xref: /linux/arch/arm64/kernel/fpsimd.c (revision c31f4aa8fed048fa70e742c4bb49bb48dc489ab3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
89  * called from softirq context, which will save the task's FPSIMD context back
90  * to task_struct. To prevent this from racing with the manipulation of the
91  * task's FPSIMD state from task context and thereby corrupting the state, it
92  * is necessary to protect any manipulation of a task's fpsimd_state or
93  * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
94  * softirq servicing entirely until put_cpu_fpsimd_context() is called.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 
122 DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123 
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 	[ARM64_VEC_SVE] = {
127 		.type			= ARM64_VEC_SVE,
128 		.name			= "SVE",
129 		.min_vl			= SVE_VL_MIN,
130 		.max_vl			= SVE_VL_MIN,
131 		.max_virtualisable_vl	= SVE_VL_MIN,
132 	},
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 	[ARM64_VEC_SME] = {
136 		.type			= ARM64_VEC_SME,
137 		.name			= "SME",
138 	},
139 #endif
140 };
141 
142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 	switch (type) {
145 	case ARM64_VEC_SVE:
146 		return TIF_SVE_VL_INHERIT;
147 	case ARM64_VEC_SME:
148 		return TIF_SME_VL_INHERIT;
149 	default:
150 		WARN_ON_ONCE(1);
151 		return 0;
152 	}
153 }
154 
155 struct vl_config {
156 	int __default_vl;		/* Default VL for tasks */
157 };
158 
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160 
161 static inline int get_default_vl(enum vec_type type)
162 {
163 	return READ_ONCE(vl_config[type].__default_vl);
164 }
165 
166 #ifdef CONFIG_ARM64_SVE
167 
168 static inline int get_sve_default_vl(void)
169 {
170 	return get_default_vl(ARM64_VEC_SVE);
171 }
172 
173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 	WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177 
178 static inline void set_sve_default_vl(int val)
179 {
180 	set_default_vl(ARM64_VEC_SVE, val);
181 }
182 
183 #endif /* ! CONFIG_ARM64_SVE */
184 
185 #ifdef CONFIG_ARM64_SME
186 
187 static int get_sme_default_vl(void)
188 {
189 	return get_default_vl(ARM64_VEC_SME);
190 }
191 
192 static void set_sme_default_vl(int val)
193 {
194 	set_default_vl(ARM64_VEC_SME, val);
195 }
196 
197 static void sme_free(struct task_struct *);
198 
199 #else
200 
201 static inline void sme_free(struct task_struct *t) { }
202 
203 #endif
204 
205 static void fpsimd_bind_task_to_cpu(void);
206 
207 /*
208  * Claim ownership of the CPU FPSIMD context for use by the calling context.
209  *
210  * The caller may freely manipulate the FPSIMD context metadata until
211  * put_cpu_fpsimd_context() is called.
212  *
213  * On RT kernels local_bh_disable() is not sufficient because it only
214  * serializes soft interrupt related sections via a local lock, but stays
215  * preemptible. Disabling preemption is the right choice here as bottom
216  * half processing is always in thread context on RT kernels so it
217  * implicitly prevents bottom half processing as well.
218  */
219 static void get_cpu_fpsimd_context(void)
220 {
221 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
222 		/*
223 		 * The softirq subsystem lacks a true unmask/mask API, and
224 		 * re-enabling softirq processing using local_bh_enable() will
225 		 * not only unmask softirqs, it will also result in immediate
226 		 * delivery of any pending softirqs.
227 		 * This is undesirable when running with IRQs disabled, but in
228 		 * that case, there is no need to mask softirqs in the first
229 		 * place, so only bother doing so when IRQs are enabled.
230 		 */
231 		if (!irqs_disabled())
232 			local_bh_disable();
233 	} else {
234 		preempt_disable();
235 	}
236 }
237 
238 /*
239  * Release the CPU FPSIMD context.
240  *
241  * Must be called from a context in which get_cpu_fpsimd_context() was
242  * previously called, with no call to put_cpu_fpsimd_context() in the
243  * meantime.
