1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/compiler.h> 16 #include <linux/cpu.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/ctype.h> 19 #include <linux/kernel.h> 20 #include <linux/linkage.h> 21 #include <linux/irqflags.h> 22 #include <linux/init.h> 23 #include <linux/percpu.h> 24 #include <linux/prctl.h> 25 #include <linux/preempt.h> 26 #include <linux/ptrace.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/task_stack.h> 29 #include <linux/signal.h> 30 #include <linux/slab.h> 31 #include <linux/stddef.h> 32 #include <linux/sysctl.h> 33 #include <linux/swab.h> 34 35 #include <asm/esr.h> 36 #include <asm/exception.h> 37 #include <asm/fpsimd.h> 38 #include <asm/cpufeature.h> 39 #include <asm/cputype.h> 40 #include <asm/neon.h> 41 #include <asm/processor.h> 42 #include <asm/simd.h> 43 #include <asm/sigcontext.h> 44 #include <asm/sysreg.h> 45 #include <asm/traps.h> 46 #include <asm/virt.h> 47 48 #define FPEXC_IOF (1 << 0) 49 #define FPEXC_DZF (1 << 1) 50 #define FPEXC_OFF (1 << 2) 51 #define FPEXC_UFF (1 << 3) 52 #define FPEXC_IXF (1 << 4) 53 #define FPEXC_IDF (1 << 7) 54 55 /* 56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 57 * 58 * In order to reduce the number of times the FPSIMD state is needlessly saved 59 * and restored, we need to keep track of two things: 60 * (a) for each task, we need to remember which CPU was the last one to have 61 * the task's FPSIMD state loaded into its FPSIMD registers; 62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 63 * been loaded into its FPSIMD registers most recently, or whether it has 64 * been used to perform kernel mode NEON in the meantime. 65 * 66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 67 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 69 * address of the userland FPSIMD state of the task that was loaded onto the CPU 70 * the most recently, or NULL if kernel mode NEON has been performed after that. 71 * 72 * With this in place, we no longer have to restore the next FPSIMD state right 73 * when switching between tasks. Instead, we can defer this check to userland 74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 76 * can omit the FPSIMD restore. 77 * 78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 79 * indicate whether or not the userland FPSIMD state of the current task is 80 * present in the registers. The flag is set unless the FPSIMD registers of this 81 * CPU currently contain the most recent userland FPSIMD state of the current 82 * task. If the task is behaving as a VMM, then this is will be managed by 83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently 84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware 85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and 86 * flag the register state as invalid. 87 * 88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be 89 * called from softirq context, which will save the task's FPSIMD context back 90 * to task_struct. To prevent this from racing with the manipulation of the 91 * task's FPSIMD state from task context and thereby corrupting the state, it 92 * is necessary to protect any manipulation of a task's fpsimd_state or 93 * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend 94 * softirq servicing entirely until put_cpu_fpsimd_context() is called. 95 * 96 * For a certain task, the sequence may look something like this: 97 * - the task gets scheduled in; if both the task's fpsimd_cpu field 98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 100 * cleared, otherwise it is set; 101 * 102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 103 * userland FPSIMD state is copied from memory to the registers, the task's 104 * fpsimd_cpu field is set to the id of the current CPU, the current 105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 106 * TIF_FOREIGN_FPSTATE flag is cleared; 107 * 108 * - the task executes an ordinary syscall; upon return to userland, the 109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 110 * restored; 111 * 112 * - the task executes a syscall which executes some NEON instructions; this is 113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 114 * register contents to memory, clears the fpsimd_last_state per-cpu variable 115 * and sets the TIF_FOREIGN_FPSTATE flag; 116 * 117 * - the task gets preempted after kernel_neon_end() is called; as we have not 118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 119 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 120 */ 121 122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state); 123 124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = { 125 #ifdef CONFIG_ARM64_SVE 126 [ARM64_VEC_SVE] = { 127 .type = ARM64_VEC_SVE, 128 .name = "SVE", 129 .min_vl = SVE_VL_MIN, 130 .max_vl = SVE_VL_MIN, 131 .max_virtualisable_vl = SVE_VL_MIN, 132 }, 133 #endif 134 #ifdef CONFIG_ARM64_SME 135 [ARM64_VEC_SME] = { 136 .type = ARM64_VEC_SME, 137 .name = "SME", 138 }, 139 #endif 140 }; 141 142 static unsigned int vec_vl_inherit_flag(enum vec_type type) 143 { 144 switch (type) { 145 case ARM64_VEC_SVE: 146 return TIF_SVE_VL_INHERIT; 147 case ARM64_VEC_SME: 148 return TIF_SME_VL_INHERIT; 149 default: 150 WARN_ON_ONCE(1); 151 return 0; 152 } 153 } 154 155 struct vl_config { 156 int __default_vl; /* Default VL for tasks */ 157 }; 158 159 static struct vl_config vl_config[ARM64_VEC_MAX]; 160 161 static inline int get_default_vl(enum vec_type type) 162 { 163 return READ_ONCE(vl_config[type].__default_vl); 164 } 165 166 #ifdef CONFIG_ARM64_SVE 167 168 static inline int get_sve_default_vl(void) 169 { 170 return get_default_vl(ARM64_VEC_SVE); 171 } 172 173 static inline void set_default_vl(enum vec_type type, int val) 174 { 175 WRITE_ONCE(vl_config[type].__default_vl, val); 176 } 177 178 static inline void set_sve_default_vl(int val) 179 { 180 set_default_vl(ARM64_VEC_SVE, val); 181 } 182 183 static void __percpu *efi_sve_state; 184 185 #else /* ! CONFIG_ARM64_SVE */ 186 187 /* Dummy declaration for code that will be optimised out: */ 188 extern void __percpu *efi_sve_state; 189 190 #endif /* ! CONFIG_ARM64_SVE */ 191 192 #ifdef CONFIG_ARM64_SME 193 194 static int get_sme_default_vl(void) 195 { 196 return get_default_vl(ARM64_VEC_SME); 197 } 198 199 static void set_sme_default_vl(int val) 200 { 201 set_default_vl(ARM64_VEC_SME, val); 202 } 203 204 static void sme_free(struct task_struct *); 205 206 #else 207 208 static inline void sme_free(struct task_struct *t) { } 209 210 #endif 211 212 static void fpsimd_bind_task_to_cpu(void); 213 214 /* 215 * Claim ownership of the CPU FPSIMD context for use by the calling context. 216 * 217 * The caller may freely manipulate the FPSIMD context metadata until 218 * put_cpu_fpsimd_context() is called. 219 * 220 * On RT kernels local_bh_disable() is not sufficient because it only 221 * serializes soft interrupt related sections via a local lock, but stays 222 * preemptible. Disabling preemption is the right choice here as bottom 223 * half processing is always in thread context on RT kernels so it 224 * implicitly prevents bottom half processing as well. 225 */ 226 static void get_cpu_fpsimd_context(void) 227 { 228 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 229 local_bh_disable(); 230 else 231 preempt_disable(); 232 } 233 234 /* 235 * Release the CPU FPSIMD context. 236 * 237 * Must be called from a context in which get_cpu_fpsimd_context() was 238 * previously called, with no call to put_cpu_fpsimd_context() in the 239 * meantime. 240 */ 241 static void put_cpu_fpsimd_context(void) 242 { 243 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 244 local_bh_enable(); 245 else 246 preempt_enable(); 247 } 248 249 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type) 250 { 251 return task->thread.vl[type]; 252 } 253 254 void task_set_vl(struct task_struct *task, enum vec_type type, 255 unsigned long vl) 256 { 257 task->thread.vl[type] = vl; 258 } 259 260 unsigned int task_get_vl_onexec(const struct task_struct *task, 261 enum vec_type type) 262 { 263 return task->thread.vl_onexec[type]; 264 } 265 266 void task_set_vl_onexec(struct task_struct *task, enum vec_type type, 267 unsigned long vl) 268 { 269 task->thread.vl_onexec[type] = vl; 270 } 271 272 /* 273 * TIF_SME controls whether a task can use SME without trapping while 274 * in userspace, when TIF_SME is set then we must have storage 275 * allocated in sve_state and sme_state to store the contents of both ZA 276 * and the SVE registers for both streaming and non-streaming modes. 