1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/compiler.h> 16 #include <linux/cpu.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/ctype.h> 19 #include <linux/kernel.h> 20 #include <linux/linkage.h> 21 #include <linux/irqflags.h> 22 #include <linux/init.h> 23 #include <linux/percpu.h> 24 #include <linux/prctl.h> 25 #include <linux/preempt.h> 26 #include <linux/ptrace.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/task_stack.h> 29 #include <linux/signal.h> 30 #include <linux/slab.h> 31 #include <linux/stddef.h> 32 #include <linux/sysctl.h> 33 #include <linux/swab.h> 34 35 #include <asm/esr.h> 36 #include <asm/exception.h> 37 #include <asm/fpsimd.h> 38 #include <asm/cpufeature.h> 39 #include <asm/cputype.h> 40 #include <asm/neon.h> 41 #include <asm/processor.h> 42 #include <asm/simd.h> 43 #include <asm/sigcontext.h> 44 #include <asm/sysreg.h> 45 #include <asm/traps.h> 46 #include <asm/virt.h> 47 48 #define FPEXC_IOF (1 << 0) 49 #define FPEXC_DZF (1 << 1) 50 #define FPEXC_OFF (1 << 2) 51 #define FPEXC_UFF (1 << 3) 52 #define FPEXC_IXF (1 << 4) 53 #define FPEXC_IDF (1 << 7) 54 55 /* 56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 57 * 58 * In order to reduce the number of times the FPSIMD state is needlessly saved 59 * and restored, we need to keep track of two things: 60 * (a) for each task, we need to remember which CPU was the last one to have 61 * the task's FPSIMD state loaded into its FPSIMD registers; 62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 63 * been loaded into its FPSIMD registers most recently, or whether it has 64 * been used to perform kernel mode NEON in the meantime. 65 * 66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 67 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 69 * address of the userland FPSIMD state of the task that was loaded onto the CPU 70 * the most recently, or NULL if kernel mode NEON has been performed after that. 71 * 72 * With this in place, we no longer have to restore the next FPSIMD state right 73 * when switching between tasks. Instead, we can defer this check to userland 74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 76 * can omit the FPSIMD restore. 77 * 78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 79 * indicate whether or not the userland FPSIMD state of the current task is 80 * present in the registers. The flag is set unless the FPSIMD registers of this 81 * CPU currently contain the most recent userland FPSIMD state of the current 82 * task. If the task is behaving as a VMM, then this is will be managed by 83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently 84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware 85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and 86 * flag the register state as invalid. 87 * 88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 89 * save the task's FPSIMD context back to task_struct from softirq context. 90 * To prevent this from racing with the manipulation of the task's FPSIMD state 91 * from task context and thereby corrupting the state, it is necessary to 92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to 94 * run but prevent them to use FPSIMD. 95 * 96 * For a certain task, the sequence may look something like this: 97 * - the task gets scheduled in; if both the task's fpsimd_cpu field 98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 100 * cleared, otherwise it is set; 101 * 102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 103 * userland FPSIMD state is copied from memory to the registers, the task's 104 * fpsimd_cpu field is set to the id of the current CPU, the current 105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 106 * TIF_FOREIGN_FPSTATE flag is cleared; 107 * 108 * - the task executes an ordinary syscall; upon return to userland, the 109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 110 * restored; 111 * 112 * - the task executes a syscall which executes some NEON instructions; this is 113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 114 * register contents to memory, clears the fpsimd_last_state per-cpu variable 115 * and sets the TIF_FOREIGN_FPSTATE flag; 116 * 117 * - the task gets preempted after kernel_neon_end() is called; as we have not 118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 119 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 120 */ 121 struct fpsimd_last_state_struct { 122 struct user_fpsimd_state *st; 123 void *sve_state; 124 void *za_state; 125 u64 *svcr; 126 unsigned int sve_vl; 127 unsigned int sme_vl; 128 }; 129 130 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); 131 132 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = { 133 #ifdef CONFIG_ARM64_SVE 134 [ARM64_VEC_SVE] = { 135 .type = ARM64_VEC_SVE, 136 .name = "SVE", 137 .min_vl = SVE_VL_MIN, 138 .max_vl = SVE_VL_MIN, 139 .max_virtualisable_vl = SVE_VL_MIN, 140 }, 141 #endif 142 #ifdef CONFIG_ARM64_SME 143 [ARM64_VEC_SME] = { 144 .type = ARM64_VEC_SME, 145 .name = "SME", 146 }, 147 #endif 148 }; 149 150 static unsigned int vec_vl_inherit_flag(enum vec_type type) 151 { 152 switch (type) { 153 case ARM64_VEC_SVE: 154 return TIF_SVE_VL_INHERIT; 155 case ARM64_VEC_SME: 156 return TIF_SME_VL_INHERIT; 157 default: 158 WARN_ON_ONCE(1); 159 return 0; 160 } 161 } 162 163 struct vl_config { 164 int __default_vl; /* Default VL for tasks */ 165 }; 166 167 static struct vl_config vl_config[ARM64_VEC_MAX]; 168 169 static inline int get_default_vl(enum vec_type type) 170 { 171 return READ_ONCE(vl_config[type].__default_vl); 172 } 173 174 #ifdef CONFIG_ARM64_SVE 175 176 static inline int get_sve_default_vl(void) 177 { 178 return get_default_vl(ARM64_VEC_SVE); 179 } 180 181 static inline void set_default_vl(enum vec_type type, int val) 182 { 183 WRITE_ONCE(vl_config[type].__default_vl, val); 184 } 185 186 static inline void set_sve_default_vl(int val) 187 { 188 set_default_vl(ARM64_VEC_SVE, val); 189 } 190 191 static void __percpu *efi_sve_state; 192 193 #else /* ! CONFIG_ARM64_SVE */ 194 195 /* Dummy declaration for code that will be optimised out: */ 196 extern void __percpu *efi_sve_state; 197 198 #endif /* ! CONFIG_ARM64_SVE */ 199 200 #ifdef CONFIG_ARM64_SME 201 202 static int get_sme_default_vl(void) 203 { 204 return get_default_vl(ARM64_VEC_SME); 205 } 206 207 static void set_sme_default_vl(int val) 208 { 209 set_default_vl(ARM64_VEC_SME, val); 210 } 211 212 static void sme_free(struct task_struct *); 213 214 #else 215 216 static inline void sme_free(struct task_struct *t) { } 217 218 #endif 219 220 DEFINE_PER_CPU(bool, fpsimd_context_busy); 221 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy); 222 223 static void fpsimd_bind_task_to_cpu(void); 224 225 static void __get_cpu_fpsimd_context(void) 226 { 227 bool busy = __this_cpu_xchg(fpsimd_context_busy, true); 228 229 WARN_ON(busy); 230 } 231 232 /* 233 * Claim ownership of the CPU FPSIMD context for use by the calling context. 234 * 235 * The caller may freely manipulate the FPSIMD context metadata until 236 * put_cpu_fpsimd_context() is called. 237 * 238 * The double-underscore version must only be called if you know the task 239 * can't be preempted. 240 * 241 * On RT kernels local_bh_disable() is not sufficient because it only 242 * serializes soft interrupt related sections via a local lock, but stays 243 * preemptible. Disabling preemption is the right choice here as bottom 244 * half processing is always in thread context on RT kernels so it 245 * implicitly prevents bottom half processing as well. 246 */ 247 static void get_cpu_fpsimd_context(void) 248 { 249 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 250 local_bh_disable(); 251 else 252 preempt_disable(); 253 __get_cpu_fpsimd_context(); 254 } 255 256 static void __put_cpu_fpsimd_context(void) 257 { 258 bool busy = __this_cpu_xchg(fpsimd_context_busy, false); 259 260 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */ 261 } 262 263 /* 264 * Release the CPU FPSIMD context. 