xref: /linux/arch/arm64/kernel/fpsimd.c (revision f82811e22b480a203a438d8e1f29af9c93ccbb0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
89  * called from softirq context, which will save the task's FPSIMD context back
90  * to task_struct. To prevent this from racing with the manipulation of the
91  * task's FPSIMD state from task context and thereby corrupting the state, it
92  * is necessary to protect any manipulation of a task's fpsimd_state or
93  * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
94  * softirq servicing entirely until put_cpu_fpsimd_context() is called.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 
122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123 
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 	[ARM64_VEC_SVE] = {
127 		.type			= ARM64_VEC_SVE,
128 		.name			= "SVE",
129 		.min_vl			= SVE_VL_MIN,
130 		.max_vl			= SVE_VL_MIN,
131 		.max_virtualisable_vl	= SVE_VL_MIN,
132 	},
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 	[ARM64_VEC_SME] = {
136 		.type			= ARM64_VEC_SME,
137 		.name			= "SME",
138 	},
139 #endif
140 };
141 
142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 	switch (type) {
145 	case ARM64_VEC_SVE:
146 		return TIF_SVE_VL_INHERIT;
147 	case ARM64_VEC_SME:
148 		return TIF_SME_VL_INHERIT;
149 	default:
150 		WARN_ON_ONCE(1);
151 		return 0;
152 	}
153 }
154 
155 struct vl_config {
156 	int __default_vl;		/* Default VL for tasks */
157 };
158 
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160 
161 static inline int get_default_vl(enum vec_type type)
162 {
163 	return READ_ONCE(vl_config[type].__default_vl);
164 }
165 
166 #ifdef CONFIG_ARM64_SVE
167 
168 static inline int get_sve_default_vl(void)
169 {
170 	return get_default_vl(ARM64_VEC_SVE);
171 }
172 
173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 	WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177 
178 static inline void set_sve_default_vl(int val)
179 {
180 	set_default_vl(ARM64_VEC_SVE, val);
181 }
182 
183 static void __percpu *efi_sve_state;
184 
185 #else /* ! CONFIG_ARM64_SVE */
186 
187 /* Dummy declaration for code that will be optimised out: */
188 extern void __percpu *efi_sve_state;
189 
190 #endif /* ! CONFIG_ARM64_SVE */
191 
192 #ifdef CONFIG_ARM64_SME
193 
194 static int get_sme_default_vl(void)
195 {
196 	return get_default_vl(ARM64_VEC_SME);
197 }
198 
199 static void set_sme_default_vl(int val)
200 {
201 	set_default_vl(ARM64_VEC_SME, val);
202 }
203 
204 static void sme_free(struct task_struct *);
205 
206 #else
207 
208 static inline void sme_free(struct task_struct *t) { }
209 
210 #endif
211 
212 static void fpsimd_bind_task_to_cpu(void);
213 
214 /*
215  * Claim ownership of the CPU FPSIMD context for use by the calling context.
216  *
217  * The caller may freely manipulate the FPSIMD context metadata until
218  * put_cpu_fpsimd_context() is called.
219  *
220  * On RT kernels local_bh_disable() is not sufficient because it only
221  * serializes soft interrupt related sections via a local lock, but stays
222  * preemptible. Disabling preemption is the right choice here as bottom
223  * half processing is always in thread context on RT kernels so it
224  * implicitly prevents bottom half processing as well.
225  */
226 static void get_cpu_fpsimd_context(void)
227 {
228 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
229 		local_bh_disable();
230 	else
231 		preempt_disable();
232 }
233 
234 /*
235  * Release the CPU FPSIMD context.
236  *
237  * Must be called from a context in which get_cpu_fpsimd_context() was
238  * previously called, with no call to put_cpu_fpsimd_context() in the
239  * meantime.
240  */
241 static void put_cpu_fpsimd_context(void)
242 {
243 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
244 		local_bh_enable();
245 	else
246 		preempt_enable();
247 }
248 
249 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
250 {
251 	return task->thread.vl[type];
252 }
253 
254 void task_set_vl(struct task_struct *task, enum vec_type type,
255 		 unsigned long vl)
256 {
257 	task->thread.vl[type] = vl;
258 }
259 
260 unsigned int task_get_vl_onexec(const struct task_struct *task,
261 				enum vec_type type)
262 {
263 	return task->thread.vl_onexec[type];
264 }
265 
266 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
267 			unsigned long vl)
268 {
269 	task->thread.vl_onexec[type] = vl;
270 }
271 
272 /*
273  * TIF_SME controls whether a task can use SME without trapping while
274  * in userspace, when TIF_SME is set then we must have storage
275  * allocated in sve_state and sme_state to store the contents of both ZA
276  * and the SVE registers for both streaming and non-streaming modes.
277  *
278  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
279  * may disable TIF_SME and reenable traps.
280  */
281 
282 
283 /*
284  * TIF_SVE controls whether a task can use SVE without trapping while
285  * in userspace, and also (together with TIF_SME) the way a task's
286  * FPSIMD/SVE state is stored in thread_struct.
287  *
288  * The kernel uses this flag to track whether a user task is actively
289  * using SVE, and therefore whether full SVE register state needs to
290  * be tracked.  If not, the cheaper FPSIMD context handling code can
291  * be used instead of the more costly SVE equivalents.
292  *
293  *  * TIF_SVE or SVCR.SM set:
294  *
295  *    The task can execute SVE instructions while in userspace without
296  *    trapping to the kernel.
297  *
298  *    During any syscall, the kernel may optionally clear TIF_SVE and
299  *    discard the vector state except for the FPSIMD subset.
300  *
301  *  * TIF_SVE clear:
302  *
303  *    An attempt by the user task to execute an SVE instruction causes
304  *    do_sve_acc() to be called, which does some preparation and then
305  *    sets TIF_SVE.
306  *
307  * During any syscall, the kernel may optionally clear TIF_SVE and
308  * discard the vector state except for the FPSIMD subset.
309  *
310  * The data will be stored in one of two formats:
311  *
312  *  * FPSIMD only - FP_STATE_FPSIMD:
313  *
314  *    When the FPSIMD only state stored task->thread.fp_type is set to
315  *    FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
316  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
317  *    logically zero but not stored anywhere; P0-P15 and FFR are not
318  *    stored and have unspecified values from userspace's point of
319  *    view.  For hygiene purposes, the kernel zeroes them on next use,
320  *    but userspace is discouraged from relying on this.
321  *
322  *    task->thread.sve_state does not need to be non-NULL, valid or any
323  *    particular size: it must not be dereferenced and any data stored
324  *    there should be considered stale and not referenced.
325  *
326  *  * SVE state - FP_STATE_SVE:
327  *
328  *    When the full SVE state is stored task->thread.fp_type is set to
329  *    FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
330  *    corresponding Zn), P0-P15 and FFR are encoded in in
331  *    task->thread.sve_state, formatted appropriately for vector
332  *    length task->thread.sve_vl or, if SVCR.SM is set,
333  *    task->thread.sme_vl. The storage for the vector registers in
334  *    task->thread.uw.fpsimd_state should be ignored.
335  *
336  *    task->thread.sve_state must point to a valid buffer at least
337  *    sve_state_size(task) bytes in size. The data stored in
338  *    task->thread.uw.fpsimd_state.vregs should be considered stale
339  *    and not referenced.
340  *
341  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
342  *    irrespective of whether TIF_SVE is clear or set, since these are
343  *    not vector length dependent.
344  */
345 
346 /*
347  * Update current's FPSIMD/SVE registers from thread_struct.
348  *
349  * This function should be called only when the FPSIMD/SVE state in
350  * thread_struct is known to be up to date, when preparing to enter
351  * userspace.