277 * 278 * If both SVCR.ZA and SVCR.SM are disabled then at any point we 279 * may disable TIF_SME and reenable traps. 280 */ 281 282 283 /* 284 * TIF_SVE controls whether a task can use SVE without trapping while 285 * in userspace, and also (together with TIF_SME) the way a task's 286 * FPSIMD/SVE state is stored in thread_struct. 287 * 288 * The kernel uses this flag to track whether a user task is actively 289 * using SVE, and therefore whether full SVE register state needs to 290 * be tracked. If not, the cheaper FPSIMD context handling code can 291 * be used instead of the more costly SVE equivalents. 292 * 293 * * TIF_SVE or SVCR.SM set: 294 * 295 * The task can execute SVE instructions while in userspace without 296 * trapping to the kernel. 297 * 298 * During any syscall, the kernel may optionally clear TIF_SVE and 299 * discard the vector state except for the FPSIMD subset. 300 * 301 * * TIF_SVE clear: 302 * 303 * An attempt by the user task to execute an SVE instruction causes 304 * do_sve_acc() to be called, which does some preparation and then 305 * sets TIF_SVE. 306 * 307 * During any syscall, the kernel may optionally clear TIF_SVE and 308 * discard the vector state except for the FPSIMD subset. 309 * 310 * The data will be stored in one of two formats: 311 * 312 * * FPSIMD only - FP_STATE_FPSIMD: 313 * 314 * When the FPSIMD only state stored task->thread.fp_type is set to 315 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in 316 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 317 * logically zero but not stored anywhere; P0-P15 and FFR are not 318 * stored and have unspecified values from userspace's point of 319 * view. For hygiene purposes, the kernel zeroes them on next use, 320 * but userspace is discouraged from relying on this. 321 * 322 * task->thread.sve_state does not need to be non-NULL, valid or any 323 * particular size: it must not be dereferenced and any data stored 324 * there should be considered stale and not referenced. 325 * 326 * * SVE state - FP_STATE_SVE: 327 * 328 * When the full SVE state is stored task->thread.fp_type is set to 329 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the 330 * corresponding Zn), P0-P15 and FFR are encoded in in 331 * task->thread.sve_state, formatted appropriately for vector 332 * length task->thread.sve_vl or, if SVCR.SM is set, 333 * task->thread.sme_vl. The storage for the vector registers in 334 * task->thread.uw.fpsimd_state should be ignored. 335 * 336 * task->thread.sve_state must point to a valid buffer at least 337 * sve_state_size(task) bytes in size. The data stored in 338 * task->thread.uw.fpsimd_state.vregs should be considered stale 339 * and not referenced. 340 * 341 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 342 * irrespective of whether TIF_SVE is clear or set, since these are 343 * not vector length dependent. 344 */ 345 346 /* 347 * Update current's FPSIMD/SVE registers from thread_struct. 348 * 349 * This function should be called only when the FPSIMD/SVE state in 350 * thread_struct is known to be up to date, when preparing to enter 351 * userspace. 352 */ 353 static void task_fpsimd_load(void) 354 { 355 bool restore_sve_regs = false; 356 bool restore_ffr; 357 358 WARN_ON(!system_supports_fpsimd()); 359 WARN_ON(preemptible()); 360 WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE)); 361 362 if (system_supports_sve() || system_supports_sme()) { 363 switch (current->thread.fp_type) { 364 case FP_STATE_FPSIMD: 365 /* Stop tracking SVE for this task until next use. */ 366 if (test_and_clear_thread_flag(TIF_SVE)) 367 sve_user_disable(); 368 break; 369 case FP_STATE_SVE: 370 if (!thread_sm_enabled(¤t->thread) && 371 !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE))) 372 sve_user_enable(); 373 374 if (test_thread_flag(TIF_SVE)) 375 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1); 376 377 restore_sve_regs = true; 378 restore_ffr = true; 379 break; 380 default: 381 /* 382 * This indicates either a bug in 383 * fpsimd_save_user_state() or memory corruption, we 384 * should always record an explicit format 385 * when we save. We always at least have the 386 * memory allocated for FPSMID registers so 387 * try that and hope for the best. 388 */ 389 WARN_ON_ONCE(1); 390 clear_thread_flag(TIF_SVE); 391 break; 392 } 393 } 394 395 /* Restore SME, override SVE register configuration if needed */ 396 if (system_supports_sme()) { 397 unsigned long sme_vl = task_get_sme_vl(current); 398 399 /* Ensure VL is set up for restoring data */ 400 if (test_thread_flag(TIF_SME)) 401 sme_set_vq(sve_vq_from_vl(sme_vl) - 1); 402 403 write_sysreg_s(current->thread.svcr, SYS_SVCR); 404 405 if (thread_za_enabled(¤t->thread)) 406 sme_load_state(current->thread.sme_state, 407 system_supports_sme2()); 408 409 if (thread_sm_enabled(¤t->thread)) 410 restore_ffr = system_supports_fa64(); 411 } 412 413 if (restore_sve_regs) { 414 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE); 415 sve_load_state(sve_pffr(¤t->thread), 416 ¤t->thread.uw.fpsimd_state.fpsr, 417 restore_ffr); 418 } else { 419 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD); 420 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 421 } 422 } 423 424 /* 425 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 426 * date with respect to the CPU registers. Note carefully that the 427 * current context is the context last bound to the CPU stored in 428 * last, if KVM is involved this may be the guest VM context rather 429 * than the host thread for the VM pointed to by current. This means 430 * that we must always reference the state storage via last rather 431 * than via current, if we are saving KVM state then it will have 432 * ensured that the type of registers to save is set in last->to_save. 433 */ 434 static void fpsimd_save_user_state(void) 435 { 436 struct cpu_fp_state const *last = 437 this_cpu_ptr(&fpsimd_last_state); 438 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 439 bool save_sve_regs = false; 440 bool save_ffr; 441 unsigned int vl; 442 443 WARN_ON(!system_supports_fpsimd()); 444 WARN_ON(preemptible()); 445 446 if (test_thread_flag(TIF_FOREIGN_FPSTATE)) 447 return; 448 449 /* 450 * If a task is in a syscall the ABI allows us to only 451 * preserve the state shared with FPSIMD so don't bother 452 * saving the full SVE state in that case. 453 */ 454 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) && 455 !in_syscall(current_pt_regs())) || 456 last->to_save == FP_STATE_SVE) { 457 save_sve_regs = true; 458 save_ffr = true; 459 vl = last->sve_vl; 460 } 461 462 if (system_supports_sme()) { 463 u64 *svcr = last->svcr; 464 465 *svcr = read_sysreg_s(SYS_SVCR); 466 467 if (*svcr & SVCR_ZA_MASK) 468 sme_save_state(last->sme_state, 469 system_supports_sme2()); 470 471 /* If we are in streaming mode override regular SVE. */ 472 if (*svcr & SVCR_SM_MASK) { 473 save_sve_regs = true; 474 save_ffr = system_supports_fa64(); 475 vl = last->sme_vl; 476 } 477 } 478 479 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) { 480 /* Get the configured VL from RDVL, will account for SM */ 481 if (WARN_ON(sve_get_vl() != vl)) { 482 /* 483 * Can't save the user regs, so current would 484 * re-enter user with corrupt state. 485 * There's no way to recover, so kill it: 486 */ 487 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0); 488 return; 489 } 490 491 sve_save_state((char *)last->sve_state + 492 sve_ffr_offset(vl), 493 &last->st->fpsr, save_ffr); 494 *last->fp_type = FP_STATE_SVE; 495 } else { 496 fpsimd_save_state(last->st); 497 *last->fp_type = FP_STATE_FPSIMD; 498 } 499 } 500 501 /* 502 * All vector length selection from userspace comes through here. 503 * We're on a slow path, so some sanity-checks are included. 