265 * 266 * Must be called from a context in which get_cpu_fpsimd_context() was 267 * previously called, with no call to put_cpu_fpsimd_context() in the 268 * meantime. 269 */ 270 static void put_cpu_fpsimd_context(void) 271 { 272 __put_cpu_fpsimd_context(); 273 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 274 local_bh_enable(); 275 else 276 preempt_enable(); 277 } 278 279 static bool have_cpu_fpsimd_context(void) 280 { 281 return !preemptible() && __this_cpu_read(fpsimd_context_busy); 282 } 283 284 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type) 285 { 286 return task->thread.vl[type]; 287 } 288 289 void task_set_vl(struct task_struct *task, enum vec_type type, 290 unsigned long vl) 291 { 292 task->thread.vl[type] = vl; 293 } 294 295 unsigned int task_get_vl_onexec(const struct task_struct *task, 296 enum vec_type type) 297 { 298 return task->thread.vl_onexec[type]; 299 } 300 301 void task_set_vl_onexec(struct task_struct *task, enum vec_type type, 302 unsigned long vl) 303 { 304 task->thread.vl_onexec[type] = vl; 305 } 306 307 /* 308 * TIF_SME controls whether a task can use SME without trapping while 309 * in userspace, when TIF_SME is set then we must have storage 310 * alocated in sve_state and za_state to store the contents of both ZA 311 * and the SVE registers for both streaming and non-streaming modes. 312 * 313 * If both SVCR.ZA and SVCR.SM are disabled then at any point we 314 * may disable TIF_SME and reenable traps. 315 */ 316 317 318 /* 319 * TIF_SVE controls whether a task can use SVE without trapping while 320 * in userspace, and also (together with TIF_SME) the way a task's 321 * FPSIMD/SVE state is stored in thread_struct. 322 * 323 * The kernel uses this flag to track whether a user task is actively 324 * using SVE, and therefore whether full SVE register state needs to 325 * be tracked. If not, the cheaper FPSIMD context handling code can 326 * be used instead of the more costly SVE equivalents. 327 * 328 * * TIF_SVE or SVCR.SM set: 329 * 330 * The task can execute SVE instructions while in userspace without 331 * trapping to the kernel. 332 * 333 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the 334 * corresponding Zn), P0-P15 and FFR are encoded in in 335 * task->thread.sve_state, formatted appropriately for vector 336 * length task->thread.sve_vl or, if SVCR.SM is set, 337 * task->thread.sme_vl. 338 * 339 * task->thread.sve_state must point to a valid buffer at least 340 * sve_state_size(task) bytes in size. 341 * 342 * During any syscall, the kernel may optionally clear TIF_SVE and 343 * discard the vector state except for the FPSIMD subset. 344 * 345 * * TIF_SVE clear: 346 * 347 * An attempt by the user task to execute an SVE instruction causes 348 * do_sve_acc() to be called, which does some preparation and then 349 * sets TIF_SVE. 350 * 351 * When stored, FPSIMD registers V0-V31 are encoded in 352 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 353 * logically zero but not stored anywhere; P0-P15 and FFR are not 354 * stored and have unspecified values from userspace's point of 355 * view. For hygiene purposes, the kernel zeroes them on next use, 356 * but userspace is discouraged from relying on this. 357 * 358 * task->thread.sve_state does not need to be non-NULL, valid or any 359 * particular size: it must not be dereferenced. 360 * 361 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 362 * irrespective of whether TIF_SVE is clear or set, since these are 363 * not vector length dependent. 364 */ 365 366 /* 367 * Update current's FPSIMD/SVE registers from thread_struct. 368 * 369 * This function should be called only when the FPSIMD/SVE state in 370 * thread_struct is known to be up to date, when preparing to enter 371 * userspace. 372 */ 373 static void task_fpsimd_load(void) 374 { 375 bool restore_sve_regs = false; 376 bool restore_ffr; 377 378 WARN_ON(!system_supports_fpsimd()); 379 WARN_ON(!have_cpu_fpsimd_context()); 380 381 /* Check if we should restore SVE first */ 382 if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) { 383 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1); 384 restore_sve_regs = true; 385 restore_ffr = true; 386 } 387 388 /* Restore SME, override SVE register configuration if needed */ 389 if (system_supports_sme()) { 390 unsigned long sme_vl = task_get_sme_vl(current); 391 392 /* Ensure VL is set up for restoring data */ 393 if (test_thread_flag(TIF_SME)) 394 sme_set_vq(sve_vq_from_vl(sme_vl) - 1); 395 396 write_sysreg_s(current->thread.svcr, SYS_SVCR); 397 398 if (thread_za_enabled(¤t->thread)) 399 za_load_state(current->thread.za_state); 400 401 if (thread_sm_enabled(¤t->thread)) { 402 restore_sve_regs = true; 403 restore_ffr = system_supports_fa64(); 404 } 405 } 406 407 if (restore_sve_regs) 408 sve_load_state(sve_pffr(¤t->thread), 409 ¤t->thread.uw.fpsimd_state.fpsr, 410 restore_ffr); 411 else 412 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 413 } 414 415 /* 416 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 417 * date with respect to the CPU registers. Note carefully that the 418 * current context is the context last bound to the CPU stored in 419 * last, if KVM is involved this may be the guest VM context rather 420 * than the host thread for the VM pointed to by current. This means 421 * that we must always reference the state storage via last rather 422 * than via current, other than the TIF_ flags which KVM will 423 * carefully maintain for us. 424 */ 425 static void fpsimd_save(void) 426 { 427 struct fpsimd_last_state_struct const *last = 428 this_cpu_ptr(&fpsimd_last_state); 429 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 430 bool save_sve_regs = false; 431 bool save_ffr; 432 unsigned int vl; 433 434 WARN_ON(!system_supports_fpsimd()); 435 WARN_ON(!have_cpu_fpsimd_context()); 436 437 if (test_thread_flag(TIF_FOREIGN_FPSTATE)) 438 return; 439 440 if (test_thread_flag(TIF_SVE)) { 441 save_sve_regs = true; 442 save_ffr = true; 443 vl = last->sve_vl; 444 } 445 446 if (system_supports_sme()) { 447 u64 *svcr = last->svcr; 448 *svcr = read_sysreg_s(SYS_SVCR); 449 450 *svcr = read_sysreg_s(SYS_SVCR); 451 452 if (*svcr & SVCR_ZA_MASK) 453 za_save_state(last->za_state); 454 455 /* If we are in streaming mode override regular SVE. */ 456 if (*svcr & SVCR_SM_MASK) { 457 save_sve_regs = true; 458 save_ffr = system_supports_fa64(); 459 vl = last->sme_vl; 460 } 461 } 462 463 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) { 464 /* Get the configured VL from RDVL, will account for SM */ 465 if (WARN_ON(sve_get_vl() != vl)) { 466 /* 467 * Can't save the user regs, so current would 468 * re-enter user with corrupt state. 469 * There's no way to recover, so kill it: 470 */ 471 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0); 472 return; 473 } 474 475 sve_save_state((char *)last->sve_state + 476 sve_ffr_offset(vl), 477 &last->st->fpsr, save_ffr); 478 } else { 479 fpsimd_save_state(last->st); 480 } 481 } 482 483 /* 484 * All vector length selection from userspace comes through here. 485 * We're on a slow path, so some sanity-checks are included. 486 * If things go wrong there's a bug somewhere, but try to fall back to a 487 * safe choice. 