352  */
353 static void task_fpsimd_load(void)
354 {
355 	bool restore_sve_regs = false;
356 	bool restore_ffr;
357 
358 	WARN_ON(!system_supports_fpsimd());
359 	WARN_ON(preemptible());
360 	WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
361 
362 	if (system_supports_sve() || system_supports_sme()) {
363 		switch (current->thread.fp_type) {
364 		case FP_STATE_FPSIMD:
365 			/* Stop tracking SVE for this task until next use. */
366 			if (test_and_clear_thread_flag(TIF_SVE))
367 				sve_user_disable();
368 			break;
369 		case FP_STATE_SVE:
370 			if (!thread_sm_enabled(&current->thread) &&
371 			    !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
372 				sve_user_enable();
373 
374 			if (test_thread_flag(TIF_SVE))
375 				sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
376 
377 			restore_sve_regs = true;
378 			restore_ffr = true;
379 			break;
380 		default:
381 			/*
382 			 * This indicates either a bug in
383 			 * fpsimd_save_user_state() or memory corruption, we
384 			 * should always record an explicit format
385 			 * when we save. We always at least have the
386 			 * memory allocated for FPSMID registers so
387 			 * try that and hope for the best.
388 			 */
389 			WARN_ON_ONCE(1);
390 			clear_thread_flag(TIF_SVE);
391 			break;
392 		}
393 	}
394 
395 	/* Restore SME, override SVE register configuration if needed */
396 	if (system_supports_sme()) {
397 		unsigned long sme_vl = task_get_sme_vl(current);
398 
399 		/* Ensure VL is set up for restoring data */
400 		if (test_thread_flag(TIF_SME))
401 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
402 
403 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
404 
405 		if (thread_za_enabled(&current->thread))
406 			sme_load_state(current->thread.sme_state,
407 				       system_supports_sme2());
408 
409 		if (thread_sm_enabled(&current->thread))
410 			restore_ffr = system_supports_fa64();
411 	}
412 
413 	if (restore_sve_regs) {
414 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
415 		sve_load_state(sve_pffr(&current->thread),
416 			       &current->thread.uw.fpsimd_state.fpsr,
417 			       restore_ffr);
418 	} else {
419 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
420 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
421 	}
422 }
423 
424 /*
425  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
426  * date with respect to the CPU registers. Note carefully that the
427  * current context is the context last bound to the CPU stored in
428  * last, if KVM is involved this may be the guest VM context rather
429  * than the host thread for the VM pointed to by current. This means
430  * that we must always reference the state storage via last rather
431  * than via current, if we are saving KVM state then it will have
432  * ensured that the type of registers to save is set in last->to_save.
433  */
434 static void fpsimd_save_user_state(void)
435 {
436 	struct cpu_fp_state const *last =
437 		this_cpu_ptr(&fpsimd_last_state);
438 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
439 	bool save_sve_regs = false;
440 	bool save_ffr;
441 	unsigned int vl;
442 
443 	WARN_ON(!system_supports_fpsimd());
444 	WARN_ON(preemptible());
445 
446 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
447 		return;
448 
449 	/*
450 	 * If a task is in a syscall the ABI allows us to only
451 	 * preserve the state shared with FPSIMD so don't bother
452 	 * saving the full SVE state in that case.
453 	 */
454 	if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
455 	     !in_syscall(current_pt_regs())) ||
456 	    last->to_save == FP_STATE_SVE) {
457 		save_sve_regs = true;
458 		save_ffr = true;
459 		vl = last->sve_vl;
460 	}
461 
462 	if (system_supports_sme()) {
463 		u64 *svcr = last->svcr;
464 
465 		*svcr = read_sysreg_s(SYS_SVCR);
466 
467 		if (*svcr & SVCR_ZA_MASK)
468 			sme_save_state(last->sme_state,
469 				       system_supports_sme2());
470 
471 		/* If we are in streaming mode override regular SVE. */
472 		if (*svcr & SVCR_SM_MASK) {
473 			save_sve_regs = true;
474 			save_ffr = system_supports_fa64();
475 			vl = last->sme_vl;
476 		}
477 	}
478 
479 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
480 		/* Get the configured VL from RDVL, will account for SM */
481 		if (WARN_ON(sve_get_vl() != vl)) {
482 			/*
483 			 * Can't save the user regs, so current would
484 			 * re-enter user with corrupt state.
485 			 * There's no way to recover, so kill it:
486 			 */
487 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
488 			return;
489 		}
490 
491 		sve_save_state((char *)last->sve_state +
492 					sve_ffr_offset(vl),
493 			       &last->st->fpsr, save_ffr);
494 		*last->fp_type = FP_STATE_SVE;
495 	} else {
496 		fpsimd_save_state(last->st);
497 		*last->fp_type = FP_STATE_FPSIMD;
498 	}
499 }
500 
501 /*
502  * All vector length selection from userspace comes through here.
503  * We're on a slow path, so some sanity-checks are included.
504  * If things go wrong there's a bug somewhere, but try to fall back to a
505  * safe choice.
506  */
507 static unsigned int find_supported_vector_length(enum vec_type type,
508 						 unsigned int vl)
509 {
510 	struct vl_info *info = &vl_info[type];
511 	int bit;
512 	int max_vl = info->max_vl;
513 
514 	if (WARN_ON(!sve_vl_valid(vl)))
515 		vl = info->min_vl;
516 
517 	if (WARN_ON(!sve_vl_valid(max_vl)))
518 		max_vl = info->min_vl;
519 
520 	if (vl > max_vl)
521 		vl = max_vl;
522 	if (vl < info->min_vl)
523 		vl = info->min_vl;
524 
525 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
526 			    __vq_to_bit(sve_vq_from_vl(vl)));
527 	return sve_vl_from_vq(__bit_to_vq(bit));
528 }
529 
530 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
531 
532 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
533 				  void *buffer, size_t *lenp, loff_t *ppos)
534 {
535 	struct vl_info *info = table->extra1;
536 	enum vec_type type = info->type;
537 	int ret;
538 	int vl = get_default_vl(type);
539 	struct ctl_table tmp_table = {
540 		.data = &vl,
541 		.maxlen = sizeof(vl),
542 	};
543 
544 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
545 	if (ret || !write)
546 		return ret;
547 
548 	/* Writing -1 has the special meaning "set to max": */
549 	if (vl == -1)
550 		vl = info->max_vl;
551 
552 	if (!sve_vl_valid(vl))
553 		return -EINVAL;
554 
555 	set_default_vl(type, find_supported_vector_length(type, vl));
556 	return 0;
557 }
558 
559 static struct ctl_table sve_default_vl_table[] = {
560 	{
561 		.procname	= "sve_default_vector_length",
562 		.mode		= 0644,
563 		.proc_handler	= vec_proc_do_default_vl,
564 		.extra1		= &vl_info[ARM64_VEC_SVE],
565 	},
566 };
567 
568 static int __init sve_sysctl_init(void)
569 {
570 	if (system_supports_sve())
571 		if (!register_sysctl("abi", sve_default_vl_table))
572 			return -EINVAL;
573 
574 	return 0;
575 }
576 
577 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
578 static int __init sve_sysctl_init(void) { return 0; }
579 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
580 
581 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
582 static struct ctl_table sme_default_vl_table[] = {
583 	{
584 		.procname	= "sme_default_vector_length",
585 		.mode		= 0644,
586 		.proc_handler	= vec_proc_do_default_vl,
587 		.extra1		= &vl_info[ARM64_VEC_SME],
588 	},
589 };
590 
591 static int __init sme_sysctl_init(void)
592 {
593 	if (system_supports_sme())
594 		if (!register_sysctl("abi", sme_default_vl_table))
595 			return -EINVAL;
596 
597 	return 0;
598 }
599 
600 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
601 static int __init sme_sysctl_init(void) { return 0; }
602 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
603 
604 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
605 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
606 
607 #ifdef CONFIG_CPU_BIG_ENDIAN
608 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
609 {
610 	u64 a = swab64(x);
611 	u64 b = swab64(x >> 64);
612 
613 	return ((__uint128_t)a << 64) | b;
614 }
615 #else
616 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
617 {
618 	return x;
619 }
620 #endif
621 
622 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
623 
624 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
625 			    unsigned int vq)
626 {
627 	unsigned int i;
628 	__uint128_t *p;
629 
630 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
631 		p = (__uint128_t *)ZREG(sst, vq, i);
632 		*p = arm64_cpu_to_le128(fst->vregs[i]);
633 	}
634 }
635 
636 /*
637  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
638  * task->thread.sve_state.