504 * If things go wrong there's a bug somewhere, but try to fall back to a 505 * safe choice. 506 */ 507 static unsigned int find_supported_vector_length(enum vec_type type, 508 unsigned int vl) 509 { 510 struct vl_info *info = &vl_info[type]; 511 int bit; 512 int max_vl = info->max_vl; 513 514 if (WARN_ON(!sve_vl_valid(vl))) 515 vl = info->min_vl; 516 517 if (WARN_ON(!sve_vl_valid(max_vl))) 518 max_vl = info->min_vl; 519 520 if (vl > max_vl) 521 vl = max_vl; 522 if (vl < info->min_vl) 523 vl = info->min_vl; 524 525 bit = find_next_bit(info->vq_map, SVE_VQ_MAX, 526 __vq_to_bit(sve_vq_from_vl(vl))); 527 return sve_vl_from_vq(__bit_to_vq(bit)); 528 } 529 530 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL) 531 532 static int vec_proc_do_default_vl(struct ctl_table *table, int write, 533 void *buffer, size_t *lenp, loff_t *ppos) 534 { 535 struct vl_info *info = table->extra1; 536 enum vec_type type = info->type; 537 int ret; 538 int vl = get_default_vl(type); 539 struct ctl_table tmp_table = { 540 .data = &vl, 541 .maxlen = sizeof(vl), 542 }; 543 544 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 545 if (ret || !write) 546 return ret; 547 548 /* Writing -1 has the special meaning "set to max": */ 549 if (vl == -1) 550 vl = info->max_vl; 551 552 if (!sve_vl_valid(vl)) 553 return -EINVAL; 554 555 set_default_vl(type, find_supported_vector_length(type, vl)); 556 return 0; 557 } 558 559 static struct ctl_table sve_default_vl_table[] = { 560 { 561 .procname = "sve_default_vector_length", 562 .mode = 0644, 563 .proc_handler = vec_proc_do_default_vl, 564 .extra1 = &vl_info[ARM64_VEC_SVE], 565 }, 566 }; 567 568 static int __init sve_sysctl_init(void) 569 { 570 if (system_supports_sve()) 571 if (!register_sysctl("abi", sve_default_vl_table)) 572 return -EINVAL; 573 574 return 0; 575 } 576 577 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 578 static int __init sve_sysctl_init(void) { return 0; } 579 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 580 581 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL) 582 static struct ctl_table sme_default_vl_table[] = { 583 { 584 .procname = "sme_default_vector_length", 585 .mode = 0644, 586 .proc_handler = vec_proc_do_default_vl, 587 .extra1 = &vl_info[ARM64_VEC_SME], 588 }, 589 }; 590 591 static int __init sme_sysctl_init(void) 592 { 593 if (system_supports_sme()) 594 if (!register_sysctl("abi", sme_default_vl_table)) 595 return -EINVAL; 596 597 return 0; 598 } 599 600 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 601 static int __init sme_sysctl_init(void) { return 0; } 602 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 603 604 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 605 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 606 607 #ifdef CONFIG_CPU_BIG_ENDIAN 608 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 609 { 610 u64 a = swab64(x); 611 u64 b = swab64(x >> 64); 612 613 return ((__uint128_t)a << 64) | b; 614 } 615 #else 616 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 617 { 618 return x; 619 } 620 #endif 621 622 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 623 624 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, 625 unsigned int vq) 626 { 627 unsigned int i; 628 __uint128_t *p; 629 630 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 631 p = (__uint128_t *)ZREG(sst, vq, i); 632 *p = arm64_cpu_to_le128(fst->vregs[i]); 633 } 634 } 635 636 /* 637 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 638 * task->thread.sve_state. 639 * 640 * Task can be a non-runnable task, or current. In the latter case, 641 * the caller must have ownership of the cpu FPSIMD context before calling 642 * this function. 643 * task->thread.sve_state must point to at least sve_state_size(task) 644 * bytes of allocated kernel memory. 645 * task->thread.uw.fpsimd_state must be up to date before calling this 646 * function. 647 */ 648 static void fpsimd_to_sve(struct task_struct *task) 649 { 650 unsigned int vq; 651 void *sst = task->thread.sve_state; 652 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 653 654 if (!system_supports_sve() && !system_supports_sme()) 655 return; 656 657 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 658 __fpsimd_to_sve(sst, fst, vq); 659 } 660 661 /* 662 * Transfer the SVE state in task->thread.sve_state to 663 * task->thread.uw.fpsimd_state. 664 * 665 * Task can be a non-runnable task, or current. In the latter case, 666 * the caller must have ownership of the cpu FPSIMD context before calling 667 * this function. 668 * task->thread.sve_state must point to at least sve_state_size(task) 669 * bytes of allocated kernel memory. 670 * task->thread.sve_state must be up to date before calling this function. 671 */ 672 static void sve_to_fpsimd(struct task_struct *task) 673 { 674 unsigned int vq, vl; 675 void const *sst = task->thread.sve_state; 676 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 677 unsigned int i; 678 __uint128_t const *p; 679 680 if (!system_supports_sve() && !system_supports_sme()) 681 return; 682 683 vl = thread_get_cur_vl(&task->thread); 684 vq = sve_vq_from_vl(vl); 685 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 686 p = (__uint128_t const *)ZREG(sst, vq, i); 687 fst->vregs[i] = arm64_le128_to_cpu(*p); 688 } 689 } 690 691 #ifdef CONFIG_ARM64_SVE 692 /* 693 * Call __sve_free() directly only if you know task can't be scheduled 694 * or preempted. 695 */ 696 static void __sve_free(struct task_struct *task) 697 { 698 kfree(task->thread.sve_state); 699 task->thread.sve_state = NULL; 700 } 701 702 static void sve_free(struct task_struct *task) 703 { 704 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 705 706 __sve_free(task); 707 } 708 709 /* 710 * Return how many bytes of memory are required to store the full SVE 711 * state for task, given task's currently configured vector length. 712 */ 713 size_t sve_state_size(struct task_struct const *task) 714 { 715 unsigned int vl = 0; 716 717 if (system_supports_sve()) 718 vl = task_get_sve_vl(task); 719 if (system_supports_sme()) 720 vl = max(vl, task_get_sme_vl(task)); 721 722 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)); 723 } 724 725 /* 726 * Ensure that task->thread.sve_state is allocated and sufficiently large. 727 * 728 * This function should be used only in preparation for replacing 729 * task->thread.sve_state with new data. The memory is always zeroed 730 * here to prevent stale data from showing through: this is done in 731 * the interest of testability and predictability: except in the 732 * do_sve_acc() case, there is no ABI requirement to hide stale data 733 * written previously be task. 734 */ 735 void sve_alloc(struct task_struct *task, bool flush) 736 { 737 if (task->thread.sve_state) { 738 if (flush) 739 memset(task->thread.sve_state, 0, 740 sve_state_size(task)); 741 return; 742 } 743 744 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 745 task->thread.sve_state = 746 kzalloc(sve_state_size(task), GFP_KERNEL); 747 } 748 749 750 /* 751 * Force the FPSIMD state shared with SVE to be updated in the SVE state 752 * even if the SVE state is the current active state. 753 * 754 * This should only be called by ptrace. task must be non-runnable. 755 * task->thread.sve_state must point to at least sve_state_size(task) 756 * bytes of allocated kernel memory. 757 */ 758 void fpsimd_force_sync_to_sve(struct task_struct *task) 759 { 760 fpsimd_to_sve(task); 761 } 762 763 /* 764 * Ensure that task->thread.sve_state is up to date with respect to 765 * the user task, irrespective of when SVE is in use or not. 766 * 767 * This should only be called by ptrace. task must be non-runnable. 768 * task->thread.sve_state must point to at least sve_state_size(task) 769 * bytes of allocated kernel memory. 770 */ 771 void fpsimd_sync_to_sve(struct task_struct *task) 772 { 773 if (!test_tsk_thread_flag(task, TIF_SVE) && 774 !thread_sm_enabled(&task->thread)) 775 fpsimd_to_sve(task); 776 } 777 778 /* 779 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 780 * the user task, irrespective of whether SVE is in use or not. 781 * 782 * This should only be called by ptrace. task must be non-runnable. 