EL1 345 dmb sy 346 dc ivac, x1 // Invalidate potentially stale cache line 347 ret 348ENDPROC(set_cpu_boot_mode_flag) 349 350/* 351 * We need to find out the CPU boot mode long after boot, so we need to 352 * store it in a writable variable. 353 * 354 * This is not in .bss, because we set it sufficiently early that the boot-time 355 * zeroing of .bss would clobber it. 356 */ 357 .pushsection .data..cacheline_aligned 358ENTRY(__boot_cpu_mode) 359 .align L1_CACHE_SHIFT 360 .long BOOT_CPU_MODE_EL2 361 .long 0 362 .popsection 363 364 .align 3 3652: .quad . 366 .quad PAGE_OFFSET 367 368#ifdef CONFIG_SMP 369 .align 3 3701: .quad . 371 .quad secondary_holding_pen_release 372 373 /* 374 * This provides a "holding pen" for platforms to hold all secondary 375 * cores are held until we're ready for them to initialise. 376 */ 377ENTRY(secondary_holding_pen) 378 bl el2_setup // Drop to EL1, w20=cpu_boot_mode 379 bl __calc_phys_offset // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET 380 bl set_cpu_boot_mode_flag 381 mrs x0, mpidr_el1 382 ldr x1, =MPIDR_HWID_BITMASK 383 and x0, x0, x1 384 adr x1, 1b 385 ldp x2, x3, [x1] 386 sub x1, x1, x2 387 add x3, x3, x1 388pen: ldr x4, [x3] 389 cmp x4, x0 390 b.eq secondary_startup 391 wfe 392 b pen 393ENDPROC(secondary_holding_pen) 394 395 /* 396 * Secondary entry point that jumps straight into the kernel. Only to 397 * be used where CPUs are brought online dynamically by the kernel. 398 */ 399ENTRY(secondary_entry) 400 bl el2_setup // Drop to EL1 401 bl __calc_phys_offset // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET 402 bl set_cpu_boot_mode_flag 403 b secondary_startup 404ENDPROC(secondary_entry) 405 406ENTRY(secondary_startup) 407 /* 408 * Common entry point for secondary CPUs. 409 */ 410 mrs x22, midr_el1 // x22=cpuid 411 mov x0, x22 412 bl lookup_processor_type 413 mov x23, x0 // x23=current cpu_table 414 cbz x23, __error_p // invalid processor (x23=0)? 415 416 pgtbl x25, x26, x24 // x25=TTBR0, x26=TTBR1 417 ldr x12, [x23, #CPU_INFO_SETUP] 418 add x12, x12, x28 // __virt_to_phys 419 blr x12 // initialise processor 420 421 ldr x21, =secondary_data 422 ldr x27, =__secondary_switched // address to jump to after enabling the MMU 423 b __enable_mmu 424ENDPROC(secondary_startup) 425 426ENTRY(__secondary_switched) 427 ldr x0, [x21] // get secondary_data.stack 428 mov sp, x0 429 mov x29, #0 430 b secondary_start_kernel 431ENDPROC(__secondary_switched) 432#endif /* CONFIG_SMP */ 433 434/* 435 * Setup common bits before finally enabling the MMU. Essentially this is just 436 * loading the page table pointer and vector base registers. 437 * 438 * On entry to this code, x0 must contain the SCTLR_EL1 value for turning on 439 * the MMU. 440 */ 441__enable_mmu: 442 ldr x5, =vectors 443 msr vbar_el1, x5 444 msr ttbr0_el1, x25 // load TTBR0 445 msr ttbr1_el1, x26 // load TTBR1 446 isb 447 b __turn_mmu_on 448ENDPROC(__enable_mmu) 449 450/* 451 * Enable the MMU. This completely changes the structure of the visible memory 452 * space. You will not be able to trace execution through this. 453 * 454 * x0 = system control register 455 * x27 = *virtual* address to jump to upon completion 456 * 457 * other registers depend on the function called upon completion 458 */ 459 .align 6 460__turn_mmu_on: 461 msr sctlr_el1, x0 462 isb 463 br x27 464ENDPROC(__turn_mmu_on) 465 466/* 467 * Calculate the start of physical memory. 