488 */ 489 static unsigned int find_supported_vector_length(enum vec_type type, 490 unsigned int vl) 491 { 492 struct vl_info *info = &vl_info[type]; 493 int bit; 494 int max_vl = info->max_vl; 495 496 if (WARN_ON(!sve_vl_valid(vl))) 497 vl = info->min_vl; 498 499 if (WARN_ON(!sve_vl_valid(max_vl))) 500 max_vl = info->min_vl; 501 502 if (vl > max_vl) 503 vl = max_vl; 504 if (vl < info->min_vl) 505 vl = info->min_vl; 506 507 bit = find_next_bit(info->vq_map, SVE_VQ_MAX, 508 __vq_to_bit(sve_vq_from_vl(vl))); 509 return sve_vl_from_vq(__bit_to_vq(bit)); 510 } 511 512 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL) 513 514 static int vec_proc_do_default_vl(struct ctl_table *table, int write, 515 void *buffer, size_t *lenp, loff_t *ppos) 516 { 517 struct vl_info *info = table->extra1; 518 enum vec_type type = info->type; 519 int ret; 520 int vl = get_default_vl(type); 521 struct ctl_table tmp_table = { 522 .data = &vl, 523 .maxlen = sizeof(vl), 524 }; 525 526 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 527 if (ret || !write) 528 return ret; 529 530 /* Writing -1 has the special meaning "set to max": */ 531 if (vl == -1) 532 vl = info->max_vl; 533 534 if (!sve_vl_valid(vl)) 535 return -EINVAL; 536 537 set_default_vl(type, find_supported_vector_length(type, vl)); 538 return 0; 539 } 540 541 static struct ctl_table sve_default_vl_table[] = { 542 { 543 .procname = "sve_default_vector_length", 544 .mode = 0644, 545 .proc_handler = vec_proc_do_default_vl, 546 .extra1 = &vl_info[ARM64_VEC_SVE], 547 }, 548 { } 549 }; 550 551 static int __init sve_sysctl_init(void) 552 { 553 if (system_supports_sve()) 554 if (!register_sysctl("abi", sve_default_vl_table)) 555 return -EINVAL; 556 557 return 0; 558 } 559 560 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 561 static int __init sve_sysctl_init(void) { return 0; } 562 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 563 564 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL) 565 static struct ctl_table sme_default_vl_table[] = { 566 { 567 .procname = "sme_default_vector_length", 568 .mode = 0644, 569 .proc_handler = vec_proc_do_default_vl, 570 .extra1 = &vl_info[ARM64_VEC_SME], 571 }, 572 { } 573 }; 574 575 static int __init sme_sysctl_init(void) 576 { 577 if (system_supports_sme()) 578 if (!register_sysctl("abi", sme_default_vl_table)) 579 return -EINVAL; 580 581 return 0; 582 } 583 584 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 585 static int __init sme_sysctl_init(void) { return 0; } 586 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 587 588 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 589 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 590 591 #ifdef CONFIG_CPU_BIG_ENDIAN 592 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 593 { 594 u64 a = swab64(x); 595 u64 b = swab64(x >> 64); 596 597 return ((__uint128_t)a << 64) | b; 598 } 599 #else 600 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 601 { 602 return x; 603 } 604 #endif 605 606 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 607 608 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, 609 unsigned int vq) 610 { 611 unsigned int i; 612 __uint128_t *p; 613 614 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 615 p = (__uint128_t *)ZREG(sst, vq, i); 616 *p = arm64_cpu_to_le128(fst->vregs[i]); 617 } 618 } 619 620 /* 621 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 622 * task->thread.sve_state. 623 * 624 * Task can be a non-runnable task, or current. In the latter case, 625 * the caller must have ownership of the cpu FPSIMD context before calling 626 * this function. 627 * task->thread.sve_state must point to at least sve_state_size(task) 628 * bytes of allocated kernel memory. 629 * task->thread.uw.fpsimd_state must be up to date before calling this 630 * function. 631 */ 632 static void fpsimd_to_sve(struct task_struct *task) 633 { 634 unsigned int vq; 635 void *sst = task->thread.sve_state; 636 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 637 638 if (!system_supports_sve()) 639 return; 640 641 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 642 __fpsimd_to_sve(sst, fst, vq); 643 } 644 645 /* 646 * Transfer the SVE state in task->thread.sve_state to 647 * task->thread.uw.fpsimd_state. 648 * 649 * Task can be a non-runnable task, or current. In the latter case, 650 * the caller must have ownership of the cpu FPSIMD context before calling 651 * this function. 652 * task->thread.sve_state must point to at least sve_state_size(task) 653 * bytes of allocated kernel memory. 654 * task->thread.sve_state must be up to date before calling this function. 655 */ 656 static void sve_to_fpsimd(struct task_struct *task) 657 { 658 unsigned int vq, vl; 659 void const *sst = task->thread.sve_state; 660 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 661 unsigned int i; 662 __uint128_t const *p; 663 664 if (!system_supports_sve()) 665 return; 666 667 vl = thread_get_cur_vl(&task->thread); 668 vq = sve_vq_from_vl(vl); 669 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 670 p = (__uint128_t const *)ZREG(sst, vq, i); 671 fst->vregs[i] = arm64_le128_to_cpu(*p); 672 } 673 } 674 675 #ifdef CONFIG_ARM64_SVE 676 /* 677 * Call __sve_free() directly only if you know task can't be scheduled 678 * or preempted. 679 */ 680 static void __sve_free(struct task_struct *task) 681 { 682 kfree(task->thread.sve_state); 683 task->thread.sve_state = NULL; 684 } 685 686 static void sve_free(struct task_struct *task) 687 { 688 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 689 690 __sve_free(task); 691 } 692 693 /* 694 * Return how many bytes of memory are required to store the full SVE 695 * state for task, given task's currently configured vector length. 696 */ 697 size_t sve_state_size(struct task_struct const *task) 698 { 699 unsigned int vl = 0; 700 701 if (system_supports_sve()) 702 vl = task_get_sve_vl(task); 703 if (system_supports_sme()) 704 vl = max(vl, task_get_sme_vl(task)); 705 706 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)); 707 } 708 709 /* 710 * Ensure that task->thread.sve_state is allocated and sufficiently large. 711 * 712 * This function should be used only in preparation for replacing 713 * task->thread.sve_state with new data. The memory is always zeroed 714 * here to prevent stale data from showing through: this is done in 715 * the interest of testability and predictability: except in the 716 * do_sve_acc() case, there is no ABI requirement to hide stale data 717 * written previously be task. 718 */ 719 void sve_alloc(struct task_struct *task) 720 { 721 if (task->thread.sve_state) { 722 memset(task->thread.sve_state, 0, sve_state_size(task)); 723 return; 724 } 725 726 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 727 task->thread.sve_state = 728 kzalloc(sve_state_size(task), GFP_KERNEL); 729 } 730 731 732 /* 733 * Force the FPSIMD state shared with SVE to be updated in the SVE state 734 * even if the SVE state is the current active state. 735 * 736 * This should only be called by ptrace. task must be non-runnable. 737 * task->thread.sve_state must point to at least sve_state_size(task) 738 * bytes of allocated kernel memory. 739 */ 740 void fpsimd_force_sync_to_sve(struct task_struct *task) 741 { 742 fpsimd_to_sve(task); 743 } 744 745 /* 746 * Ensure that task->thread.sve_state is up to date with respect to 747 * the user task, irrespective of when SVE is in use or not. 748 * 749 * This should only be called by ptrace. task must be non-runnable. 750 * task->thread.sve_state must point to at least sve_state_size(task) 751 * bytes of allocated kernel memory. 