783 * task->thread.sve_state must point to at least sve_state_size(task) 784 * bytes of allocated kernel memory. 785 */ 786 void sve_sync_to_fpsimd(struct task_struct *task) 787 { 788 if (task->thread.fp_type == FP_STATE_SVE) 789 sve_to_fpsimd(task); 790 } 791 792 /* 793 * Ensure that task->thread.sve_state is up to date with respect to 794 * the task->thread.uw.fpsimd_state. 795 * 796 * This should only be called by ptrace to merge new FPSIMD register 797 * values into a task for which SVE is currently active. 798 * task must be non-runnable. 799 * task->thread.sve_state must point to at least sve_state_size(task) 800 * bytes of allocated kernel memory. 801 * task->thread.uw.fpsimd_state must already have been initialised with 802 * the new FPSIMD register values to be merged in. 803 */ 804 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 805 { 806 unsigned int vq; 807 void *sst = task->thread.sve_state; 808 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 809 810 if (!test_tsk_thread_flag(task, TIF_SVE) && 811 !thread_sm_enabled(&task->thread)) 812 return; 813 814 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 815 816 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 817 __fpsimd_to_sve(sst, fst, vq); 818 } 819 820 int vec_set_vector_length(struct task_struct *task, enum vec_type type, 821 unsigned long vl, unsigned long flags) 822 { 823 bool free_sme = false; 824 825 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 826 PR_SVE_SET_VL_ONEXEC)) 827 return -EINVAL; 828 829 if (!sve_vl_valid(vl)) 830 return -EINVAL; 831 832 /* 833 * Clamp to the maximum vector length that VL-agnostic code 834 * can work with. A flag may be assigned in the future to 835 * allow setting of larger vector lengths without confusing 836 * older software. 837 */ 838 if (vl > VL_ARCH_MAX) 839 vl = VL_ARCH_MAX; 840 841 vl = find_supported_vector_length(type, vl); 842 843 if (flags & (PR_SVE_VL_INHERIT | 844 PR_SVE_SET_VL_ONEXEC)) 845 task_set_vl_onexec(task, type, vl); 846 else 847 /* Reset VL to system default on next exec: */ 848 task_set_vl_onexec(task, type, 0); 849 850 /* Only actually set the VL if not deferred: */ 851 if (flags & PR_SVE_SET_VL_ONEXEC) 852 goto out; 853 854 if (vl == task_get_vl(task, type)) 855 goto out; 856 857 /* 858 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 859 * write any live register state back to task_struct, and convert to a 860 * regular FPSIMD thread. 861 */ 862 if (task == current) { 863 get_cpu_fpsimd_context(); 864 865 fpsimd_save_user_state(); 866 } 867 868 fpsimd_flush_task_state(task); 869 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) || 870 thread_sm_enabled(&task->thread)) { 871 sve_to_fpsimd(task); 872 task->thread.fp_type = FP_STATE_FPSIMD; 873 } 874 875 if (system_supports_sme()) { 876 if (type == ARM64_VEC_SME || 877 !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) { 878 /* 879 * We are changing the SME VL or weren't using 880 * SME anyway, discard the state and force a 881 * reallocation. 882 */ 883 task->thread.svcr &= ~(SVCR_SM_MASK | 884 SVCR_ZA_MASK); 885 clear_tsk_thread_flag(task, TIF_SME); 886 free_sme = true; 887 } 888 } 889 890 if (task == current) 891 put_cpu_fpsimd_context(); 892 893 task_set_vl(task, type, vl); 894 895 /* 896 * Free the changed states if they are not in use, SME will be 897 * reallocated to the correct size on next use and we just 898 * allocate SVE now in case it is needed for use in streaming 899 * mode. 900 */ 901 sve_free(task); 902 sve_alloc(task, true); 903 904 if (free_sme) 905 sme_free(task); 906 907 out: 908 update_tsk_thread_flag(task, vec_vl_inherit_flag(type), 909 flags & PR_SVE_VL_INHERIT); 910 911 return 0; 912 } 913 914 /* 915 * Encode the current vector length and flags for return. 916 * This is only required for prctl(): ptrace has separate fields. 917 * SVE and SME use the same bits for _ONEXEC and _INHERIT. 918 * 919 * flags are as for vec_set_vector_length(). 920 */ 921 static int vec_prctl_status(enum vec_type type, unsigned long flags) 922 { 923 int ret; 924 925 if (flags & PR_SVE_SET_VL_ONEXEC) 926 ret = task_get_vl_onexec(current, type); 927 else 928 ret = task_get_vl(current, type); 929 930 if (test_thread_flag(vec_vl_inherit_flag(type))) 931 ret |= PR_SVE_VL_INHERIT; 932 933 return ret; 934 } 935 936 /* PR_SVE_SET_VL */ 937 int sve_set_current_vl(unsigned long arg) 938 { 939 unsigned long vl, flags; 940 int ret; 941 942 vl = arg & PR_SVE_VL_LEN_MASK; 943 flags = arg & ~vl; 944 945 if (!system_supports_sve() || is_compat_task()) 946 return -EINVAL; 947 948 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags); 949 if (ret) 950 return ret; 951 952 return vec_prctl_status(ARM64_VEC_SVE, flags); 953 } 954 955 /* PR_SVE_GET_VL */ 956 int sve_get_current_vl(void) 957 { 958 if (!system_supports_sve() || is_compat_task()) 959 return -EINVAL; 960 961 return vec_prctl_status(ARM64_VEC_SVE, 0); 962 } 963 964 #ifdef CONFIG_ARM64_SME 965 /* PR_SME_SET_VL */ 966 int sme_set_current_vl(unsigned long arg) 967 { 968 unsigned long vl, flags; 969 int ret; 970 971 vl = arg & PR_SME_VL_LEN_MASK; 972 flags = arg & ~vl; 973 974 if (!system_supports_sme() || is_compat_task()) 975 return -EINVAL; 976 977 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags); 978 if (ret) 979 return ret; 980 981 return vec_prctl_status(ARM64_VEC_SME, flags); 982 } 983 984 /* PR_SME_GET_VL */ 985 int sme_get_current_vl(void) 986 { 987 if (!system_supports_sme() || is_compat_task()) 988 return -EINVAL; 989 990 return vec_prctl_status(ARM64_VEC_SME, 0); 991 } 992 #endif /* CONFIG_ARM64_SME */ 993 994 static void vec_probe_vqs(struct vl_info *info, 995 DECLARE_BITMAP(map, SVE_VQ_MAX)) 996 { 997 unsigned int vq, vl; 998 999 bitmap_zero(map, SVE_VQ_MAX); 1000 1001 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 1002 write_vl(info->type, vq - 1); /* self-syncing */ 1003 1004 switch (info->type) { 1005 case ARM64_VEC_SVE: 1006 vl = sve_get_vl(); 1007 break; 1008 case ARM64_VEC_SME: 1009 vl = sme_get_vl(); 1010 break; 1011 default: 1012 vl = 0; 1013 break; 1014 } 1015 1016 /* Minimum VL identified? */ 1017 if (sve_vq_from_vl(vl) > vq) 1018 break; 1019 1020 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 1021 set_bit(__vq_to_bit(vq), map); 1022 } 1023 } 1024 1025 /* 1026 * Initialise the set of known supported VQs for the boot CPU. 1027 * This is called during kernel boot, before secondary CPUs are brought up. 1028 */ 1029 void __init vec_init_vq_map(enum vec_type type) 1030 { 1031 struct vl_info *info = &vl_info[type]; 1032 vec_probe_vqs(info, info->vq_map); 1033 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX); 1034 } 1035 1036 /* 1037 * If we haven't committed to the set of supported VQs yet, filter out 1038 * those not supported by the current CPU. 1039 * This function is called during the bring-up of early secondary CPUs only. 1040 */ 1041 void vec_update_vq_map(enum vec_type type) 1042 { 1043 struct vl_info *info = &vl_info[type]; 1044 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1045 1046 vec_probe_vqs(info, tmp_map); 1047 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX); 1048 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map, 1049 SVE_VQ_MAX); 1050 } 1051 1052 /* 1053 * Check whether the current CPU supports all VQs in the committed set. 1054 * This function is called during the bring-up of late secondary CPUs only. 1055 */ 1056 int vec_verify_vq_map(enum vec_type type) 1057 { 1058 struct vl_info *info = &vl_info[type]; 1059 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1060 unsigned long b; 1061 1062 vec_probe_vqs(info, tmp_map); 1063 1064 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1065 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) { 1066 pr_warn("%s: cpu%d: Required vector length(s) missing\n", 1067 info->name, smp_processor_id()); 1068 return -EINVAL; 1069 } 1070 1071 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 1072 return 0; 1073 1074 /* 1075 * For KVM, it is necessary to ensure that this CPU doesn't 1076 * support any vector length that guests may have probed as 1077 * unsupported. 