639  *
640  * Task can be a non-runnable task, or current.  In the latter case,
641  * the caller must have ownership of the cpu FPSIMD context before calling
642  * this function.
643  * task->thread.sve_state must point to at least sve_state_size(task)
644  * bytes of allocated kernel memory.
645  * task->thread.uw.fpsimd_state must be up to date before calling this
646  * function.
647  */
648 static void fpsimd_to_sve(struct task_struct *task)
649 {
650 	unsigned int vq;
651 	void *sst = task->thread.sve_state;
652 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
653 
654 	if (!system_supports_sve() && !system_supports_sme())
655 		return;
656 
657 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
658 	__fpsimd_to_sve(sst, fst, vq);
659 }
660 
661 /*
662  * Transfer the SVE state in task->thread.sve_state to
663  * task->thread.uw.fpsimd_state.
664  *
665  * Task can be a non-runnable task, or current.  In the latter case,
666  * the caller must have ownership of the cpu FPSIMD context before calling
667  * this function.
668  * task->thread.sve_state must point to at least sve_state_size(task)
669  * bytes of allocated kernel memory.
670  * task->thread.sve_state must be up to date before calling this function.
671  */
672 static void sve_to_fpsimd(struct task_struct *task)
673 {
674 	unsigned int vq, vl;
675 	void const *sst = task->thread.sve_state;
676 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
677 	unsigned int i;
678 	__uint128_t const *p;
679 
680 	if (!system_supports_sve() && !system_supports_sme())
681 		return;
682 
683 	vl = thread_get_cur_vl(&task->thread);
684 	vq = sve_vq_from_vl(vl);
685 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
686 		p = (__uint128_t const *)ZREG(sst, vq, i);
687 		fst->vregs[i] = arm64_le128_to_cpu(*p);
688 	}
689 }
690 
691 #ifdef CONFIG_ARM64_SVE
692 /*
693  * Call __sve_free() directly only if you know task can't be scheduled
694  * or preempted.
695  */
696 static void __sve_free(struct task_struct *task)
697 {
698 	kfree(task->thread.sve_state);
699 	task->thread.sve_state = NULL;
700 }
701 
702 static void sve_free(struct task_struct *task)
703 {
704 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
705 
706 	__sve_free(task);
707 }
708 
709 /*
710  * Return how many bytes of memory are required to store the full SVE
711  * state for task, given task's currently configured vector length.
712  */
713 size_t sve_state_size(struct task_struct const *task)
714 {
715 	unsigned int vl = 0;
716 
717 	if (system_supports_sve())
718 		vl = task_get_sve_vl(task);
719 	if (system_supports_sme())
720 		vl = max(vl, task_get_sme_vl(task));
721 
722 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
723 }
724 
725 /*
726  * Ensure that task->thread.sve_state is allocated and sufficiently large.
727  *
728  * This function should be used only in preparation for replacing
729  * task->thread.sve_state with new data.  The memory is always zeroed
730  * here to prevent stale data from showing through: this is done in
731  * the interest of testability and predictability: except in the
732  * do_sve_acc() case, there is no ABI requirement to hide stale data
733  * written previously be task.
734  */
735 void sve_alloc(struct task_struct *task, bool flush)
736 {
737 	if (task->thread.sve_state) {
738 		if (flush)
739 			memset(task->thread.sve_state, 0,
740 			       sve_state_size(task));
741 		return;
742 	}
743 
744 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
745 	task->thread.sve_state =
746 		kzalloc(sve_state_size(task), GFP_KERNEL);
747 }
748 
749 
750 /*
751  * Force the FPSIMD state shared with SVE to be updated in the SVE state
752  * even if the SVE state is the current active state.
753  *
754  * This should only be called by ptrace.  task must be non-runnable.
755  * task->thread.sve_state must point to at least sve_state_size(task)
756  * bytes of allocated kernel memory.
757  */
758 void fpsimd_force_sync_to_sve(struct task_struct *task)
759 {
760 	fpsimd_to_sve(task);
761 }
762 
763 /*
764  * Ensure that task->thread.sve_state is up to date with respect to
765  * the user task, irrespective of when SVE is in use or not.
766  *
767  * This should only be called by ptrace.  task must be non-runnable.
768  * task->thread.sve_state must point to at least sve_state_size(task)
769  * bytes of allocated kernel memory.
770  */
771 void fpsimd_sync_to_sve(struct task_struct *task)
772 {
773 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
774 	    !thread_sm_enabled(&task->thread))
775 		fpsimd_to_sve(task);
776 }
777 
778 /*
779  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
780  * the user task, irrespective of whether SVE is in use or not.
781  *
782  * This should only be called by ptrace.  task must be non-runnable.
783  * task->thread.sve_state must point to at least sve_state_size(task)
784  * bytes of allocated kernel memory.
785  */
786 void sve_sync_to_fpsimd(struct task_struct *task)
787 {
788 	if (task->thread.fp_type == FP_STATE_SVE)
789 		sve_to_fpsimd(task);
790 }
791 
792 /*
793  * Ensure that task->thread.sve_state is up to date with respect to
794  * the task->thread.uw.fpsimd_state.
795  *
796  * This should only be called by ptrace to merge new FPSIMD register
797  * values into a task for which SVE is currently active.
798  * task must be non-runnable.
799  * task->thread.sve_state must point to at least sve_state_size(task)
800  * bytes of allocated kernel memory.
801  * task->thread.uw.fpsimd_state must already have been initialised with
802  * the new FPSIMD register values to be merged in.
803  */
804 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
805 {
806 	unsigned int vq;
807 	void *sst = task->thread.sve_state;
808 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
809 
810 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
811 	    !thread_sm_enabled(&task->thread))
812 		return;
813 
814 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
815 
816 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
817 	__fpsimd_to_sve(sst, fst, vq);
818 }
819 
820 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
821 			  unsigned long vl, unsigned long flags)
822 {
823 	bool free_sme = false;
824 
825 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
826 				     PR_SVE_SET_VL_ONEXEC))
827 		return -EINVAL;
828 
829 	if (!sve_vl_valid(vl))
830 		return -EINVAL;
831 
832 	/*
833 	 * Clamp to the maximum vector length that VL-agnostic code
834 	 * can work with.  A flag may be assigned in the future to
835 	 * allow setting of larger vector lengths without confusing
836 	 * older software.
837 	 */
838 	if (vl > VL_ARCH_MAX)
839 		vl = VL_ARCH_MAX;
840 
841 	vl = find_supported_vector_length(type, vl);
842 
843 	if (flags & (PR_SVE_VL_INHERIT |
844 		     PR_SVE_SET_VL_ONEXEC))
845 		task_set_vl_onexec(task, type, vl);
846 	else
847 		/* Reset VL to system default on next exec: */
848 		task_set_vl_onexec(task, type, 0);
849 
850 	/* Only actually set the VL if not deferred: */
851 	if (flags & PR_SVE_SET_VL_ONEXEC)
852 		goto out;
853 
854 	if (vl == task_get_vl(task, type))
855 		goto out;
856 
857 	/*
858 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
859 	 * write any live register state back to task_struct, and convert to a
860 	 * regular FPSIMD thread.
861 	 */
862 	if (task == current) {
863 		get_cpu_fpsimd_context();
864 
865 		fpsimd_save_user_state();
866 	}
867 
868 	fpsimd_flush_task_state(task);
869 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
870 	    thread_sm_enabled(&task->thread)) {
871 		sve_to_fpsimd(task);
872 		task->thread.fp_type = FP_STATE_FPSIMD;
873 	}
874 
875 	if (system_supports_sme()) {
876 		if (type == ARM64_VEC_SME ||
877 		    !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
878 			/*
879 			 * We are changing the SME VL or weren't using
880 			 * SME anyway, discard the state and force a
881 			 * reallocation.