752 */ 753 void fpsimd_sync_to_sve(struct task_struct *task) 754 { 755 if (!test_tsk_thread_flag(task, TIF_SVE) && 756 !thread_sm_enabled(&task->thread)) 757 fpsimd_to_sve(task); 758 } 759 760 /* 761 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 762 * the user task, irrespective of whether SVE is in use or not. 763 * 764 * This should only be called by ptrace. task must be non-runnable. 765 * task->thread.sve_state must point to at least sve_state_size(task) 766 * bytes of allocated kernel memory. 767 */ 768 void sve_sync_to_fpsimd(struct task_struct *task) 769 { 770 if (test_tsk_thread_flag(task, TIF_SVE) || 771 thread_sm_enabled(&task->thread)) 772 sve_to_fpsimd(task); 773 } 774 775 /* 776 * Ensure that task->thread.sve_state is up to date with respect to 777 * the task->thread.uw.fpsimd_state. 778 * 779 * This should only be called by ptrace to merge new FPSIMD register 780 * values into a task for which SVE is currently active. 781 * task must be non-runnable. 782 * task->thread.sve_state must point to at least sve_state_size(task) 783 * bytes of allocated kernel memory. 784 * task->thread.uw.fpsimd_state must already have been initialised with 785 * the new FPSIMD register values to be merged in. 786 */ 787 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 788 { 789 unsigned int vq; 790 void *sst = task->thread.sve_state; 791 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 792 793 if (!test_tsk_thread_flag(task, TIF_SVE)) 794 return; 795 796 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 797 798 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 799 __fpsimd_to_sve(sst, fst, vq); 800 } 801 802 int vec_set_vector_length(struct task_struct *task, enum vec_type type, 803 unsigned long vl, unsigned long flags) 804 { 805 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 806 PR_SVE_SET_VL_ONEXEC)) 807 return -EINVAL; 808 809 if (!sve_vl_valid(vl)) 810 return -EINVAL; 811 812 /* 813 * Clamp to the maximum vector length that VL-agnostic code 814 * can work with. A flag may be assigned in the future to 815 * allow setting of larger vector lengths without confusing 816 * older software. 817 */ 818 if (vl > VL_ARCH_MAX) 819 vl = VL_ARCH_MAX; 820 821 vl = find_supported_vector_length(type, vl); 822 823 if (flags & (PR_SVE_VL_INHERIT | 824 PR_SVE_SET_VL_ONEXEC)) 825 task_set_vl_onexec(task, type, vl); 826 else 827 /* Reset VL to system default on next exec: */ 828 task_set_vl_onexec(task, type, 0); 829 830 /* Only actually set the VL if not deferred: */ 831 if (flags & PR_SVE_SET_VL_ONEXEC) 832 goto out; 833 834 if (vl == task_get_vl(task, type)) 835 goto out; 836 837 /* 838 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 839 * write any live register state back to task_struct, and convert to a 840 * regular FPSIMD thread. 841 */ 842 if (task == current) { 843 get_cpu_fpsimd_context(); 844 845 fpsimd_save(); 846 } 847 848 fpsimd_flush_task_state(task); 849 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) || 850 thread_sm_enabled(&task->thread)) 851 sve_to_fpsimd(task); 852 853 if (system_supports_sme() && type == ARM64_VEC_SME) { 854 task->thread.svcr &= ~(SVCR_SM_MASK | 855 SVCR_ZA_MASK); 856 clear_thread_flag(TIF_SME); 857 } 858 859 if (task == current) 860 put_cpu_fpsimd_context(); 861 862 /* 863 * Force reallocation of task SVE and SME state to the correct 864 * size on next use: 865 */ 866 sve_free(task); 867 if (system_supports_sme() && type == ARM64_VEC_SME) 868 sme_free(task); 869 870 task_set_vl(task, type, vl); 871 872 out: 873 update_tsk_thread_flag(task, vec_vl_inherit_flag(type), 874 flags & PR_SVE_VL_INHERIT); 875 876 return 0; 877 } 878 879 /* 880 * Encode the current vector length and flags for return. 881 * This is only required for prctl(): ptrace has separate fields. 882 * SVE and SME use the same bits for _ONEXEC and _INHERIT. 883 * 884 * flags are as for vec_set_vector_length(). 885 */ 886 static int vec_prctl_status(enum vec_type type, unsigned long flags) 887 { 888 int ret; 889 890 if (flags & PR_SVE_SET_VL_ONEXEC) 891 ret = task_get_vl_onexec(current, type); 892 else 893 ret = task_get_vl(current, type); 894 895 if (test_thread_flag(vec_vl_inherit_flag(type))) 896 ret |= PR_SVE_VL_INHERIT; 897 898 return ret; 899 } 900 901 /* PR_SVE_SET_VL */ 902 int sve_set_current_vl(unsigned long arg) 903 { 904 unsigned long vl, flags; 905 int ret; 906 907 vl = arg & PR_SVE_VL_LEN_MASK; 908 flags = arg & ~vl; 909 910 if (!system_supports_sve() || is_compat_task()) 911 return -EINVAL; 912 913 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags); 914 if (ret) 915 return ret; 916 917 return vec_prctl_status(ARM64_VEC_SVE, flags); 918 } 919 920 /* PR_SVE_GET_VL */ 921 int sve_get_current_vl(void) 922 { 923 if (!system_supports_sve() || is_compat_task()) 924 return -EINVAL; 925 926 return vec_prctl_status(ARM64_VEC_SVE, 0); 927 } 928 929 #ifdef CONFIG_ARM64_SME 930 /* PR_SME_SET_VL */ 931 int sme_set_current_vl(unsigned long arg) 932 { 933 unsigned long vl, flags; 934 int ret; 935 936 vl = arg & PR_SME_VL_LEN_MASK; 937 flags = arg & ~vl; 938 939 if (!system_supports_sme() || is_compat_task()) 940 return -EINVAL; 941 942 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags); 943 if (ret) 944 return ret; 945 946 return vec_prctl_status(ARM64_VEC_SME, flags); 947 } 948 949 /* PR_SME_GET_VL */ 950 int sme_get_current_vl(void) 951 { 952 if (!system_supports_sme() || is_compat_task()) 953 return -EINVAL; 954 955 return vec_prctl_status(ARM64_VEC_SME, 0); 956 } 957 #endif /* CONFIG_ARM64_SME */ 958 959 static void vec_probe_vqs(struct vl_info *info, 960 DECLARE_BITMAP(map, SVE_VQ_MAX)) 961 { 962 unsigned int vq, vl; 963 964 bitmap_zero(map, SVE_VQ_MAX); 965 966 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 967 write_vl(info->type, vq - 1); /* self-syncing */ 968 969 switch (info->type) { 970 case ARM64_VEC_SVE: 971 vl = sve_get_vl(); 972 break; 973 case ARM64_VEC_SME: 974 vl = sme_get_vl(); 975 break; 976 default: 977 vl = 0; 978 break; 979 } 980 981 /* Minimum VL identified? */ 982 if (sve_vq_from_vl(vl) > vq) 983 break; 984 985 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 986 set_bit(__vq_to_bit(vq), map); 987 } 988 } 989 990 /* 991 * Initialise the set of known supported VQs for the boot CPU. 992 * This is called during kernel boot, before secondary CPUs are brought up. 993 */ 994 void __init vec_init_vq_map(enum vec_type type) 995 { 996 struct vl_info *info = &vl_info[type]; 997 vec_probe_vqs(info, info->vq_map); 998 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX); 999 } 1000 1001 /* 1002 * If we haven't committed to the set of supported VQs yet, filter out 1003 * those not supported by the current CPU. 1004 * This function is called during the bring-up of early secondary CPUs only. 1005 */ 1006 void vec_update_vq_map(enum vec_type type) 1007 { 1008 struct vl_info *info = &vl_info[type]; 1009 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1010 1011 vec_probe_vqs(info, tmp_map); 1012 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX); 1013 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map, 1014 SVE_VQ_MAX); 1015 } 1016 1017 /* 1018 * Check whether the current CPU supports all VQs in the committed set. 1019 * This function is called during the bring-up of late secondary CPUs only. 1020 */ 1021 int vec_verify_vq_map(enum vec_type type) 1022 { 1023 struct vl_info *info = &vl_info[type]; 1024 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1025 unsigned long b; 1026 1027 vec_probe_vqs(info, tmp_map); 1028 1029 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1030 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) { 1031 pr_warn("%s: cpu%d: Required vector length(s) missing\n", 1032 info->name, smp_processor_id()); 1033 return -EINVAL; 1034 } 1035 1036 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 1037 return 0; 1038 1039 /* 1040 * For KVM, it is necessary to ensure that this CPU doesn't 1041 * support any vector length that guests may have probed as 1042 * unsupported. 