1078 */ 1079 1080 /* Recover the set of supported VQs: */ 1081 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1082 /* Find VQs supported that are not globally supported: */ 1083 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX); 1084 1085 /* Find the lowest such VQ, if any: */ 1086 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1087 if (b >= SVE_VQ_MAX) 1088 return 0; /* no mismatches */ 1089 1090 /* 1091 * Mismatches above sve_max_virtualisable_vl are fine, since 1092 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 1093 */ 1094 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) { 1095 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n", 1096 info->name, smp_processor_id()); 1097 return -EINVAL; 1098 } 1099 1100 return 0; 1101 } 1102 1103 static void __init sve_efi_setup(void) 1104 { 1105 int max_vl = 0; 1106 int i; 1107 1108 if (!IS_ENABLED(CONFIG_EFI)) 1109 return; 1110 1111 for (i = 0; i < ARRAY_SIZE(vl_info); i++) 1112 max_vl = max(vl_info[i].max_vl, max_vl); 1113 1114 /* 1115 * alloc_percpu() warns and prints a backtrace if this goes wrong. 1116 * This is evidence of a crippled system and we are returning void, 1117 * so no attempt is made to handle this situation here. 1118 */ 1119 if (!sve_vl_valid(max_vl)) 1120 goto fail; 1121 1122 efi_sve_state = __alloc_percpu( 1123 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES); 1124 if (!efi_sve_state) 1125 goto fail; 1126 1127 return; 1128 1129 fail: 1130 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 1131 } 1132 1133 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p) 1134 { 1135 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 1136 isb(); 1137 } 1138 1139 void __init sve_setup(void) 1140 { 1141 struct vl_info *info = &vl_info[ARM64_VEC_SVE]; 1142 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1143 unsigned long b; 1144 int max_bit; 1145 1146 if (!system_supports_sve()) 1147 return; 1148 1149 /* 1150 * The SVE architecture mandates support for 128-bit vectors, 1151 * so sve_vq_map must have at least SVE_VQ_MIN set. 1152 * If something went wrong, at least try to patch it up: 1153 */ 1154 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map))) 1155 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map); 1156 1157 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX); 1158 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit)); 1159 1160 /* 1161 * For the default VL, pick the maximum supported value <= 64. 1162 * VL == 64 is guaranteed not to grow the signal frame. 1163 */ 1164 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64)); 1165 1166 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map, 1167 SVE_VQ_MAX); 1168 1169 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1170 if (b >= SVE_VQ_MAX) 1171 /* No non-virtualisable VLs found */ 1172 info->max_virtualisable_vl = SVE_VQ_MAX; 1173 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 1174 /* No virtualisable VLs? This is architecturally forbidden. */ 1175 info->max_virtualisable_vl = SVE_VQ_MIN; 1176 else /* b + 1 < SVE_VQ_MAX */ 1177 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 1178 1179 if (info->max_virtualisable_vl > info->max_vl) 1180 info->max_virtualisable_vl = info->max_vl; 1181 1182 pr_info("%s: maximum available vector length %u bytes per vector\n", 1183 info->name, info->max_vl); 1184 pr_info("%s: default vector length %u bytes per vector\n", 1185 info->name, get_sve_default_vl()); 1186 1187 /* KVM decides whether to support mismatched systems. Just warn here: */ 1188 if (sve_max_virtualisable_vl() < sve_max_vl()) 1189 pr_warn("%s: unvirtualisable vector lengths present\n", 1190 info->name); 1191 1192 sve_efi_setup(); 1193 } 1194 1195 /* 1196 * Called from the put_task_struct() path, which cannot get here 1197 * unless dead_task is really dead and not schedulable. 1198 */ 1199 void fpsimd_release_task(struct task_struct *dead_task) 1200 { 1201 __sve_free(dead_task); 1202 sme_free(dead_task); 1203 } 1204 1205 #endif /* CONFIG_ARM64_SVE */ 1206 1207 #ifdef CONFIG_ARM64_SME 1208 1209 /* 1210 * Ensure that task->thread.sme_state is allocated and sufficiently large. 1211 * 1212 * This function should be used only in preparation for replacing 1213 * task->thread.sme_state with new data. The memory is always zeroed 1214 * here to prevent stale data from showing through: this is done in 1215 * the interest of testability and predictability, the architecture 1216 * guarantees that when ZA is enabled it will be zeroed. 1217 */ 1218 void sme_alloc(struct task_struct *task, bool flush) 1219 { 1220 if (task->thread.sme_state) { 1221 if (flush) 1222 memset(task->thread.sme_state, 0, 1223 sme_state_size(task)); 1224 return; 1225 } 1226 1227 /* This could potentially be up to 64K. */ 1228 task->thread.sme_state = 1229 kzalloc(sme_state_size(task), GFP_KERNEL); 1230 } 1231 1232 static void sme_free(struct task_struct *task) 1233 { 1234 kfree(task->thread.sme_state); 1235 task->thread.sme_state = NULL; 1236 } 1237 1238 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p) 1239 { 1240 /* Set priority for all PEs to architecturally defined minimum */ 1241 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK, 1242 SYS_SMPRI_EL1); 1243 1244 /* Allow SME in kernel */ 1245 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1); 1246 isb(); 1247 1248 /* Allow EL0 to access TPIDR2 */ 1249 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1); 1250 isb(); 1251 } 1252 1253 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p) 1254 { 1255 /* This must be enabled after SME */ 1256 BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME); 1257 1258 /* Allow use of ZT0 */ 1259 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK, 1260 SYS_SMCR_EL1); 1261 } 1262 1263 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p) 1264 { 1265 /* This must be enabled after SME */ 1266 BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME); 1267 1268 /* Allow use of FA64 */ 1269 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK, 1270 SYS_SMCR_EL1); 1271 } 1272 1273 void __init sme_setup(void) 1274 { 1275 struct vl_info *info = &vl_info[ARM64_VEC_SME]; 1276 int min_bit, max_bit; 1277 1278 if (!system_supports_sme()) 1279 return; 1280 1281 /* 1282 * SME doesn't require any particular vector length be 1283 * supported but it does require at least one. We should have 1284 * disabled the feature entirely while bringing up CPUs but 1285 * let's double check here. The bitmap is SVE_VQ_MAP sized for 1286 * sharing with SVE. 1287 */ 1288 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX)); 1289 1290 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX); 1291 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit)); 1292 1293 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX); 1294 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit)); 1295 1296 WARN_ON(info->min_vl > info->max_vl); 1297 1298 /* 1299 * For the default VL, pick the maximum supported value <= 32 1300 * (256 bits) if there is one since this is guaranteed not to 1301 * grow the signal frame when in streaming mode, otherwise the 1302 * minimum available VL will be used. 1303 */ 1304 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32)); 1305 1306 pr_info("SME: minimum available vector length %u bytes per vector\n", 1307 info->min_vl); 1308 pr_info("SME: maximum available vector length %u bytes per vector\n", 1309 info->max_vl); 1310 pr_info("SME: default vector length %u bytes per vector\n", 1311 get_sme_default_vl()); 1312 } 1313 1314 void sme_suspend_exit(void) 1315 { 1316 u64 smcr = 0; 1317 1318 if (!system_supports_sme()) 1319 return; 1320 1321 if (system_supports_fa64()) 1322 smcr |= SMCR_ELx_FA64; 1323 if (system_supports_sme2()) 1324 smcr |= SMCR_ELx_EZT0; 1325 1326 write_sysreg_s(smcr, SYS_SMCR_EL1); 1327 write_sysreg_s(0, SYS_SMPRI_EL1); 1328 } 1329 1330 #endif /* CONFIG_ARM64_SME */ 1331 1332 static void sve_init_regs(void) 1333 { 1334 /* 1335 * Convert the FPSIMD state to SVE, zeroing all the state that 1336 * is not shared with FPSIMD. If (as is likely) the current 1337 * state is live in the registers then do this there and 1338 * update our metadata for the current task including 1339 * disabling the trap, otherwise update our in-memory copy. 1340 * We are guaranteed to not be in streaming mode, we can only 1341 * take a SVE trap when not in streaming mode and we can't be 1342 * in streaming mode when taking a SME trap. 1343 */ 1344 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1345 unsigned long vq_minus_one = 1346 sve_vq_from_vl(task_get_sve_vl(current)) - 1; 1347 sve_set_vq(vq_minus_one); 1348 sve_flush_live(true, vq_minus_one); 1349 fpsimd_bind_task_to_cpu(); 1350 } else { 1351 fpsimd_to_sve(current); 1352 current->thread.fp_type = FP_STATE_SVE; 1353 } 1354 } 1355 1356 /* 1357 * Trapped SVE access 1358 * 1359 * Storage is allocated for the full SVE state, the current FPSIMD 1360 * register contents are migrated across, and the access trap is 1361 * disabled. 