882 			 */
883 			task->thread.svcr &= ~(SVCR_SM_MASK |
884 					       SVCR_ZA_MASK);
885 			clear_tsk_thread_flag(task, TIF_SME);
886 			free_sme = true;
887 		}
888 	}
889 
890 	if (task == current)
891 		put_cpu_fpsimd_context();
892 
893 	task_set_vl(task, type, vl);
894 
895 	/*
896 	 * Free the changed states if they are not in use, SME will be
897 	 * reallocated to the correct size on next use and we just
898 	 * allocate SVE now in case it is needed for use in streaming
899 	 * mode.
900 	 */
901 	sve_free(task);
902 	sve_alloc(task, true);
903 
904 	if (free_sme)
905 		sme_free(task);
906 
907 out:
908 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
909 			       flags & PR_SVE_VL_INHERIT);
910 
911 	return 0;
912 }
913 
914 /*
915  * Encode the current vector length and flags for return.
916  * This is only required for prctl(): ptrace has separate fields.
917  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
918  *
919  * flags are as for vec_set_vector_length().
920  */
921 static int vec_prctl_status(enum vec_type type, unsigned long flags)
922 {
923 	int ret;
924 
925 	if (flags & PR_SVE_SET_VL_ONEXEC)
926 		ret = task_get_vl_onexec(current, type);
927 	else
928 		ret = task_get_vl(current, type);
929 
930 	if (test_thread_flag(vec_vl_inherit_flag(type)))
931 		ret |= PR_SVE_VL_INHERIT;
932 
933 	return ret;
934 }
935 
936 /* PR_SVE_SET_VL */
937 int sve_set_current_vl(unsigned long arg)
938 {
939 	unsigned long vl, flags;
940 	int ret;
941 
942 	vl = arg & PR_SVE_VL_LEN_MASK;
943 	flags = arg & ~vl;
944 
945 	if (!system_supports_sve() || is_compat_task())
946 		return -EINVAL;
947 
948 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
949 	if (ret)
950 		return ret;
951 
952 	return vec_prctl_status(ARM64_VEC_SVE, flags);
953 }
954 
955 /* PR_SVE_GET_VL */
956 int sve_get_current_vl(void)
957 {
958 	if (!system_supports_sve() || is_compat_task())
959 		return -EINVAL;
960 
961 	return vec_prctl_status(ARM64_VEC_SVE, 0);
962 }
963 
964 #ifdef CONFIG_ARM64_SME
965 /* PR_SME_SET_VL */
966 int sme_set_current_vl(unsigned long arg)
967 {
968 	unsigned long vl, flags;
969 	int ret;
970 
971 	vl = arg & PR_SME_VL_LEN_MASK;
972 	flags = arg & ~vl;
973 
974 	if (!system_supports_sme() || is_compat_task())
975 		return -EINVAL;
976 
977 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
978 	if (ret)
979 		return ret;
980 
981 	return vec_prctl_status(ARM64_VEC_SME, flags);
982 }
983 
984 /* PR_SME_GET_VL */
985 int sme_get_current_vl(void)
986 {
987 	if (!system_supports_sme() || is_compat_task())
988 		return -EINVAL;
989 
990 	return vec_prctl_status(ARM64_VEC_SME, 0);
991 }
992 #endif /* CONFIG_ARM64_SME */
993 
994 static void vec_probe_vqs(struct vl_info *info,
995 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
996 {
997 	unsigned int vq, vl;
998 
999 	bitmap_zero(map, SVE_VQ_MAX);
1000 
1001 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1002 		write_vl(info->type, vq - 1); /* self-syncing */
1003 
1004 		switch (info->type) {
1005 		case ARM64_VEC_SVE:
1006 			vl = sve_get_vl();
1007 			break;
1008 		case ARM64_VEC_SME:
1009 			vl = sme_get_vl();
1010 			break;
1011 		default:
1012 			vl = 0;
1013 			break;
1014 		}
1015 
1016 		/* Minimum VL identified? */
1017 		if (sve_vq_from_vl(vl) > vq)
1018 			break;
1019 
1020 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1021 		set_bit(__vq_to_bit(vq), map);
1022 	}
1023 }
1024 
1025 /*
1026  * Initialise the set of known supported VQs for the boot CPU.
1027  * This is called during kernel boot, before secondary CPUs are brought up.
1028  */
1029 void __init vec_init_vq_map(enum vec_type type)
1030 {
1031 	struct vl_info *info = &vl_info[type];
1032 	vec_probe_vqs(info, info->vq_map);
1033 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1034 }
1035 
1036 /*
1037  * If we haven't committed to the set of supported VQs yet, filter out
1038  * those not supported by the current CPU.
1039  * This function is called during the bring-up of early secondary CPUs only.
1040  */
1041 void vec_update_vq_map(enum vec_type type)
1042 {
1043 	struct vl_info *info = &vl_info[type];
1044 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1045 
1046 	vec_probe_vqs(info, tmp_map);
1047 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1048 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1049 		  SVE_VQ_MAX);
1050 }
1051 
1052 /*
1053  * Check whether the current CPU supports all VQs in the committed set.
1054  * This function is called during the bring-up of late secondary CPUs only.
1055  */
1056 int vec_verify_vq_map(enum vec_type type)
1057 {
1058 	struct vl_info *info = &vl_info[type];
1059 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1060 	unsigned long b;
1061 
1062 	vec_probe_vqs(info, tmp_map);
1063 
1064 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1065 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1066 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1067 			info->name, smp_processor_id());
1068 		return -EINVAL;
1069 	}
1070 
1071 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1072 		return 0;
1073 
1074 	/*
1075 	 * For KVM, it is necessary to ensure that this CPU doesn't
1076 	 * support any vector length that guests may have probed as
1077 	 * unsupported.
1078 	 */
1079 
1080 	/* Recover the set of supported VQs: */
1081 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1082 	/* Find VQs supported that are not globally supported: */
1083 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1084 
1085 	/* Find the lowest such VQ, if any: */
1086 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1087 	if (b >= SVE_VQ_MAX)
1088 		return 0; /* no mismatches */
1089 
1090 	/*
1091 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1092 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1093 	 */
1094 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1095 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1096 			info->name, smp_processor_id());
1097 		return -EINVAL;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static void __init sve_efi_setup(void)
1104 {
1105 	int max_vl = 0;
1106 	int i;
1107 
1108 	if (!IS_ENABLED(CONFIG_EFI))
1109 		return;
1110 
1111 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1112 		max_vl = max(vl_info[i].max_vl, max_vl);
1113 
1114 	/*
1115 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1116 	 * This is evidence of a crippled system and we are returning void,
1117 	 * so no attempt is made to handle this situation here.
1118 	 */
1119 	if (!sve_vl_valid(max_vl))
1120 		goto fail;
1121 
1122 	efi_sve_state = __alloc_percpu(
1123 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1124 	if (!efi_sve_state)
1125 		goto fail;
1126 
1127 	return;
1128 
1129 fail:
1130 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1131 }
1132 
1133 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
1134 {
1135 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1136 	isb();
1137 }
1138 
1139 void __init sve_setup(void)
1140 {
1141 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1142 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1143 	unsigned long b;
1144 	int max_bit;
1145 
1146 	if (!system_supports_sve())
1147 		return;
1148 
1149 	/*
1150 	 * The SVE architecture mandates support for 128-bit vectors,
1151 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1152 	 * If something went wrong, at least try to patch it up:
1153 	 */
1154 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1155 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1156 
1157 	max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1158 	info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1159 
1160 	/*
1161 	 * For the default VL, pick the maximum supported value <= 64.