468 */ 469__calc_phys_offset: 470 adr x0, 1f 471 ldp x1, x2, [x0] 472 sub x28, x0, x1 // x28 = PHYS_OFFSET - PAGE_OFFSET 473 add x24, x2, x28 // x24 = PHYS_OFFSET 474 ret 475ENDPROC(__calc_phys_offset) 476 477 .align 3 4781: .quad . 479 .quad PAGE_OFFSET 480 481/* 482 * Macro to populate the PGD for the corresponding block entry in the next 483 * level (tbl) for the given virtual address. 484 * 485 * Preserves: pgd, tbl, virt 486 * Corrupts: tmp1, tmp2 487 */ 488 .macro create_pgd_entry, pgd, tbl, virt, tmp1, tmp2 489 lsr \tmp1, \virt, #PGDIR_SHIFT 490 and \tmp1, \tmp1, #PTRS_PER_PGD - 1 // PGD index 491 orr \tmp2, \tbl, #3 // PGD entry table type 492 str \tmp2, [\pgd, \tmp1, lsl #3] 493 .endm 494 495/* 496 * Macro to populate block entries in the page table for the start..end 497 * virtual range (inclusive). 498 * 499 * Preserves: tbl, flags 500 * Corrupts: phys, start, end, pstate 501 */ 502 .macro create_block_map, tbl, flags, phys, start, end 503 lsr \phys, \phys, #BLOCK_SHIFT 504 lsr \start, \start, #BLOCK_SHIFT 505 and \start, \start, #PTRS_PER_PTE - 1 // table index 506 orr \phys, \flags, \phys, lsl #BLOCK_SHIFT // table entry 507 lsr \end, \end, #BLOCK_SHIFT 508 and \end, \end, #PTRS_PER_PTE - 1 // table end index 5099999: str \phys, [\tbl, \start, lsl #3] // store the entry 510 add \start, \start, #1 // next entry 511 add \phys, \phys, #BLOCK_SIZE // next block 512 cmp \start, \end 513 b.ls 9999b 514 .endm 515 516/* 517 * Setup the initial page tables. We only setup the barest amount which is 518 * required to get the kernel running. The following sections are required: 519 * - identity mapping to enable the MMU (low address, TTBR0) 520 * - first few MB of the kernel linear mapping to jump to once the MMU has 521 * been enabled, including the FDT blob (TTBR1) 522 * - pgd entry for fixed mappings (TTBR1) 523 */ 524__create_page_tables: 525 pgtbl x25, x26, x24 // idmap_pg_dir and swapper_pg_dir addresses 526 mov x27, lr 527 528 /* 529 * Invalidate the idmap and swapper page tables to avoid potential 530 * dirty cache lines being evicted. 531 */ 532 mov x0, x25 533 add x1, x26, #SWAPPER_DIR_SIZE 534 bl __inval_cache_range 535 536 /* 537 * Clear the idmap and swapper page tables. 538 */ 539 mov x0, x25 540 add x6, x26, #SWAPPER_DIR_SIZE 5411: stp xzr, xzr, [x0], #16 542 stp xzr, xzr, [x0], #16 543 stp xzr, xzr, [x0], #16 544 stp xzr, xzr, [x0], #16 545 cmp x0, x6 546 b.lo 1b 547 548 ldr x7, =MM_MMUFLAGS 549 550 /* 551 * Create the identity mapping. 552 */ 553 add x0, x25, #PAGE_SIZE // section table address 554 ldr x3, =KERNEL_START 555 add x3, x3, x28 // __pa(KERNEL_START) 556 create_pgd_entry x25, x0, x3, x5, x6 557 ldr x6, =KERNEL_END 558 mov x5, x3 // __pa(KERNEL_START) 559 add x6, x6, x28 // __pa(KERNEL_END) 560 create_block_map x0, x7, x3, x5, x6 561 562 /* 563 * Map the kernel image (starting with PHYS_OFFSET). 564 */ 565 add x0, x26, #PAGE_SIZE // section table address 566 mov x5, #PAGE_OFFSET 567 create_pgd_entry x26, x0, x5, x3, x6 568 ldr x6, =KERNEL_END 569 mov x3, x24 // phys offset 570 create_block_map x0, x7, x3, x5, x6 571 572 /* 573 * Map the FDT blob (maximum 2MB; must be within 512MB of 574 * PHYS_OFFSET). 