1043 */ 1044 1045 /* Recover the set of supported VQs: */ 1046 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1047 /* Find VQs supported that are not globally supported: */ 1048 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX); 1049 1050 /* Find the lowest such VQ, if any: */ 1051 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1052 if (b >= SVE_VQ_MAX) 1053 return 0; /* no mismatches */ 1054 1055 /* 1056 * Mismatches above sve_max_virtualisable_vl are fine, since 1057 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 1058 */ 1059 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) { 1060 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n", 1061 info->name, smp_processor_id()); 1062 return -EINVAL; 1063 } 1064 1065 return 0; 1066 } 1067 1068 static void __init sve_efi_setup(void) 1069 { 1070 int max_vl = 0; 1071 int i; 1072 1073 if (!IS_ENABLED(CONFIG_EFI)) 1074 return; 1075 1076 for (i = 0; i < ARRAY_SIZE(vl_info); i++) 1077 max_vl = max(vl_info[i].max_vl, max_vl); 1078 1079 /* 1080 * alloc_percpu() warns and prints a backtrace if this goes wrong. 1081 * This is evidence of a crippled system and we are returning void, 1082 * so no attempt is made to handle this situation here. 1083 */ 1084 if (!sve_vl_valid(max_vl)) 1085 goto fail; 1086 1087 efi_sve_state = __alloc_percpu( 1088 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES); 1089 if (!efi_sve_state) 1090 goto fail; 1091 1092 return; 1093 1094 fail: 1095 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 1096 } 1097 1098 /* 1099 * Enable SVE for EL1. 1100 * Intended for use by the cpufeatures code during CPU boot. 1101 */ 1102 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 1103 { 1104 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 1105 isb(); 1106 } 1107 1108 /* 1109 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE 1110 * vector length. 1111 * 1112 * Use only if SVE is present. 1113 * This function clobbers the SVE vector length. 1114 */ 1115 u64 read_zcr_features(void) 1116 { 1117 u64 zcr; 1118 unsigned int vq_max; 1119 1120 /* 1121 * Set the maximum possible VL, and write zeroes to all other 1122 * bits to see if they stick. 1123 */ 1124 sve_kernel_enable(NULL); 1125 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1); 1126 1127 zcr = read_sysreg_s(SYS_ZCR_EL1); 1128 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */ 1129 vq_max = sve_vq_from_vl(sve_get_vl()); 1130 zcr |= vq_max - 1; /* set LEN field to maximum effective value */ 1131 1132 return zcr; 1133 } 1134 1135 void __init sve_setup(void) 1136 { 1137 struct vl_info *info = &vl_info[ARM64_VEC_SVE]; 1138 u64 zcr; 1139 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1140 unsigned long b; 1141 1142 if (!system_supports_sve()) 1143 return; 1144 1145 /* 1146 * The SVE architecture mandates support for 128-bit vectors, 1147 * so sve_vq_map must have at least SVE_VQ_MIN set. 1148 * If something went wrong, at least try to patch it up: 1149 */ 1150 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map))) 1151 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map); 1152 1153 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 1154 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 1155 1156 /* 1157 * Sanity-check that the max VL we determined through CPU features 1158 * corresponds properly to sve_vq_map. If not, do our best: 1159 */ 1160 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE, 1161 info->max_vl))) 1162 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE, 1163 info->max_vl); 1164 1165 /* 1166 * For the default VL, pick the maximum supported value <= 64. 1167 * VL == 64 is guaranteed not to grow the signal frame. 1168 */ 1169 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64)); 1170 1171 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map, 1172 SVE_VQ_MAX); 1173 1174 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1175 if (b >= SVE_VQ_MAX) 1176 /* No non-virtualisable VLs found */ 1177 info->max_virtualisable_vl = SVE_VQ_MAX; 1178 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 1179 /* No virtualisable VLs? This is architecturally forbidden. */ 1180 info->max_virtualisable_vl = SVE_VQ_MIN; 1181 else /* b + 1 < SVE_VQ_MAX */ 1182 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 1183 1184 if (info->max_virtualisable_vl > info->max_vl) 1185 info->max_virtualisable_vl = info->max_vl; 1186 1187 pr_info("%s: maximum available vector length %u bytes per vector\n", 1188 info->name, info->max_vl); 1189 pr_info("%s: default vector length %u bytes per vector\n", 1190 info->name, get_sve_default_vl()); 1191 1192 /* KVM decides whether to support mismatched systems. Just warn here: */ 1193 if (sve_max_virtualisable_vl() < sve_max_vl()) 1194 pr_warn("%s: unvirtualisable vector lengths present\n", 1195 info->name); 1196 1197 sve_efi_setup(); 1198 } 1199 1200 /* 1201 * Called from the put_task_struct() path, which cannot get here 1202 * unless dead_task is really dead and not schedulable. 1203 */ 1204 void fpsimd_release_task(struct task_struct *dead_task) 1205 { 1206 __sve_free(dead_task); 1207 sme_free(dead_task); 1208 } 1209 1210 #endif /* CONFIG_ARM64_SVE */ 1211 1212 #ifdef CONFIG_ARM64_SME 1213 1214 /* 1215 * Ensure that task->thread.za_state is allocated and sufficiently large. 1216 * 1217 * This function should be used only in preparation for replacing 1218 * task->thread.za_state with new data. The memory is always zeroed 1219 * here to prevent stale data from showing through: this is done in 1220 * the interest of testability and predictability, the architecture 1221 * guarantees that when ZA is enabled it will be zeroed. 1222 */ 1223 void sme_alloc(struct task_struct *task) 1224 { 1225 if (task->thread.za_state) { 1226 memset(task->thread.za_state, 0, za_state_size(task)); 1227 return; 1228 } 1229 1230 /* This could potentially be up to 64K. */ 1231 task->thread.za_state = 1232 kzalloc(za_state_size(task), GFP_KERNEL); 1233 } 1234 1235 static void sme_free(struct task_struct *task) 1236 { 1237 kfree(task->thread.za_state); 1238 task->thread.za_state = NULL; 1239 } 1240 1241 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 1242 { 1243 /* Set priority for all PEs to architecturally defined minimum */ 1244 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK, 1245 SYS_SMPRI_EL1); 1246 1247 /* Allow SME in kernel */ 1248 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1); 1249 isb(); 1250 1251 /* Allow EL0 to access TPIDR2 */ 1252 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1); 1253 isb(); 1254 } 1255 1256 /* 1257 * This must be called after sme_kernel_enable(), we rely on the 1258 * feature table being sorted to ensure this. 1259 */ 1260 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 1261 { 1262 /* Allow use of FA64 */ 1263 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK, 1264 SYS_SMCR_EL1); 1265 } 1266 1267 /* 1268 * Read the pseudo-SMCR used by cpufeatures to identify the supported 1269 * vector length. 1270 * 1271 * Use only if SME is present. 1272 * This function clobbers the SME vector length. 