1162 	 * VL == 64 is guaranteed not to grow the signal frame.
1163 	 */
1164 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1165 
1166 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1167 		      SVE_VQ_MAX);
1168 
1169 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1170 	if (b >= SVE_VQ_MAX)
1171 		/* No non-virtualisable VLs found */
1172 		info->max_virtualisable_vl = SVE_VQ_MAX;
1173 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1174 		/* No virtualisable VLs?  This is architecturally forbidden. */
1175 		info->max_virtualisable_vl = SVE_VQ_MIN;
1176 	else /* b + 1 < SVE_VQ_MAX */
1177 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1178 
1179 	if (info->max_virtualisable_vl > info->max_vl)
1180 		info->max_virtualisable_vl = info->max_vl;
1181 
1182 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1183 		info->name, info->max_vl);
1184 	pr_info("%s: default vector length %u bytes per vector\n",
1185 		info->name, get_sve_default_vl());
1186 
1187 	/* KVM decides whether to support mismatched systems. Just warn here: */
1188 	if (sve_max_virtualisable_vl() < sve_max_vl())
1189 		pr_warn("%s: unvirtualisable vector lengths present\n",
1190 			info->name);
1191 
1192 	sve_efi_setup();
1193 }
1194 
1195 /*
1196  * Called from the put_task_struct() path, which cannot get here
1197  * unless dead_task is really dead and not schedulable.
1198  */
1199 void fpsimd_release_task(struct task_struct *dead_task)
1200 {
1201 	__sve_free(dead_task);
1202 	sme_free(dead_task);
1203 }
1204 
1205 #endif /* CONFIG_ARM64_SVE */
1206 
1207 #ifdef CONFIG_ARM64_SME
1208 
1209 /*
1210  * Ensure that task->thread.sme_state is allocated and sufficiently large.
1211  *
1212  * This function should be used only in preparation for replacing
1213  * task->thread.sme_state with new data.  The memory is always zeroed
1214  * here to prevent stale data from showing through: this is done in
1215  * the interest of testability and predictability, the architecture
1216  * guarantees that when ZA is enabled it will be zeroed.
1217  */
1218 void sme_alloc(struct task_struct *task, bool flush)
1219 {
1220 	if (task->thread.sme_state) {
1221 		if (flush)
1222 			memset(task->thread.sme_state, 0,
1223 			       sme_state_size(task));
1224 		return;
1225 	}
1226 
1227 	/* This could potentially be up to 64K. */
1228 	task->thread.sme_state =
1229 		kzalloc(sme_state_size(task), GFP_KERNEL);
1230 }
1231 
1232 static void sme_free(struct task_struct *task)
1233 {
1234 	kfree(task->thread.sme_state);
1235 	task->thread.sme_state = NULL;
1236 }
1237 
1238 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
1239 {
1240 	/* Set priority for all PEs to architecturally defined minimum */
1241 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1242 		       SYS_SMPRI_EL1);
1243 
1244 	/* Allow SME in kernel */
1245 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1246 	isb();
1247 
1248 	/* Allow EL0 to access TPIDR2 */
1249 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1250 	isb();
1251 }
1252 
1253 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
1254 {
1255 	/* This must be enabled after SME */
1256 	BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
1257 
1258 	/* Allow use of ZT0 */
1259 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1260 		       SYS_SMCR_EL1);
1261 }
1262 
1263 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
1264 {
1265 	/* This must be enabled after SME */
1266 	BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
1267 
1268 	/* Allow use of FA64 */
1269 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1270 		       SYS_SMCR_EL1);
1271 }
1272 
1273 void __init sme_setup(void)
1274 {
1275 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1276 	int min_bit, max_bit;
1277 
1278 	if (!system_supports_sme())
1279 		return;
1280 
1281 	/*
1282 	 * SME doesn't require any particular vector length be
1283 	 * supported but it does require at least one.  We should have
1284 	 * disabled the feature entirely while bringing up CPUs but
1285 	 * let's double check here.  The bitmap is SVE_VQ_MAP sized for
1286 	 * sharing with SVE.
1287 	 */
1288 	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1289 
1290 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1291 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1292 
1293 	max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1294 	info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1295 
1296 	WARN_ON(info->min_vl > info->max_vl);
1297 
1298 	/*
1299 	 * For the default VL, pick the maximum supported value <= 32
1300 	 * (256 bits) if there is one since this is guaranteed not to
1301 	 * grow the signal frame when in streaming mode, otherwise the
1302 	 * minimum available VL will be used.
1303 	 */
1304 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1305 
1306 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1307 		info->min_vl);
1308 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1309 		info->max_vl);
1310 	pr_info("SME: default vector length %u bytes per vector\n",
1311 		get_sme_default_vl());
1312 }
1313 
1314 #endif /* CONFIG_ARM64_SME */
1315 
1316 static void sve_init_regs(void)
1317 {
1318 	/*
1319 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1320 	 * is not shared with FPSIMD. If (as is likely) the current
1321 	 * state is live in the registers then do this there and
1322 	 * update our metadata for the current task including
1323 	 * disabling the trap, otherwise update our in-memory copy.
1324 	 * We are guaranteed to not be in streaming mode, we can only
1325 	 * take a SVE trap when not in streaming mode and we can't be
1326 	 * in streaming mode when taking a SME trap.
1327 	 */
1328 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1329 		unsigned long vq_minus_one =
1330 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1331 		sve_set_vq(vq_minus_one);
1332 		sve_flush_live(true, vq_minus_one);
1333 		fpsimd_bind_task_to_cpu();
1334 	} else {
1335 		fpsimd_to_sve(current);
1336 		current->thread.fp_type = FP_STATE_SVE;
1337 	}
1338 }
1339 
1340 /*
1341  * Trapped SVE access
1342  *
1343  * Storage is allocated for the full SVE state, the current FPSIMD
1344  * register contents are migrated across, and the access trap is
1345  * disabled.
1346  *
1347  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1348  * would have disabled the SVE access trap for userspace during
1349  * ret_to_user, making an SVE access trap impossible in that case.
1350  */
1351 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1352 {
1353 	/* Even if we chose not to use SVE, the hardware could still trap: */
1354 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1355 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1356 		return;
1357 	}
1358 
1359 	sve_alloc(current, true);
1360 	if (!current->thread.sve_state) {
1361 		force_sig(SIGKILL);
1362 		return;
1363 	}
1364 
1365 	get_cpu_fpsimd_context();
1366 
1367 	if (test_and_set_thread_flag(TIF_SVE))
1368 		WARN_ON(1); /* SVE access shouldn't have trapped */
1369 
1370 	/*
1371 	 * Even if the task can have used streaming mode we can only
1372 	 * generate SVE access traps in normal SVE mode and
1373 	 * transitioning out of streaming mode may discard any
1374 	 * streaming mode state.  Always clear the high bits to avoid
1375 	 * any potential errors tracking what is properly initialised.
1376 	 */
1377 	sve_init_regs();
1378 
1379 	put_cpu_fpsimd_context();
1380 }
1381 
1382 /*
1383  * Trapped SME access
1384  *
1385  * Storage is allocated for the full SVE and SME state, the current
1386  * FPSIMD register contents are migrated to SVE if SVE is not already
1387  * active, and the access trap is disabled.
1388  *
1389  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1390  * would have disabled the SME access trap for userspace during
1391  * ret_to_user, making an SME access trap impossible in that case.
1392  */
1393 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1394 {
1395 	/* Even if we chose not to use SME, the hardware could still trap: */
1396 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1397 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1398 		return;
1399 	}
1400 
1401 	/*
1402 	 * If this not a trap due to SME being disabled then something
1403 	 * is being used in the wrong mode, report as SIGILL.