1362 * 1363 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state() 1364 * would have disabled the SVE access trap for userspace during 1365 * ret_to_user, making an SVE access trap impossible in that case. 1366 */ 1367 void do_sve_acc(unsigned long esr, struct pt_regs *regs) 1368 { 1369 /* Even if we chose not to use SVE, the hardware could still trap: */ 1370 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 1371 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1372 return; 1373 } 1374 1375 sve_alloc(current, true); 1376 if (!current->thread.sve_state) { 1377 force_sig(SIGKILL); 1378 return; 1379 } 1380 1381 get_cpu_fpsimd_context(); 1382 1383 if (test_and_set_thread_flag(TIF_SVE)) 1384 WARN_ON(1); /* SVE access shouldn't have trapped */ 1385 1386 /* 1387 * Even if the task can have used streaming mode we can only 1388 * generate SVE access traps in normal SVE mode and 1389 * transitioning out of streaming mode may discard any 1390 * streaming mode state. Always clear the high bits to avoid 1391 * any potential errors tracking what is properly initialised. 1392 */ 1393 sve_init_regs(); 1394 1395 put_cpu_fpsimd_context(); 1396 } 1397 1398 /* 1399 * Trapped SME access 1400 * 1401 * Storage is allocated for the full SVE and SME state, the current 1402 * FPSIMD register contents are migrated to SVE if SVE is not already 1403 * active, and the access trap is disabled. 1404 * 1405 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state() 1406 * would have disabled the SME access trap for userspace during 1407 * ret_to_user, making an SME access trap impossible in that case. 1408 */ 1409 void do_sme_acc(unsigned long esr, struct pt_regs *regs) 1410 { 1411 /* Even if we chose not to use SME, the hardware could still trap: */ 1412 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) { 1413 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1414 return; 1415 } 1416 1417 /* 1418 * If this not a trap due to SME being disabled then something 1419 * is being used in the wrong mode, report as SIGILL. 1420 */ 1421 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) { 1422 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1423 return; 1424 } 1425 1426 sve_alloc(current, false); 1427 sme_alloc(current, true); 1428 if (!current->thread.sve_state || !current->thread.sme_state) { 1429 force_sig(SIGKILL); 1430 return; 1431 } 1432 1433 get_cpu_fpsimd_context(); 1434 1435 /* With TIF_SME userspace shouldn't generate any traps */ 1436 if (test_and_set_thread_flag(TIF_SME)) 1437 WARN_ON(1); 1438 1439 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1440 unsigned long vq_minus_one = 1441 sve_vq_from_vl(task_get_sme_vl(current)) - 1; 1442 sme_set_vq(vq_minus_one); 1443 1444 fpsimd_bind_task_to_cpu(); 1445 } 1446 1447 put_cpu_fpsimd_context(); 1448 } 1449 1450 /* 1451 * Trapped FP/ASIMD access. 1452 */ 1453 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs) 1454 { 1455 /* Even if we chose not to use FPSIMD, the hardware could still trap: */ 1456 if (!system_supports_fpsimd()) { 1457 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1458 return; 1459 } 1460 1461 /* 1462 * When FPSIMD is enabled, we should never take a trap unless something 1463 * has gone very wrong. 1464 */ 1465 BUG(); 1466 } 1467 1468 /* 1469 * Raise a SIGFPE for the current process. 1470 */ 1471 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs) 1472 { 1473 unsigned int si_code = FPE_FLTUNK; 1474 1475 if (esr & ESR_ELx_FP_EXC_TFV) { 1476 if (esr & FPEXC_IOF) 1477 si_code = FPE_FLTINV; 1478 else if (esr & FPEXC_DZF) 1479 si_code = FPE_FLTDIV; 1480 else if (esr & FPEXC_OFF) 1481 si_code = FPE_FLTOVF; 1482 else if (esr & FPEXC_UFF) 1483 si_code = FPE_FLTUND; 1484 else if (esr & FPEXC_IXF) 1485 si_code = FPE_FLTRES; 1486 } 1487 1488 send_sig_fault(SIGFPE, si_code, 1489 (void __user *)instruction_pointer(regs), 1490 current); 1491 } 1492 1493 static void fpsimd_load_kernel_state(struct task_struct *task) 1494 { 1495 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1496 1497 /* 1498 * Elide the load if this CPU holds the most recent kernel mode 1499 * FPSIMD context of the current task. 1500 */ 1501 if (last->st == &task->thread.kernel_fpsimd_state && 1502 task->thread.kernel_fpsimd_cpu == smp_processor_id()) 1503 return; 1504 1505 fpsimd_load_state(&task->thread.kernel_fpsimd_state); 1506 } 1507 1508 static void fpsimd_save_kernel_state(struct task_struct *task) 1509 { 1510 struct cpu_fp_state cpu_fp_state = { 1511 .st = &task->thread.kernel_fpsimd_state, 1512 .to_save = FP_STATE_FPSIMD, 1513 }; 1514 1515 fpsimd_save_state(&task->thread.kernel_fpsimd_state); 1516 fpsimd_bind_state_to_cpu(&cpu_fp_state); 1517 1518 task->thread.kernel_fpsimd_cpu = smp_processor_id(); 1519 } 1520 1521 void fpsimd_thread_switch(struct task_struct *next) 1522 { 1523 bool wrong_task, wrong_cpu; 1524 1525 if (!system_supports_fpsimd()) 1526 return; 1527 1528 WARN_ON_ONCE(!irqs_disabled()); 1529 1530 /* Save unsaved fpsimd state, if any: */ 1531 if (test_thread_flag(TIF_KERNEL_FPSTATE)) 1532 fpsimd_save_kernel_state(current); 1533 else 1534 fpsimd_save_user_state(); 1535 1536 if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) { 1537 fpsimd_load_kernel_state(next); 1538 set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE); 1539 } else { 1540 /* 1541 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 1542 * state. For kernel threads, FPSIMD registers are never 1543 * loaded with user mode FPSIMD state and so wrong_task and 1544 * wrong_cpu will always be true. 1545 */ 1546 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 1547 &next->thread.uw.fpsimd_state; 1548 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 1549 1550 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 1551 wrong_task || wrong_cpu); 1552 } 1553 } 1554 1555 static void fpsimd_flush_thread_vl(enum vec_type type) 1556 { 1557 int vl, supported_vl; 1558 1559 /* 1560 * Reset the task vector length as required. This is where we 1561 * ensure that all user tasks have a valid vector length 1562 * configured: no kernel task can become a user task without 1563 * an exec and hence a call to this function. By the time the 1564 * first call to this function is made, all early hardware 1565 * probing is complete, so __sve_default_vl should be valid. 