1273 */ 1274 u64 read_smcr_features(void) 1275 { 1276 u64 smcr; 1277 unsigned int vq_max; 1278 1279 sme_kernel_enable(NULL); 1280 sme_smstart_sm(); 1281 1282 /* 1283 * Set the maximum possible VL. 1284 */ 1285 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK, 1286 SYS_SMCR_EL1); 1287 1288 smcr = read_sysreg_s(SYS_SMCR_EL1); 1289 smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */ 1290 vq_max = sve_vq_from_vl(sve_get_vl()); 1291 smcr |= vq_max - 1; /* set LEN field to maximum effective value */ 1292 1293 sme_smstop_sm(); 1294 1295 return smcr; 1296 } 1297 1298 void __init sme_setup(void) 1299 { 1300 struct vl_info *info = &vl_info[ARM64_VEC_SME]; 1301 u64 smcr; 1302 int min_bit; 1303 1304 if (!system_supports_sme()) 1305 return; 1306 1307 /* 1308 * SME doesn't require any particular vector length be 1309 * supported but it does require at least one. We should have 1310 * disabled the feature entirely while bringing up CPUs but 1311 * let's double check here. 1312 */ 1313 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX)); 1314 1315 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX); 1316 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit)); 1317 1318 smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1); 1319 info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1); 1320 1321 /* 1322 * Sanity-check that the max VL we determined through CPU features 1323 * corresponds properly to sme_vq_map. If not, do our best: 1324 */ 1325 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME, 1326 info->max_vl))) 1327 info->max_vl = find_supported_vector_length(ARM64_VEC_SME, 1328 info->max_vl); 1329 1330 WARN_ON(info->min_vl > info->max_vl); 1331 1332 /* 1333 * For the default VL, pick the maximum supported value <= 32 1334 * (256 bits) if there is one since this is guaranteed not to 1335 * grow the signal frame when in streaming mode, otherwise the 1336 * minimum available VL will be used. 1337 */ 1338 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32)); 1339 1340 pr_info("SME: minimum available vector length %u bytes per vector\n", 1341 info->min_vl); 1342 pr_info("SME: maximum available vector length %u bytes per vector\n", 1343 info->max_vl); 1344 pr_info("SME: default vector length %u bytes per vector\n", 1345 get_sme_default_vl()); 1346 } 1347 1348 #endif /* CONFIG_ARM64_SME */ 1349 1350 static void sve_init_regs(void) 1351 { 1352 /* 1353 * Convert the FPSIMD state to SVE, zeroing all the state that 1354 * is not shared with FPSIMD. If (as is likely) the current 1355 * state is live in the registers then do this there and 1356 * update our metadata for the current task including 1357 * disabling the trap, otherwise update our in-memory copy. 1358 * We are guaranteed to not be in streaming mode, we can only 1359 * take a SVE trap when not in streaming mode and we can't be 1360 * in streaming mode when taking a SME trap. 1361 */ 1362 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1363 unsigned long vq_minus_one = 1364 sve_vq_from_vl(task_get_sve_vl(current)) - 1; 1365 sve_set_vq(vq_minus_one); 1366 sve_flush_live(true, vq_minus_one); 1367 fpsimd_bind_task_to_cpu(); 1368 } else { 1369 fpsimd_to_sve(current); 1370 } 1371 } 1372 1373 /* 1374 * Trapped SVE access 1375 * 1376 * Storage is allocated for the full SVE state, the current FPSIMD 1377 * register contents are migrated across, and the access trap is 1378 * disabled. 1379 * 1380 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state() 1381 * would have disabled the SVE access trap for userspace during 1382 * ret_to_user, making an SVE access trap impossible in that case. 1383 */ 1384 void do_sve_acc(unsigned long esr, struct pt_regs *regs) 1385 { 1386 /* Even if we chose not to use SVE, the hardware could still trap: */ 1387 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 1388 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1389 return; 1390 } 1391 1392 sve_alloc(current); 1393 if (!current->thread.sve_state) { 1394 force_sig(SIGKILL); 1395 return; 1396 } 1397 1398 get_cpu_fpsimd_context(); 1399 1400 if (test_and_set_thread_flag(TIF_SVE)) 1401 WARN_ON(1); /* SVE access shouldn't have trapped */ 1402 1403 /* 1404 * Even if the task can have used streaming mode we can only 1405 * generate SVE access traps in normal SVE mode and 1406 * transitioning out of streaming mode may discard any 1407 * streaming mode state. Always clear the high bits to avoid 1408 * any potential errors tracking what is properly initialised. 1409 */ 1410 sve_init_regs(); 1411 1412 put_cpu_fpsimd_context(); 1413 } 1414 1415 /* 1416 * Trapped SME access 1417 * 1418 * Storage is allocated for the full SVE and SME state, the current 1419 * FPSIMD register contents are migrated to SVE if SVE is not already 1420 * active, and the access trap is disabled. 1421 * 1422 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state() 1423 * would have disabled the SME access trap for userspace during 1424 * ret_to_user, making an SVE access trap impossible in that case. 1425 */ 1426 void do_sme_acc(unsigned long esr, struct pt_regs *regs) 1427 { 1428 /* Even if we chose not to use SME, the hardware could still trap: */ 1429 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) { 1430 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1431 return; 1432 } 1433 1434 /* 1435 * If this not a trap due to SME being disabled then something 1436 * is being used in the wrong mode, report as SIGILL. 1437 */ 1438 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) { 1439 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1440 return; 1441 } 1442 1443 sve_alloc(current); 1444 sme_alloc(current); 1445 if (!current->thread.sve_state || !current->thread.za_state) { 1446 force_sig(SIGKILL); 1447 return; 1448 } 1449 1450 get_cpu_fpsimd_context(); 1451 1452 /* With TIF_SME userspace shouldn't generate any traps */ 1453 if (test_and_set_thread_flag(TIF_SME)) 1454 WARN_ON(1); 1455 1456 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1457 unsigned long vq_minus_one = 1458 sve_vq_from_vl(task_get_sme_vl(current)) - 1; 1459 sme_set_vq(vq_minus_one); 1460 1461 fpsimd_bind_task_to_cpu(); 1462 } 1463 1464 /* 1465 * If SVE was not already active initialise the SVE registers, 1466 * any non-shared state between the streaming and regular SVE 1467 * registers is architecturally guaranteed to be zeroed when 1468 * we enter streaming mode. We do not need to initialize ZA 1469 * since ZA must be disabled at this point and enabling ZA is 1470 * architecturally defined to zero ZA. 1471 */ 1472 if (system_supports_sve() && !test_thread_flag(TIF_SVE)) 1473 sve_init_regs(); 1474 1475 put_cpu_fpsimd_context(); 1476 } 1477 1478 /* 1479 * Trapped FP/ASIMD access. 1480 */ 1481 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs) 1482 { 1483 /* TODO: implement lazy context saving/restoring */ 1484 WARN_ON(1); 1485 } 1486 1487 /* 1488 * Raise a SIGFPE for the current process. 