1404 	 */
1405 	if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1406 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1407 		return;
1408 	}
1409 
1410 	sve_alloc(current, false);
1411 	sme_alloc(current, true);
1412 	if (!current->thread.sve_state || !current->thread.sme_state) {
1413 		force_sig(SIGKILL);
1414 		return;
1415 	}
1416 
1417 	get_cpu_fpsimd_context();
1418 
1419 	/* With TIF_SME userspace shouldn't generate any traps */
1420 	if (test_and_set_thread_flag(TIF_SME))
1421 		WARN_ON(1);
1422 
1423 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1424 		unsigned long vq_minus_one =
1425 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1426 		sme_set_vq(vq_minus_one);
1427 
1428 		fpsimd_bind_task_to_cpu();
1429 	}
1430 
1431 	put_cpu_fpsimd_context();
1432 }
1433 
1434 /*
1435  * Trapped FP/ASIMD access.
1436  */
1437 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1438 {
1439 	/* Even if we chose not to use FPSIMD, the hardware could still trap: */
1440 	if (!system_supports_fpsimd()) {
1441 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1442 		return;
1443 	}
1444 
1445 	/*
1446 	 * When FPSIMD is enabled, we should never take a trap unless something
1447 	 * has gone very wrong.
1448 	 */
1449 	BUG();
1450 }
1451 
1452 /*
1453  * Raise a SIGFPE for the current process.
1454  */
1455 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1456 {
1457 	unsigned int si_code = FPE_FLTUNK;
1458 
1459 	if (esr & ESR_ELx_FP_EXC_TFV) {
1460 		if (esr & FPEXC_IOF)
1461 			si_code = FPE_FLTINV;
1462 		else if (esr & FPEXC_DZF)
1463 			si_code = FPE_FLTDIV;
1464 		else if (esr & FPEXC_OFF)
1465 			si_code = FPE_FLTOVF;
1466 		else if (esr & FPEXC_UFF)
1467 			si_code = FPE_FLTUND;
1468 		else if (esr & FPEXC_IXF)
1469 			si_code = FPE_FLTRES;
1470 	}
1471 
1472 	send_sig_fault(SIGFPE, si_code,
1473 		       (void __user *)instruction_pointer(regs),
1474 		       current);
1475 }
1476 
1477 static void fpsimd_load_kernel_state(struct task_struct *task)
1478 {
1479 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1480 
1481 	/*
1482 	 * Elide the load if this CPU holds the most recent kernel mode
1483 	 * FPSIMD context of the current task.
1484 	 */
1485 	if (last->st == &task->thread.kernel_fpsimd_state &&
1486 	    task->thread.kernel_fpsimd_cpu == smp_processor_id())
1487 		return;
1488 
1489 	fpsimd_load_state(&task->thread.kernel_fpsimd_state);
1490 }
1491 
1492 static void fpsimd_save_kernel_state(struct task_struct *task)
1493 {
1494 	struct cpu_fp_state cpu_fp_state = {
1495 		.st		= &task->thread.kernel_fpsimd_state,
1496 		.to_save	= FP_STATE_FPSIMD,
1497 	};
1498 
1499 	fpsimd_save_state(&task->thread.kernel_fpsimd_state);
1500 	fpsimd_bind_state_to_cpu(&cpu_fp_state);
1501 
1502 	task->thread.kernel_fpsimd_cpu = smp_processor_id();
1503 }
1504 
1505 void fpsimd_thread_switch(struct task_struct *next)
1506 {
1507 	bool wrong_task, wrong_cpu;
1508 
1509 	if (!system_supports_fpsimd())
1510 		return;
1511 
1512 	WARN_ON_ONCE(!irqs_disabled());
1513 
1514 	/* Save unsaved fpsimd state, if any: */
1515 	if (test_thread_flag(TIF_KERNEL_FPSTATE))
1516 		fpsimd_save_kernel_state(current);
1517 	else
1518 		fpsimd_save_user_state();
1519 
1520 	if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
1521 		fpsimd_load_kernel_state(next);
1522 		set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
1523 	} else {
1524 		/*
1525 		 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1526 		 * state.  For kernel threads, FPSIMD registers are never
1527 		 * loaded with user mode FPSIMD state and so wrong_task and
1528 		 * wrong_cpu will always be true.
1529 		 */
1530 		wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1531 			&next->thread.uw.fpsimd_state;
1532 		wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1533 
1534 		update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1535 				       wrong_task || wrong_cpu);
1536 	}
1537 }
1538 
1539 static void fpsimd_flush_thread_vl(enum vec_type type)
1540 {
1541 	int vl, supported_vl;
1542 
1543 	/*
1544 	 * Reset the task vector length as required.  This is where we
1545 	 * ensure that all user tasks have a valid vector length
1546 	 * configured: no kernel task can become a user task without
1547 	 * an exec and hence a call to this function.  By the time the
1548 	 * first call to this function is made, all early hardware
1549 	 * probing is complete, so __sve_default_vl should be valid.
1550 	 * If a bug causes this to go wrong, we make some noise and
1551 	 * try to fudge thread.sve_vl to a safe value here.
1552 	 */
1553 	vl = task_get_vl_onexec(current, type);
1554 	if (!vl)
1555 		vl = get_default_vl(type);
1556 
1557 	if (WARN_ON(!sve_vl_valid(vl)))
1558 		vl = vl_info[type].min_vl;
1559 
1560 	supported_vl = find_supported_vector_length(type, vl);
1561 	if (WARN_ON(supported_vl != vl))
1562 		vl = supported_vl;
1563 
1564 	task_set_vl(current, type, vl);
1565 
1566 	/*
1567 	 * If the task is not set to inherit, ensure that the vector
1568 	 * length will be reset by a subsequent exec:
1569 	 */
1570 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1571 		task_set_vl_onexec(current, type, 0);
1572 }
1573 
1574 void fpsimd_flush_thread(void)
1575 {
1576 	void *sve_state = NULL;
1577 	void *sme_state = NULL;
1578 
1579 	if (!system_supports_fpsimd())
1580 		return;
1581 
1582 	get_cpu_fpsimd_context();
1583 
1584 	fpsimd_flush_task_state(current);
1585 	memset(&current->thread.uw.fpsimd_state, 0,
1586 	       sizeof(current->thread.uw.fpsimd_state));
1587 
1588 	if (system_supports_sve()) {
1589 		clear_thread_flag(TIF_SVE);
1590 
1591 		/* Defer kfree() while in atomic context */
1592 		sve_state = current->thread.sve_state;
1593 		current->thread.sve_state = NULL;
1594 
1595 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1596 	}
1597 
1598 	if (system_supports_sme()) {
1599 		clear_thread_flag(TIF_SME);
1600 
1601 		/* Defer kfree() while in atomic context */
1602 		sme_state = current->thread.sme_state;
1603 		current->thread.sme_state = NULL;
1604 
1605 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1606 		current->thread.svcr = 0;
1607 	}
1608 
1609 	current->thread.fp_type = FP_STATE_FPSIMD;
1610 
1611 	put_cpu_fpsimd_context();
1612 	kfree(sve_state);
1613 	kfree(sme_state);
1614 }
1615 
1616 /*
1617  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1618  * currently held in the registers does in fact belong to 'current'
1619  */
1620 void fpsimd_preserve_current_state(void)
1621 {
1622 	if (!system_supports_fpsimd())
1623 		return;
1624 
1625 	get_cpu_fpsimd_context();
1626 	fpsimd_save_user_state();
1627 	put_cpu_fpsimd_context();
1628 }
1629 
1630 /*
1631  * Like fpsimd_preserve_current_state(), but ensure that
1632  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1633  * the signal frame.
1634  */
1635 void fpsimd_signal_preserve_current_state(void)
1636 {
1637 	fpsimd_preserve_current_state();
1638 	if (test_thread_flag(TIF_SVE))
1639 		sve_to_fpsimd(current);
1640 }
1641 
1642 /*
1643  * Called by KVM when entering the guest.