575 */ 576 mov x3, x21 // FDT phys address 577 and x3, x3, #~((1 << 21) - 1) // 2MB aligned 578 mov x6, #PAGE_OFFSET 579 sub x5, x3, x24 // subtract PHYS_OFFSET 580 tst x5, #~((1 << 29) - 1) // within 512MB? 581 csel x21, xzr, x21, ne // zero the FDT pointer 582 b.ne 1f 583 add x5, x5, x6 // __va(FDT blob) 584 add x6, x5, #1 << 21 // 2MB for the FDT blob 585 sub x6, x6, #1 // inclusive range 586 create_block_map x0, x7, x3, x5, x6 5871: 588 /* 589 * Create the pgd entry for the fixed mappings. 590 */ 591 ldr x5, =FIXADDR_TOP // Fixed mapping virtual address 592 add x0, x26, #2 * PAGE_SIZE // section table address 593 create_pgd_entry x26, x0, x5, x6, x7 594 595 /* 596 * Since the page tables have been populated with non-cacheable 597 * accesses (MMU disabled), invalidate the idmap and swapper page 598 * tables again to remove any speculatively loaded cache lines. 599 */ 600 mov x0, x25 601 add x1, x26, #SWAPPER_DIR_SIZE 602 bl __inval_cache_range 603 604 mov lr, x27 605 ret 606ENDPROC(__create_page_tables) 607 .ltorg 608 609 .align 3 610 .type __switch_data, %object 611__switch_data: 612 .quad __mmap_switched 613 .quad __bss_start // x6 614 .quad _end // x7 615 .quad processor_id // x4 616 .quad __fdt_pointer // x5 617 .quad memstart_addr // x6 618 .quad init_thread_union + THREAD_START_SP // sp 619 620/* 621 * The following fragment of code is executed with the MMU on in MMU mode, and 622 * uses absolute addresses; this is not position independent. 623 */ 624__mmap_switched: 625 adr x3, __switch_data + 8 626 627 ldp x6, x7, [x3], #16 6281: cmp x6, x7 629 b.hs 2f 630 str xzr, [x6], #8 // Clear BSS 631 b 1b 6322: 633 ldp x4, x5, [x3], #16 634 ldr x6, [x3], #8 635 ldr x16, [x3] 636 mov sp, x16 637 str x22, [x4] // Save processor ID 638 str x21, [x5] // Save FDT pointer 639 str x24, [x6] // Save PHYS_OFFSET 640 mov x29, #0 641 b start_kernel 642ENDPROC(__mmap_switched) 643 644/* 645 * Exception handling. Something went wrong and we can't proceed. We ought to 646 * tell the user, but since we don't have any guarantee that we're even 647 * running on the right architecture, we do virtually nothing. 648 */ 649__error_p: 650ENDPROC(__error_p) 651 652__error: 6531: nop 654 b 1b 655ENDPROC(__error) 656 657/* 658 * This function gets the processor ID in w0 and searches the cpu_table[] for 659 * a match. It returns a pointer to the struct cpu_info it found. The 660 * cpu_table[] must end with an empty (all zeros) structure. 661 * 662 * This routine can be called via C code and it needs to work with the MMU 663 * both disabled and enabled (the offset is calculated automatically). 664 */ 665ENTRY(lookup_processor_type) 666 adr x1, __lookup_processor_type_data 667 ldp x2, x3, [x1] 668 sub x1, x1, x2 // get offset between VA and PA 669 add x3, x3, x1 // convert VA to PA 6701: 671 ldp w5, w6, [x3] // load cpu_id_val and cpu_id_mask 672 cbz w5, 2f // end of list? 673 and w6, w6, w0 674 cmp w5, w6 675 b.eq 3f 676 add x3, x3, #CPU_INFO_SZ 677 b 1b 6782: 679 mov x3, #0 // unknown processor 6803: 681 mov x0, x3 682 ret 683ENDPROC(lookup_processor_type) 684 685 .align 3 686 .type __lookup_processor_type_data, %object 687__lookup_processor_type_data: 688 .quad . 689 .quad cpu_table 690 .size __lookup_processor_type_data, . - __lookup_processor_type_data 691 692/* 693 * Determine validity of the x21 FDT pointer. 694 * The dtb must be 8-byte aligned and live in the first 512M of memory. 695 */ 696__vet_fdt: 697 tst x21, #0x7 698 b.ne 1f 699 cmp x21, x24 700 b.lt 1f 701 mov x0, #(1 << 29) 702 add x0, x0, x24 703 cmp x21, x0 704 b.ge 1f 705 ret 7061: 707 mov x21, #0 708 ret 709ENDPROC(__vet_fdt) 710