1489 */ 1490 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs) 1491 { 1492 unsigned int si_code = FPE_FLTUNK; 1493 1494 if (esr & ESR_ELx_FP_EXC_TFV) { 1495 if (esr & FPEXC_IOF) 1496 si_code = FPE_FLTINV; 1497 else if (esr & FPEXC_DZF) 1498 si_code = FPE_FLTDIV; 1499 else if (esr & FPEXC_OFF) 1500 si_code = FPE_FLTOVF; 1501 else if (esr & FPEXC_UFF) 1502 si_code = FPE_FLTUND; 1503 else if (esr & FPEXC_IXF) 1504 si_code = FPE_FLTRES; 1505 } 1506 1507 send_sig_fault(SIGFPE, si_code, 1508 (void __user *)instruction_pointer(regs), 1509 current); 1510 } 1511 1512 void fpsimd_thread_switch(struct task_struct *next) 1513 { 1514 bool wrong_task, wrong_cpu; 1515 1516 if (!system_supports_fpsimd()) 1517 return; 1518 1519 __get_cpu_fpsimd_context(); 1520 1521 /* Save unsaved fpsimd state, if any: */ 1522 fpsimd_save(); 1523 1524 /* 1525 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 1526 * state. For kernel threads, FPSIMD registers are never loaded 1527 * and wrong_task and wrong_cpu will always be true. 1528 */ 1529 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 1530 &next->thread.uw.fpsimd_state; 1531 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 1532 1533 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 1534 wrong_task || wrong_cpu); 1535 1536 __put_cpu_fpsimd_context(); 1537 } 1538 1539 static void fpsimd_flush_thread_vl(enum vec_type type) 1540 { 1541 int vl, supported_vl; 1542 1543 /* 1544 * Reset the task vector length as required. This is where we 1545 * ensure that all user tasks have a valid vector length 1546 * configured: no kernel task can become a user task without 1547 * an exec and hence a call to this function. By the time the 1548 * first call to this function is made, all early hardware 1549 * probing is complete, so __sve_default_vl should be valid. 1550 * If a bug causes this to go wrong, we make some noise and 1551 * try to fudge thread.sve_vl to a safe value here. 1552 */ 1553 vl = task_get_vl_onexec(current, type); 1554 if (!vl) 1555 vl = get_default_vl(type); 1556 1557 if (WARN_ON(!sve_vl_valid(vl))) 1558 vl = vl_info[type].min_vl; 1559 1560 supported_vl = find_supported_vector_length(type, vl); 1561 if (WARN_ON(supported_vl != vl)) 1562 vl = supported_vl; 1563 1564 task_set_vl(current, type, vl); 1565 1566 /* 1567 * If the task is not set to inherit, ensure that the vector 1568 * length will be reset by a subsequent exec: 1569 */ 1570 if (!test_thread_flag(vec_vl_inherit_flag(type))) 1571 task_set_vl_onexec(current, type, 0); 1572 } 1573 1574 void fpsimd_flush_thread(void) 1575 { 1576 void *sve_state = NULL; 1577 void *za_state = NULL; 1578 1579 if (!system_supports_fpsimd()) 1580 return; 1581 1582 get_cpu_fpsimd_context(); 1583 1584 fpsimd_flush_task_state(current); 1585 memset(¤t->thread.uw.fpsimd_state, 0, 1586 sizeof(current->thread.uw.fpsimd_state)); 1587 1588 if (system_supports_sve()) { 1589 clear_thread_flag(TIF_SVE); 1590 1591 /* Defer kfree() while in atomic context */ 1592 sve_state = current->thread.sve_state; 1593 current->thread.sve_state = NULL; 1594 1595 fpsimd_flush_thread_vl(ARM64_VEC_SVE); 1596 } 1597 1598 if (system_supports_sme()) { 1599 clear_thread_flag(TIF_SME); 1600 1601 /* Defer kfree() while in atomic context */ 1602 za_state = current->thread.za_state; 1603 current->thread.za_state = NULL; 1604 1605 fpsimd_flush_thread_vl(ARM64_VEC_SME); 1606 current->thread.svcr = 0; 1607 } 1608 1609 put_cpu_fpsimd_context(); 1610 kfree(sve_state); 1611 kfree(za_state); 1612 } 1613 1614 /* 1615 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1616 * currently held in the registers does in fact belong to 'current' 1617 */ 1618 void fpsimd_preserve_current_state(void) 1619 { 1620 if (!system_supports_fpsimd()) 1621 return; 1622 1623 get_cpu_fpsimd_context(); 1624 fpsimd_save(); 1625 put_cpu_fpsimd_context(); 1626 } 1627 1628 /* 1629 * Like fpsimd_preserve_current_state(), but ensure that 1630 * current->thread.uw.fpsimd_state is updated so that it can be copied to 1631 * the signal frame. 1632 */ 1633 void fpsimd_signal_preserve_current_state(void) 1634 { 1635 fpsimd_preserve_current_state(); 1636 if (test_thread_flag(TIF_SVE)) 1637 sve_to_fpsimd(current); 1638 } 1639 1640 /* 1641 * Associate current's FPSIMD context with this cpu 1642 * The caller must have ownership of the cpu FPSIMD context before calling 1643 * this function. 1644 */ 1645 static void fpsimd_bind_task_to_cpu(void) 1646 { 1647 struct fpsimd_last_state_struct *last = 1648 this_cpu_ptr(&fpsimd_last_state); 1649 1650 WARN_ON(!system_supports_fpsimd()); 1651 last->st = ¤t->thread.uw.fpsimd_state; 1652 last->sve_state = current->thread.sve_state; 1653 last->za_state = current->thread.za_state; 1654 last->sve_vl = task_get_sve_vl(current); 1655 last->sme_vl = task_get_sme_vl(current); 1656 last->svcr = ¤t->thread.svcr; 1657 current->thread.fpsimd_cpu = smp_processor_id(); 1658 1659 /* 1660 * Toggle SVE and SME trapping for userspace if needed, these 1661 * are serialsied by ret_to_user(). 1662 */ 1663 if (system_supports_sme()) { 1664 if (test_thread_flag(TIF_SME)) 1665 sme_user_enable(); 1666 else 1667 sme_user_disable(); 1668 } 1669 1670 if (system_supports_sve()) { 1671 if (test_thread_flag(TIF_SVE)) 1672 sve_user_enable(); 1673 else 1674 sve_user_disable(); 1675 } 1676 } 1677 1678 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state, 1679 unsigned int sve_vl, void *za_state, 1680 unsigned int sme_vl, u64 *svcr) 1681 { 1682 struct fpsimd_last_state_struct *last = 1683 this_cpu_ptr(&fpsimd_last_state); 1684 1685 WARN_ON(!system_supports_fpsimd()); 1686 WARN_ON(!in_softirq() && !irqs_disabled()); 1687 1688 last->st = st; 1689 last->svcr = svcr; 1690 last->sve_state = sve_state; 1691 last->za_state = za_state; 1692 last->sve_vl = sve_vl; 1693 last->sme_vl = sme_vl; 1694 } 1695 1696 /* 1697 * Load the userland FPSIMD state of 'current' from memory, but only if the 1698 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1699 * state of 'current'. This is called when we are preparing to return to 1700 * userspace to ensure that userspace sees a good register state. 1701 */ 1702 void fpsimd_restore_current_state(void) 1703 { 1704 /* 1705 * For the tasks that were created before we detected the absence of 1706 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(), 1707 * e.g, init. This could be then inherited by the children processes. 1708 * If we later detect that the system doesn't support FP/SIMD, 1709 * we must clear the flag for all the tasks to indicate that the 1710 * FPSTATE is clean (as we can't have one) to avoid looping for ever in 1711 * do_notify_resume(). 1712 */ 1713 if (!system_supports_fpsimd()) { 1714 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1715 return; 1716 } 1717 1718 get_cpu_fpsimd_context(); 1719 1720 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1721 task_fpsimd_load(); 1722 fpsimd_bind_task_to_cpu(); 1723 } 1724 1725 put_cpu_fpsimd_context(); 1726 } 1727 1728 /* 1729 * Load an updated userland FPSIMD state for 'current' from memory and set the 1730 * flag that indicates that the FPSIMD register contents are the most recent 1731 * FPSIMD state of 'current'. This is used by the signal code to restore the 1732 * register state when returning from a signal handler in FPSIMD only cases, 1733 * any SVE context will be discarded. 1734 */ 1735 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1736 { 1737 if (WARN_ON(!system_supports_fpsimd())) 1738 return; 1739 1740 get_cpu_fpsimd_context(); 1741 1742 current->thread.uw.fpsimd_state = *state; 1743 if (test_thread_flag(TIF_SVE)) 1744 fpsimd_to_sve(current); 1745 1746 task_fpsimd_load(); 1747 fpsimd_bind_task_to_cpu(); 1748 1749 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1750 1751 put_cpu_fpsimd_context(); 1752 } 1753 1754 /* 1755 * Invalidate live CPU copies of task t's FPSIMD state 1756 * 1757 * This function may be called with preemption enabled. The barrier() 1758 * ensures that the assignment to fpsimd_cpu is visible to any 1759 * preemption/softirq that could race with set_tsk_thread_flag(), so 1760 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1761 * 1762 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1763 * subsequent code. 1764 */ 1765 void fpsimd_flush_task_state(struct task_struct *t) 1766 { 1767 t->thread.fpsimd_cpu = NR_CPUS; 1768 /* 1769 * If we don't support fpsimd, bail out after we have 1770 * reset the fpsimd_cpu for this task and clear the 1771 * FPSTATE. 