1644  */
1645 void fpsimd_kvm_prepare(void)
1646 {
1647 	if (!system_supports_sve())
1648 		return;
1649 
1650 	/*
1651 	 * KVM does not save host SVE state since we can only enter
1652 	 * the guest from a syscall so the ABI means that only the
1653 	 * non-saved SVE state needs to be saved.  If we have left
1654 	 * SVE enabled for performance reasons then update the task
1655 	 * state to be FPSIMD only.
1656 	 */
1657 	get_cpu_fpsimd_context();
1658 
1659 	if (test_and_clear_thread_flag(TIF_SVE)) {
1660 		sve_to_fpsimd(current);
1661 		current->thread.fp_type = FP_STATE_FPSIMD;
1662 	}
1663 
1664 	put_cpu_fpsimd_context();
1665 }
1666 
1667 /*
1668  * Associate current's FPSIMD context with this cpu
1669  * The caller must have ownership of the cpu FPSIMD context before calling
1670  * this function.
1671  */
1672 static void fpsimd_bind_task_to_cpu(void)
1673 {
1674 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1675 
1676 	WARN_ON(!system_supports_fpsimd());
1677 	last->st = &current->thread.uw.fpsimd_state;
1678 	last->sve_state = current->thread.sve_state;
1679 	last->sme_state = current->thread.sme_state;
1680 	last->sve_vl = task_get_sve_vl(current);
1681 	last->sme_vl = task_get_sme_vl(current);
1682 	last->svcr = &current->thread.svcr;
1683 	last->fp_type = &current->thread.fp_type;
1684 	last->to_save = FP_STATE_CURRENT;
1685 	current->thread.fpsimd_cpu = smp_processor_id();
1686 
1687 	/*
1688 	 * Toggle SVE and SME trapping for userspace if needed, these
1689 	 * are serialsied by ret_to_user().
1690 	 */
1691 	if (system_supports_sme()) {
1692 		if (test_thread_flag(TIF_SME))
1693 			sme_user_enable();
1694 		else
1695 			sme_user_disable();
1696 	}
1697 
1698 	if (system_supports_sve()) {
1699 		if (test_thread_flag(TIF_SVE))
1700 			sve_user_enable();
1701 		else
1702 			sve_user_disable();
1703 	}
1704 }
1705 
1706 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1707 {
1708 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1709 
1710 	WARN_ON(!system_supports_fpsimd());
1711 	WARN_ON(!in_softirq() && !irqs_disabled());
1712 
1713 	*last = *state;
1714 }
1715 
1716 /*
1717  * Load the userland FPSIMD state of 'current' from memory, but only if the
1718  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1719  * state of 'current'.  This is called when we are preparing to return to
1720  * userspace to ensure that userspace sees a good register state.
1721  */
1722 void fpsimd_restore_current_state(void)
1723 {
1724 	/*
1725 	 * TIF_FOREIGN_FPSTATE is set on the init task and copied by
1726 	 * arch_dup_task_struct() regardless of whether FP/SIMD is detected.
1727 	 * Thus user threads can have this set even when FP/SIMD hasn't been
1728 	 * detected.
1729 	 *
1730 	 * When FP/SIMD is detected, begin_new_exec() will set
1731 	 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
1732 	 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
1733 	 * switching tasks. We detect FP/SIMD before we exec the first user
1734 	 * process, ensuring this has TIF_FOREIGN_FPSTATE set and
1735 	 * do_notify_resume() will call fpsimd_restore_current_state() to
1736 	 * install the user FP/SIMD context.
1737 	 *
1738 	 * When FP/SIMD is not detected, nothing else will clear or set
1739 	 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
1740 	 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
1741 	 * looping forever calling fpsimd_restore_current_state().
1742 	 */
1743 	if (!system_supports_fpsimd()) {
1744 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1745 		return;
1746 	}
1747 
1748 	get_cpu_fpsimd_context();
1749 
1750 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1751 		task_fpsimd_load();
1752 		fpsimd_bind_task_to_cpu();
1753 	}
1754 
1755 	put_cpu_fpsimd_context();
1756 }
1757 
1758 /*
1759  * Load an updated userland FPSIMD state for 'current' from memory and set the
1760  * flag that indicates that the FPSIMD register contents are the most recent
1761  * FPSIMD state of 'current'. This is used by the signal code to restore the
1762  * register state when returning from a signal handler in FPSIMD only cases,
1763  * any SVE context will be discarded.
1764  */
1765 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1766 {
1767 	if (WARN_ON(!system_supports_fpsimd()))
1768 		return;
1769 
1770 	get_cpu_fpsimd_context();
1771 
1772 	current->thread.uw.fpsimd_state = *state;
1773 	if (test_thread_flag(TIF_SVE))
1774 		fpsimd_to_sve(current);
1775 
1776 	task_fpsimd_load();
1777 	fpsimd_bind_task_to_cpu();
1778 
1779 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1780 
1781 	put_cpu_fpsimd_context();
1782 }
1783 
1784 /*
1785  * Invalidate live CPU copies of task t's FPSIMD state
1786  *
1787  * This function may be called with preemption enabled.  The barrier()
1788  * ensures that the assignment to fpsimd_cpu is visible to any
1789  * preemption/softirq that could race with set_tsk_thread_flag(), so
1790  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1791  *
1792  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1793  * subsequent code.
1794  */
1795 void fpsimd_flush_task_state(struct task_struct *t)
1796 {
1797 	t->thread.fpsimd_cpu = NR_CPUS;
1798 	/*
1799 	 * If we don't support fpsimd, bail out after we have
1800 	 * reset the fpsimd_cpu for this task and clear the
1801 	 * FPSTATE.
1802 	 */
1803 	if (!system_supports_fpsimd())
1804 		return;
1805 	barrier();
1806 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1807 
1808 	barrier();
1809 }
1810 
1811 /*
1812  * Invalidate any task's FPSIMD state that is present on this cpu.
1813  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1814  * before calling this function.
1815  */
1816 static void fpsimd_flush_cpu_state(void)
1817 {
1818 	WARN_ON(!system_supports_fpsimd());
1819 	__this_cpu_write(fpsimd_last_state.st, NULL);
1820 
1821 	/*
1822 	 * Leaving streaming mode enabled will cause issues for any kernel
1823 	 * NEON and leaving streaming mode or ZA enabled may increase power
1824 	 * consumption.
1825 	 */
1826 	if (system_supports_sme())
1827 		sme_smstop();
1828 
1829 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1830 }
1831 
1832 /*
1833  * Save the FPSIMD state to memory and invalidate cpu view.
1834  * This function must be called with preemption disabled.
1835  */
1836 void fpsimd_save_and_flush_cpu_state(void)
1837 {
1838 	unsigned long flags;
1839 
1840 	if (!system_supports_fpsimd())
1841 		return;
1842 	WARN_ON(preemptible());
1843 	local_irq_save(flags);
1844 	fpsimd_save_user_state();
1845 	fpsimd_flush_cpu_state();
1846 	local_irq_restore(flags);
1847 }
1848 
1849 #ifdef CONFIG_KERNEL_MODE_NEON
1850 
1851 /*
1852  * Kernel-side NEON support functions
1853  */
1854 
1855 /*
1856  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1857  * context
1858  *
1859  * Must not be called unless may_use_simd() returns true.
1860  * Task context in the FPSIMD registers is saved back to memory as necessary.
1861  *
1862  * A matching call to kernel_neon_end() must be made before returning from the
1863  * calling context.
1864  *
1865  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1866  * called.
1867  */
1868 void kernel_neon_begin(void)
1869 {
1870 	if (WARN_ON(!system_supports_fpsimd()))
1871 		return;
1872 
1873 	BUG_ON(!may_use_simd());
1874 
1875 	get_cpu_fpsimd_context();
1876 
1877 	/* Save unsaved fpsimd state, if any: */
1878 	if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
1879 		BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
1880 		fpsimd_save_kernel_state(current);
1881 	} else {
1882 		fpsimd_save_user_state();
1883 
1884 		/*
1885 		 * Set the thread flag so that the kernel mode FPSIMD state
1886 		 * will be context switched along with the rest of the task
1887 		 * state.