1566 * If a bug causes this to go wrong, we make some noise and 1567 * try to fudge thread.sve_vl to a safe value here. 1568 */ 1569 vl = task_get_vl_onexec(current, type); 1570 if (!vl) 1571 vl = get_default_vl(type); 1572 1573 if (WARN_ON(!sve_vl_valid(vl))) 1574 vl = vl_info[type].min_vl; 1575 1576 supported_vl = find_supported_vector_length(type, vl); 1577 if (WARN_ON(supported_vl != vl)) 1578 vl = supported_vl; 1579 1580 task_set_vl(current, type, vl); 1581 1582 /* 1583 * If the task is not set to inherit, ensure that the vector 1584 * length will be reset by a subsequent exec: 1585 */ 1586 if (!test_thread_flag(vec_vl_inherit_flag(type))) 1587 task_set_vl_onexec(current, type, 0); 1588 } 1589 1590 void fpsimd_flush_thread(void) 1591 { 1592 void *sve_state = NULL; 1593 void *sme_state = NULL; 1594 1595 if (!system_supports_fpsimd()) 1596 return; 1597 1598 get_cpu_fpsimd_context(); 1599 1600 fpsimd_flush_task_state(current); 1601 memset(¤t->thread.uw.fpsimd_state, 0, 1602 sizeof(current->thread.uw.fpsimd_state)); 1603 1604 if (system_supports_sve()) { 1605 clear_thread_flag(TIF_SVE); 1606 1607 /* Defer kfree() while in atomic context */ 1608 sve_state = current->thread.sve_state; 1609 current->thread.sve_state = NULL; 1610 1611 fpsimd_flush_thread_vl(ARM64_VEC_SVE); 1612 } 1613 1614 if (system_supports_sme()) { 1615 clear_thread_flag(TIF_SME); 1616 1617 /* Defer kfree() while in atomic context */ 1618 sme_state = current->thread.sme_state; 1619 current->thread.sme_state = NULL; 1620 1621 fpsimd_flush_thread_vl(ARM64_VEC_SME); 1622 current->thread.svcr = 0; 1623 } 1624 1625 current->thread.fp_type = FP_STATE_FPSIMD; 1626 1627 put_cpu_fpsimd_context(); 1628 kfree(sve_state); 1629 kfree(sme_state); 1630 } 1631 1632 /* 1633 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1634 * currently held in the registers does in fact belong to 'current' 1635 */ 1636 void fpsimd_preserve_current_state(void) 1637 { 1638 if (!system_supports_fpsimd()) 1639 return; 1640 1641 get_cpu_fpsimd_context(); 1642 fpsimd_save_user_state(); 1643 put_cpu_fpsimd_context(); 1644 } 1645 1646 /* 1647 * Like fpsimd_preserve_current_state(), but ensure that 1648 * current->thread.uw.fpsimd_state is updated so that it can be copied to 1649 * the signal frame. 1650 */ 1651 void fpsimd_signal_preserve_current_state(void) 1652 { 1653 fpsimd_preserve_current_state(); 1654 if (current->thread.fp_type == FP_STATE_SVE) 1655 sve_to_fpsimd(current); 1656 } 1657 1658 /* 1659 * Called by KVM when entering the guest. 1660 */ 1661 void fpsimd_kvm_prepare(void) 1662 { 1663 if (!system_supports_sve()) 1664 return; 1665 1666 /* 1667 * KVM does not save host SVE state since we can only enter 1668 * the guest from a syscall so the ABI means that only the 1669 * non-saved SVE state needs to be saved. If we have left 1670 * SVE enabled for performance reasons then update the task 1671 * state to be FPSIMD only. 1672 */ 1673 get_cpu_fpsimd_context(); 1674 1675 if (test_and_clear_thread_flag(TIF_SVE)) { 1676 sve_to_fpsimd(current); 1677 current->thread.fp_type = FP_STATE_FPSIMD; 1678 } 1679 1680 put_cpu_fpsimd_context(); 1681 } 1682 1683 /* 1684 * Associate current's FPSIMD context with this cpu 1685 * The caller must have ownership of the cpu FPSIMD context before calling 1686 * this function. 1687 */ 1688 static void fpsimd_bind_task_to_cpu(void) 1689 { 1690 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1691 1692 WARN_ON(!system_supports_fpsimd()); 1693 last->st = ¤t->thread.uw.fpsimd_state; 1694 last->sve_state = current->thread.sve_state; 1695 last->sme_state = current->thread.sme_state; 1696 last->sve_vl = task_get_sve_vl(current); 1697 last->sme_vl = task_get_sme_vl(current); 1698 last->svcr = ¤t->thread.svcr; 1699 last->fp_type = ¤t->thread.fp_type; 1700 last->to_save = FP_STATE_CURRENT; 1701 current->thread.fpsimd_cpu = smp_processor_id(); 1702 1703 /* 1704 * Toggle SVE and SME trapping for userspace if needed, these 1705 * are serialsied by ret_to_user(). 1706 */ 1707 if (system_supports_sme()) { 1708 if (test_thread_flag(TIF_SME)) 1709 sme_user_enable(); 1710 else 1711 sme_user_disable(); 1712 } 1713 1714 if (system_supports_sve()) { 1715 if (test_thread_flag(TIF_SVE)) 1716 sve_user_enable(); 1717 else 1718 sve_user_disable(); 1719 } 1720 } 1721 1722 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state) 1723 { 1724 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1725 1726 WARN_ON(!system_supports_fpsimd()); 1727 WARN_ON(!in_softirq() && !irqs_disabled()); 1728 1729 *last = *state; 1730 } 1731 1732 /* 1733 * Load the userland FPSIMD state of 'current' from memory, but only if the 1734 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1735 * state of 'current'. This is called when we are preparing to return to 1736 * userspace to ensure that userspace sees a good register state. 1737 */ 1738 void fpsimd_restore_current_state(void) 1739 { 1740 /* 1741 * TIF_FOREIGN_FPSTATE is set on the init task and copied by 1742 * arch_dup_task_struct() regardless of whether FP/SIMD is detected. 1743 * Thus user threads can have this set even when FP/SIMD hasn't been 1744 * detected. 1745 * 1746 * When FP/SIMD is detected, begin_new_exec() will set 1747 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(), 1748 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when 1749 * switching tasks. We detect FP/SIMD before we exec the first user 1750 * process, ensuring this has TIF_FOREIGN_FPSTATE set and 1751 * do_notify_resume() will call fpsimd_restore_current_state() to 1752 * install the user FP/SIMD context. 1753 * 1754 * When FP/SIMD is not detected, nothing else will clear or set 1755 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and 1756 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume() 1757 * looping forever calling fpsimd_restore_current_state(). 1758 */ 1759 if (!system_supports_fpsimd()) { 1760 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1761 return; 1762 } 1763 1764 get_cpu_fpsimd_context(); 1765 1766 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1767 task_fpsimd_load(); 1768 fpsimd_bind_task_to_cpu(); 1769 } 1770 1771 put_cpu_fpsimd_context(); 1772 } 1773 1774 /* 1775 * Load an updated userland FPSIMD state for 'current' from memory and set the 1776 * flag that indicates that the FPSIMD register contents are the most recent 1777 * FPSIMD state of 'current'. This is used by the signal code to restore the 1778 * register state when returning from a signal handler in FPSIMD only cases, 1779 * any SVE context will be discarded. 1780 */ 1781 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1782 { 1783 if (WARN_ON(!system_supports_fpsimd())) 1784 return; 1785 1786 get_cpu_fpsimd_context(); 1787 1788 current->thread.uw.fpsimd_state = *state; 1789 if (test_thread_flag(TIF_SVE)) 1790 fpsimd_to_sve(current); 1791 1792 task_fpsimd_load(); 1793 fpsimd_bind_task_to_cpu(); 1794 1795 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1796 1797 put_cpu_fpsimd_context(); 1798 } 1799 1800 /* 1801 * Invalidate live CPU copies of task t's FPSIMD state 1802 * 1803 * This function may be called with preemption enabled. The barrier() 1804 * ensures that the assignment to fpsimd_cpu is visible to any 1805 * preemption/softirq that could race with set_tsk_thread_flag(), so 1806 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1807 * 1808 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1809 * subsequent code. 1810 */ 1811 void fpsimd_flush_task_state(struct task_struct *t) 1812 { 1813 t->thread.fpsimd_cpu = NR_CPUS; 1814 /* 1815 * If we don't support fpsimd, bail out after we have 1816 * reset the fpsimd_cpu for this task and clear the 1817 * FPSTATE. 1818 */ 1819 if (!system_supports_fpsimd()) 1820 return; 1821 barrier(); 1822 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1823 1824 barrier(); 1825 } 1826 1827 /* 1828 * Invalidate any task's FPSIMD state that is present on this cpu. 1829 * The FPSIMD context should be acquired with get_cpu_fpsimd_context() 1830 * before calling this function. 1831 */ 1832 static void fpsimd_flush_cpu_state(void) 1833 { 1834 WARN_ON(!system_supports_fpsimd()); 1835 __this_cpu_write(fpsimd_last_state.st, NULL); 1836 1837 /* 1838 * Leaving streaming mode enabled will cause issues for any kernel 1839 * NEON and leaving streaming mode or ZA enabled may increase power 1840 * consumption. 1841 */ 1842 if (system_supports_sme()) 1843 sme_smstop(); 1844 1845 set_thread_flag(TIF_FOREIGN_FPSTATE); 1846 } 1847 1848 /* 1849 * Save the FPSIMD state to memory and invalidate cpu view. 1850 * This function must be called with preemption disabled. 1851 */ 1852 void fpsimd_save_and_flush_cpu_state(void) 1853 { 1854 unsigned long flags; 1855 1856 if (!system_supports_fpsimd()) 1857 return; 1858 WARN_ON(preemptible()); 1859 local_irq_save(flags); 1860 fpsimd_save_user_state(); 1861 fpsimd_flush_cpu_state(); 1862 local_irq_restore(flags); 1863 } 1864 1865 #ifdef CONFIG_KERNEL_MODE_NEON 1866 1867 /* 1868 * Kernel-side NEON support functions 1869 */ 1870 1871 /* 1872 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1873 * context 1874 * 1875 * Must not be called unless may_use_simd() returns true. 1876 * Task context in the FPSIMD registers is saved back to memory as necessary. 