1772 */ 1773 if (!system_supports_fpsimd()) 1774 return; 1775 barrier(); 1776 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1777 1778 barrier(); 1779 } 1780 1781 /* 1782 * Invalidate any task's FPSIMD state that is present on this cpu. 1783 * The FPSIMD context should be acquired with get_cpu_fpsimd_context() 1784 * before calling this function. 1785 */ 1786 static void fpsimd_flush_cpu_state(void) 1787 { 1788 WARN_ON(!system_supports_fpsimd()); 1789 __this_cpu_write(fpsimd_last_state.st, NULL); 1790 1791 /* 1792 * Leaving streaming mode enabled will cause issues for any kernel 1793 * NEON and leaving streaming mode or ZA enabled may increase power 1794 * consumption. 1795 */ 1796 if (system_supports_sme()) 1797 sme_smstop(); 1798 1799 set_thread_flag(TIF_FOREIGN_FPSTATE); 1800 } 1801 1802 /* 1803 * Save the FPSIMD state to memory and invalidate cpu view. 1804 * This function must be called with preemption disabled. 1805 */ 1806 void fpsimd_save_and_flush_cpu_state(void) 1807 { 1808 if (!system_supports_fpsimd()) 1809 return; 1810 WARN_ON(preemptible()); 1811 __get_cpu_fpsimd_context(); 1812 fpsimd_save(); 1813 fpsimd_flush_cpu_state(); 1814 __put_cpu_fpsimd_context(); 1815 } 1816 1817 #ifdef CONFIG_KERNEL_MODE_NEON 1818 1819 /* 1820 * Kernel-side NEON support functions 1821 */ 1822 1823 /* 1824 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1825 * context 1826 * 1827 * Must not be called unless may_use_simd() returns true. 1828 * Task context in the FPSIMD registers is saved back to memory as necessary. 1829 * 1830 * A matching call to kernel_neon_end() must be made before returning from the 1831 * calling context. 1832 * 1833 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1834 * called. 1835 */ 1836 void kernel_neon_begin(void) 1837 { 1838 if (WARN_ON(!system_supports_fpsimd())) 1839 return; 1840 1841 BUG_ON(!may_use_simd()); 1842 1843 get_cpu_fpsimd_context(); 1844 1845 /* Save unsaved fpsimd state, if any: */ 1846 fpsimd_save(); 1847 1848 /* Invalidate any task state remaining in the fpsimd regs: */ 1849 fpsimd_flush_cpu_state(); 1850 } 1851 EXPORT_SYMBOL(kernel_neon_begin); 1852 1853 /* 1854 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1855 * 1856 * Must be called from a context in which kernel_neon_begin() was previously 1857 * called, with no call to kernel_neon_end() in the meantime. 1858 * 1859 * The caller must not use the FPSIMD registers after this function is called, 1860 * unless kernel_neon_begin() is called again in the meantime. 1861 */ 1862 void kernel_neon_end(void) 1863 { 1864 if (!system_supports_fpsimd()) 1865 return; 1866 1867 put_cpu_fpsimd_context(); 1868 } 1869 EXPORT_SYMBOL(kernel_neon_end); 1870 1871 #ifdef CONFIG_EFI 1872 1873 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1874 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1875 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1876 static DEFINE_PER_CPU(bool, efi_sm_state); 1877 1878 /* 1879 * EFI runtime services support functions 1880 * 1881 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1882 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1883 * is always used rather than being an optional accelerator. 1884 * 1885 * These functions provide the necessary support for ensuring FPSIMD 1886 * save/restore in the contexts from which EFI is used. 1887 * 1888 * Do not use them for any other purpose -- if tempted to do so, you are 1889 * either doing something wrong or you need to propose some refactoring. 1890 */ 1891 1892 /* 1893 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1894 */ 1895 void __efi_fpsimd_begin(void) 1896 { 1897 if (!system_supports_fpsimd()) 1898 return; 1899 1900 WARN_ON(preemptible()); 1901 1902 if (may_use_simd()) { 1903 kernel_neon_begin(); 1904 } else { 1905 /* 1906 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1907 * preserving: 1908 */ 1909 if (system_supports_sve() && likely(efi_sve_state)) { 1910 char *sve_state = this_cpu_ptr(efi_sve_state); 1911 bool ffr = true; 1912 u64 svcr; 1913 1914 __this_cpu_write(efi_sve_state_used, true); 1915 1916 if (system_supports_sme()) { 1917 svcr = read_sysreg_s(SYS_SVCR); 1918 1919 if (!system_supports_fa64()) 1920 ffr = svcr & SVCR_SM_MASK; 1921 1922 __this_cpu_write(efi_sm_state, ffr); 1923 } 1924 1925 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()), 1926 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1927 ffr); 1928 1929 if (system_supports_sme()) 1930 sysreg_clear_set_s(SYS_SVCR, 1931 SVCR_SM_MASK, 0); 1932 1933 } else { 1934 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1935 } 1936 1937 __this_cpu_write(efi_fpsimd_state_used, true); 1938 } 1939 } 1940 1941 /* 1942 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1943 */ 1944 void __efi_fpsimd_end(void) 1945 { 1946 if (!system_supports_fpsimd()) 1947 return; 1948 1949 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1950 kernel_neon_end(); 1951 } else { 1952 if (system_supports_sve() && 1953 likely(__this_cpu_read(efi_sve_state_used))) { 1954 char const *sve_state = this_cpu_ptr(efi_sve_state); 1955 bool ffr = true; 1956 1957 /* 1958 * Restore streaming mode; EFI calls are 1959 * normal function calls so should not return in 1960 * streaming mode. 1961 */ 1962 if (system_supports_sme()) { 1963 if (__this_cpu_read(efi_sm_state)) { 1964 sysreg_clear_set_s(SYS_SVCR, 1965 0, 1966 SVCR_SM_MASK); 1967 if (!system_supports_fa64()) 1968 ffr = efi_sm_state; 1969 } 1970 } 1971 1972 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()), 1973 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1974 ffr); 1975 1976 __this_cpu_write(efi_sve_state_used, false); 1977 } else { 1978 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 1979 } 1980 } 1981 } 1982 1983 #endif /* CONFIG_EFI */ 1984 1985 #endif /* CONFIG_KERNEL_MODE_NEON */ 1986 1987 #ifdef CONFIG_CPU_PM 1988 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 1989 unsigned long cmd, void *v) 1990 { 1991 switch (cmd) { 1992 case CPU_PM_ENTER: 1993 fpsimd_save_and_flush_cpu_state(); 1994 break; 1995 case CPU_PM_EXIT: 1996 break; 1997 case CPU_PM_ENTER_FAILED: 1998 default: 1999 return NOTIFY_DONE; 2000 } 2001 return NOTIFY_OK; 2002 } 2003 2004 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 2005 .notifier_call = fpsimd_cpu_pm_notifier, 2006 }; 2007 2008 static void __init fpsimd_pm_init(void) 2009 { 2010 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 2011 } 2012 2013 #else 2014 static inline void fpsimd_pm_init(void) { } 2015 #endif /* CONFIG_CPU_PM */ 2016 2017 #ifdef CONFIG_HOTPLUG_CPU 2018 static int fpsimd_cpu_dead(unsigned int cpu) 2019 { 2020 per_cpu(fpsimd_last_state.st, cpu) = NULL; 2021 return 0; 2022 } 2023 2024 static inline void fpsimd_hotplug_init(void) 2025 { 2026 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 2027 NULL, fpsimd_cpu_dead); 2028 } 2029 2030 #else 2031 static inline void fpsimd_hotplug_init(void) { } 2032 #endif 2033 2034 /* 2035 * FP/SIMD support code initialisation. 2036 */ 2037 static int __init fpsimd_init(void) 2038 { 2039 if (cpu_have_named_feature(FP)) { 2040 fpsimd_pm_init(); 2041 fpsimd_hotplug_init(); 2042 } else { 2043 pr_notice("Floating-point is not implemented\n"); 2044 } 2045 2046 if (!cpu_have_named_feature(ASIMD)) 2047 pr_notice("Advanced SIMD is not implemented\n"); 2048 2049 2050 if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE)) 2051 pr_notice("SME is implemented but not SVE\n"); 2052 2053 sve_sysctl_init(); 2054 sme_sysctl_init(); 2055 2056 return 0; 2057 } 2058 core_initcall(fpsimd_init); 2059