1888 		 *
1889 		 * On non-PREEMPT_RT, softirqs may interrupt task level kernel
1890 		 * mode FPSIMD, but the task will not be preemptible so setting
1891 		 * TIF_KERNEL_FPSTATE for those would be both wrong (as it
1892 		 * would mark the task context FPSIMD state as requiring a
1893 		 * context switch) and unnecessary.
1894 		 *
1895 		 * On PREEMPT_RT, softirqs are serviced from a separate thread,
1896 		 * which is scheduled as usual, and this guarantees that these
1897 		 * softirqs are not interrupting use of the FPSIMD in kernel
1898 		 * mode in task context. So in this case, setting the flag here
1899 		 * is always appropriate.
1900 		 */
1901 		if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq())
1902 			set_thread_flag(TIF_KERNEL_FPSTATE);
1903 	}
1904 
1905 	/* Invalidate any task state remaining in the fpsimd regs: */
1906 	fpsimd_flush_cpu_state();
1907 
1908 	put_cpu_fpsimd_context();
1909 }
1910 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1911 
1912 /*
1913  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1914  *
1915  * Must be called from a context in which kernel_neon_begin() was previously
1916  * called, with no call to kernel_neon_end() in the meantime.
1917  *
1918  * The caller must not use the FPSIMD registers after this function is called,
1919  * unless kernel_neon_begin() is called again in the meantime.
1920  */
1921 void kernel_neon_end(void)
1922 {
1923 	if (!system_supports_fpsimd())
1924 		return;
1925 
1926 	/*
1927 	 * If we are returning from a nested use of kernel mode FPSIMD, restore
1928 	 * the task context kernel mode FPSIMD state. This can only happen when
1929 	 * running in softirq context on non-PREEMPT_RT.
1930 	 */
1931 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq() &&
1932 	    test_thread_flag(TIF_KERNEL_FPSTATE))
1933 		fpsimd_load_kernel_state(current);
1934 	else
1935 		clear_thread_flag(TIF_KERNEL_FPSTATE);
1936 }
1937 EXPORT_SYMBOL_GPL(kernel_neon_end);
1938 
1939 #ifdef CONFIG_EFI
1940 
1941 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1942 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1943 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1944 static DEFINE_PER_CPU(bool, efi_sm_state);
1945 
1946 /*
1947  * EFI runtime services support functions
1948  *
1949  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1950  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1951  * is always used rather than being an optional accelerator.
1952  *
1953  * These functions provide the necessary support for ensuring FPSIMD
1954  * save/restore in the contexts from which EFI is used.
1955  *
1956  * Do not use them for any other purpose -- if tempted to do so, you are
1957  * either doing something wrong or you need to propose some refactoring.
1958  */
1959 
1960 /*
1961  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1962  */
1963 void __efi_fpsimd_begin(void)
1964 {
1965 	if (!system_supports_fpsimd())
1966 		return;
1967 
1968 	WARN_ON(preemptible());
1969 
1970 	if (may_use_simd()) {
1971 		kernel_neon_begin();
1972 	} else {
1973 		/*
1974 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1975 		 * preserving:
1976 		 */
1977 		if (system_supports_sve() && likely(efi_sve_state)) {
1978 			char *sve_state = this_cpu_ptr(efi_sve_state);
1979 			bool ffr = true;
1980 			u64 svcr;
1981 
1982 			__this_cpu_write(efi_sve_state_used, true);
1983 
1984 			if (system_supports_sme()) {
1985 				svcr = read_sysreg_s(SYS_SVCR);
1986 
1987 				__this_cpu_write(efi_sm_state,
1988 						 svcr & SVCR_SM_MASK);
1989 
1990 				/*
1991 				 * Unless we have FA64 FFR does not
1992 				 * exist in streaming mode.
1993 				 */
1994 				if (!system_supports_fa64())
1995 					ffr = !(svcr & SVCR_SM_MASK);
1996 			}
1997 
1998 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1999 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2000 				       ffr);
2001 
2002 			if (system_supports_sme())
2003 				sysreg_clear_set_s(SYS_SVCR,
2004 						   SVCR_SM_MASK, 0);
2005 
2006 		} else {
2007 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
2008 		}
2009 
2010 		__this_cpu_write(efi_fpsimd_state_used, true);
2011 	}
2012 }
2013 
2014 /*
2015  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2016  */
2017 void __efi_fpsimd_end(void)
2018 {
2019 	if (!system_supports_fpsimd())
2020 		return;
2021 
2022 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2023 		kernel_neon_end();
2024 	} else {
2025 		if (system_supports_sve() &&
2026 		    likely(__this_cpu_read(efi_sve_state_used))) {
2027 			char const *sve_state = this_cpu_ptr(efi_sve_state);
2028 			bool ffr = true;
2029 
2030 			/*
2031 			 * Restore streaming mode; EFI calls are
2032 			 * normal function calls so should not return in
2033 			 * streaming mode.
2034 			 */
2035 			if (system_supports_sme()) {
2036 				if (__this_cpu_read(efi_sm_state)) {
2037 					sysreg_clear_set_s(SYS_SVCR,
2038 							   0,
2039 							   SVCR_SM_MASK);
2040 
2041 					/*
2042 					 * Unless we have FA64 FFR does not
2043 					 * exist in streaming mode.
2044 					 */
2045 					if (!system_supports_fa64())
2046 						ffr = false;
2047 				}
2048 			}
2049 
2050 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2051 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2052 				       ffr);
2053 
2054 			__this_cpu_write(efi_sve_state_used, false);
2055 		} else {
2056 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2057 		}
2058 	}
2059 }
2060 
2061 #endif /* CONFIG_EFI */
2062 
2063 #endif /* CONFIG_KERNEL_MODE_NEON */
2064 
2065 #ifdef CONFIG_CPU_PM
2066 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2067 				  unsigned long cmd, void *v)
2068 {
2069 	switch (cmd) {
2070 	case CPU_PM_ENTER:
2071 		fpsimd_save_and_flush_cpu_state();
2072 		break;
2073 	case CPU_PM_EXIT:
2074 		break;
2075 	case CPU_PM_ENTER_FAILED:
2076 	default:
2077 		return NOTIFY_DONE;
2078 	}
2079 	return NOTIFY_OK;
2080 }
2081 
2082 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2083 	.notifier_call = fpsimd_cpu_pm_notifier,
2084 };
2085 
2086 static void __init fpsimd_pm_init(void)
2087 {
2088 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2089 }
2090 
2091 #else
2092 static inline void fpsimd_pm_init(void) { }
2093 #endif /* CONFIG_CPU_PM */
2094 
2095 #ifdef CONFIG_HOTPLUG_CPU
2096 static int fpsimd_cpu_dead(unsigned int cpu)
2097 {
2098 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2099 	return 0;
2100 }
2101 
2102 static inline void fpsimd_hotplug_init(void)
2103 {
2104 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2105 				  NULL, fpsimd_cpu_dead);
2106 }
2107 
2108 #else
2109 static inline void fpsimd_hotplug_init(void) { }
2110 #endif
2111 
2112 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
2113 {
2114 	unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
2115 	write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
2116 	isb();
2117 }
2118 
2119 /*
2120  * FP/SIMD support code initialisation.
2121  */
2122 static int __init fpsimd_init(void)
2123 {
2124 	if (cpu_have_named_feature(FP)) {
2125 		fpsimd_pm_init();
2126 		fpsimd_hotplug_init();
2127 	} else {
2128 		pr_notice("Floating-point is not implemented\n");
2129 	}
2130 
2131 	if (!cpu_have_named_feature(ASIMD))
2132 		pr_notice("Advanced SIMD is not implemented\n");
2133 
2134 
2135 	sve_sysctl_init();
2136 	sme_sysctl_init();
2137 
2138 	return 0;
2139 }
2140 core_initcall(fpsimd_init);
2141