1877 * 1878 * A matching call to kernel_neon_end() must be made before returning from the 1879 * calling context. 1880 * 1881 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1882 * called. 1883 */ 1884 void kernel_neon_begin(void) 1885 { 1886 if (WARN_ON(!system_supports_fpsimd())) 1887 return; 1888 1889 BUG_ON(!may_use_simd()); 1890 1891 get_cpu_fpsimd_context(); 1892 1893 /* Save unsaved fpsimd state, if any: */ 1894 if (test_thread_flag(TIF_KERNEL_FPSTATE)) { 1895 BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()); 1896 fpsimd_save_kernel_state(current); 1897 } else { 1898 fpsimd_save_user_state(); 1899 1900 /* 1901 * Set the thread flag so that the kernel mode FPSIMD state 1902 * will be context switched along with the rest of the task 1903 * state. 1904 * 1905 * On non-PREEMPT_RT, softirqs may interrupt task level kernel 1906 * mode FPSIMD, but the task will not be preemptible so setting 1907 * TIF_KERNEL_FPSTATE for those would be both wrong (as it 1908 * would mark the task context FPSIMD state as requiring a 1909 * context switch) and unnecessary. 1910 * 1911 * On PREEMPT_RT, softirqs are serviced from a separate thread, 1912 * which is scheduled as usual, and this guarantees that these 1913 * softirqs are not interrupting use of the FPSIMD in kernel 1914 * mode in task context. So in this case, setting the flag here 1915 * is always appropriate. 1916 */ 1917 if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()) 1918 set_thread_flag(TIF_KERNEL_FPSTATE); 1919 } 1920 1921 /* Invalidate any task state remaining in the fpsimd regs: */ 1922 fpsimd_flush_cpu_state(); 1923 1924 put_cpu_fpsimd_context(); 1925 } 1926 EXPORT_SYMBOL_GPL(kernel_neon_begin); 1927 1928 /* 1929 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1930 * 1931 * Must be called from a context in which kernel_neon_begin() was previously 1932 * called, with no call to kernel_neon_end() in the meantime. 1933 * 1934 * The caller must not use the FPSIMD registers after this function is called, 1935 * unless kernel_neon_begin() is called again in the meantime. 1936 */ 1937 void kernel_neon_end(void) 1938 { 1939 if (!system_supports_fpsimd()) 1940 return; 1941 1942 /* 1943 * If we are returning from a nested use of kernel mode FPSIMD, restore 1944 * the task context kernel mode FPSIMD state. This can only happen when 1945 * running in softirq context on non-PREEMPT_RT. 1946 */ 1947 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq() && 1948 test_thread_flag(TIF_KERNEL_FPSTATE)) 1949 fpsimd_load_kernel_state(current); 1950 else 1951 clear_thread_flag(TIF_KERNEL_FPSTATE); 1952 } 1953 EXPORT_SYMBOL_GPL(kernel_neon_end); 1954 1955 #ifdef CONFIG_EFI 1956 1957 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1958 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1959 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1960 static DEFINE_PER_CPU(bool, efi_sm_state); 1961 1962 /* 1963 * EFI runtime services support functions 1964 * 1965 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1966 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1967 * is always used rather than being an optional accelerator. 1968 * 1969 * These functions provide the necessary support for ensuring FPSIMD 1970 * save/restore in the contexts from which EFI is used. 1971 * 1972 * Do not use them for any other purpose -- if tempted to do so, you are 1973 * either doing something wrong or you need to propose some refactoring. 1974 */ 1975 1976 /* 1977 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1978 */ 1979 void __efi_fpsimd_begin(void) 1980 { 1981 if (!system_supports_fpsimd()) 1982 return; 1983 1984 WARN_ON(preemptible()); 1985 1986 if (may_use_simd()) { 1987 kernel_neon_begin(); 1988 } else { 1989 /* 1990 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1991 * preserving: 1992 */ 1993 if (system_supports_sve() && likely(efi_sve_state)) { 1994 char *sve_state = this_cpu_ptr(efi_sve_state); 1995 bool ffr = true; 1996 u64 svcr; 1997 1998 __this_cpu_write(efi_sve_state_used, true); 1999 2000 if (system_supports_sme()) { 2001 svcr = read_sysreg_s(SYS_SVCR); 2002 2003 __this_cpu_write(efi_sm_state, 2004 svcr & SVCR_SM_MASK); 2005 2006 /* 2007 * Unless we have FA64 FFR does not 2008 * exist in streaming mode. 2009 */ 2010 if (!system_supports_fa64()) 2011 ffr = !(svcr & SVCR_SM_MASK); 2012 } 2013 2014 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()), 2015 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 2016 ffr); 2017 2018 if (system_supports_sme()) 2019 sysreg_clear_set_s(SYS_SVCR, 2020 SVCR_SM_MASK, 0); 2021 2022 } else { 2023 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 2024 } 2025 2026 __this_cpu_write(efi_fpsimd_state_used, true); 2027 } 2028 } 2029 2030 /* 2031 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 2032 */ 2033 void __efi_fpsimd_end(void) 2034 { 2035 if (!system_supports_fpsimd()) 2036 return; 2037 2038 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 2039 kernel_neon_end(); 2040 } else { 2041 if (system_supports_sve() && 2042 likely(__this_cpu_read(efi_sve_state_used))) { 2043 char const *sve_state = this_cpu_ptr(efi_sve_state); 2044 bool ffr = true; 2045 2046 /* 2047 * Restore streaming mode; EFI calls are 2048 * normal function calls so should not return in 2049 * streaming mode. 2050 */ 2051 if (system_supports_sme()) { 2052 if (__this_cpu_read(efi_sm_state)) { 2053 sysreg_clear_set_s(SYS_SVCR, 2054 0, 2055 SVCR_SM_MASK); 2056 2057 /* 2058 * Unless we have FA64 FFR does not 2059 * exist in streaming mode. 2060 */ 2061 if (!system_supports_fa64()) 2062 ffr = false; 2063 } 2064 } 2065 2066 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()), 2067 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 2068 ffr); 2069 2070 __this_cpu_write(efi_sve_state_used, false); 2071 } else { 2072 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 2073 } 2074 } 2075 } 2076 2077 #endif /* CONFIG_EFI */ 2078 2079 #endif /* CONFIG_KERNEL_MODE_NEON */ 2080 2081 #ifdef CONFIG_CPU_PM 2082 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 2083 unsigned long cmd, void *v) 2084 { 2085 switch (cmd) { 2086 case CPU_PM_ENTER: 2087 fpsimd_save_and_flush_cpu_state(); 2088 break; 2089 case CPU_PM_EXIT: 2090 break; 2091 case CPU_PM_ENTER_FAILED: 2092 default: 2093 return NOTIFY_DONE; 2094 } 2095 return NOTIFY_OK; 2096 } 2097 2098 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 2099 .notifier_call = fpsimd_cpu_pm_notifier, 2100 }; 2101 2102 static void __init fpsimd_pm_init(void) 2103 { 2104 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 2105 } 2106 2107 #else 2108 static inline void fpsimd_pm_init(void) { } 2109 #endif /* CONFIG_CPU_PM */ 2110 2111 #ifdef CONFIG_HOTPLUG_CPU 2112 static int fpsimd_cpu_dead(unsigned int cpu) 2113 { 2114 per_cpu(fpsimd_last_state.st, cpu) = NULL; 2115 return 0; 2116 } 2117 2118 static inline void fpsimd_hotplug_init(void) 2119 { 2120 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 2121 NULL, fpsimd_cpu_dead); 2122 } 2123 2124 #else 2125 static inline void fpsimd_hotplug_init(void) { } 2126 #endif 2127 2128 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p) 2129 { 2130 unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN; 2131 write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1); 2132 isb(); 2133 } 2134 2135 /* 2136 * FP/SIMD support code initialisation. 2137 */ 2138 static int __init fpsimd_init(void) 2139 { 2140 if (cpu_have_named_feature(FP)) { 2141 fpsimd_pm_init(); 2142 fpsimd_hotplug_init(); 2143 } else { 2144 pr_notice("Floating-point is not implemented\n"); 2145 } 2146 2147 if (!cpu_have_named_feature(ASIMD)) 2148 pr_notice("Advanced SIMD is not implemented\n"); 2149 2150 2151 sve_sysctl_init(); 2152 sme_sysctl_init(); 2153 2154 return 0; 2155 } 2156 core_initcall(fpsimd_init); 2157