244  */
245 static void put_cpu_fpsimd_context(void)
246 {
247 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
248 		if (!irqs_disabled())
249 			local_bh_enable();
250 	} else {
251 		preempt_enable();
252 	}
253 }
254 
255 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
256 {
257 	return task->thread.vl[type];
258 }
259 
260 void task_set_vl(struct task_struct *task, enum vec_type type,
261 		 unsigned long vl)
262 {
263 	task->thread.vl[type] = vl;
264 }
265 
266 unsigned int task_get_vl_onexec(const struct task_struct *task,
267 				enum vec_type type)
268 {
269 	return task->thread.vl_onexec[type];
270 }
271 
272 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
273 			unsigned long vl)
274 {
275 	task->thread.vl_onexec[type] = vl;
276 }
277 
278 /*
279  * TIF_SME controls whether a task can use SME without trapping while
280  * in userspace, when TIF_SME is set then we must have storage
281  * allocated in sve_state and sme_state to store the contents of both ZA
282  * and the SVE registers for both streaming and non-streaming modes.
283  *
284  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
285  * may disable TIF_SME and reenable traps.
286  */
287 
288 
289 /*
290  * TIF_SVE controls whether a task can use SVE without trapping while
291  * in userspace, and also (together with TIF_SME) the way a task's
292  * FPSIMD/SVE state is stored in thread_struct.
293  *
294  * The kernel uses this flag to track whether a user task is actively
295  * using SVE, and therefore whether full SVE register state needs to
296  * be tracked.  If not, the cheaper FPSIMD context handling code can
297  * be used instead of the more costly SVE equivalents.
298  *
299  *  * TIF_SVE or SVCR.SM set:
300  *
301  *    The task can execute SVE instructions while in userspace without
302  *    trapping to the kernel.
303  *
304  *    During any syscall, the kernel may optionally clear TIF_SVE and
305  *    discard the vector state except for the FPSIMD subset.
306  *
307  *  * TIF_SVE clear:
308  *
309  *    An attempt by the user task to execute an SVE instruction causes
310  *    do_sve_acc() to be called, which does some preparation and then
311  *    sets TIF_SVE.
312  *
313  * During any syscall, the kernel may optionally clear TIF_SVE and
314  * discard the vector state except for the FPSIMD subset.
315  *
316  * The data will be stored in one of two formats:
317  *
318  *  * FPSIMD only - FP_STATE_FPSIMD:
319  *
320  *    When the FPSIMD only state stored task->thread.fp_type is set to
321  *    FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
322  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
323  *    logically zero but not stored anywhere; P0-P15 and FFR are not
324  *    stored and have unspecified values from userspace's point of
325  *    view.  For hygiene purposes, the kernel zeroes them on next use,
326  *    but userspace is discouraged from relying on this.
327  *
328  *    task->thread.sve_state does not need to be non-NULL, valid or any
329  *    particular size: it must not be dereferenced and any data stored
330  *    there should be considered stale and not referenced.
331  *
332  *  * SVE state - FP_STATE_SVE:
333  *
334  *    When the full SVE state is stored task->thread.fp_type is set to
335  *    FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
336  *    corresponding Zn), P0-P15 and FFR are encoded in in
337  *    task->thread.sve_state, formatted appropriately for vector
338  *    length task->thread.sve_vl or, if SVCR.SM is set,
339  *    task->thread.sme_vl. The storage for the vector registers in
340  *    task->thread.uw.fpsimd_state should be ignored.
341  *
342  *    task->thread.sve_state must point to a valid buffer at least
343  *    sve_state_size(task) bytes in size. The data stored in
344  *    task->thread.uw.fpsimd_state.vregs should be considered stale
345  *    and not referenced.
346  *
347  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
348  *    irrespective of whether TIF_SVE is clear or set, since these are
349  *    not vector length dependent.
350  */
351 
352 /*
353  * Update current's FPSIMD/SVE registers from thread_struct.
354  *
355  * This function should be called only when the FPSIMD/SVE state in
356  * thread_struct is known to be up to date, when preparing to enter
357  * userspace.
358  */
359 static void task_fpsimd_load(void)
360 {
361 	bool restore_sve_regs = false;
362 	bool restore_ffr;
363 
364 	WARN_ON(!system_supports_fpsimd());
365 	WARN_ON(preemptible());
366 	WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
367 
368 	if (system_supports_sve() || system_supports_sme()) {
369 		switch (current->thread.fp_type) {
370 		case FP_STATE_FPSIMD:
371 			/* Stop tracking SVE for this task until next use. */
372 			clear_thread_flag(TIF_SVE);
373 			break;
374 		case FP_STATE_SVE:
375 			if (!thread_sm_enabled(&current->thread))
376 				WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE));
377 
378 			if (test_thread_flag(TIF_SVE))
379 				sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
380 
381 			restore_sve_regs = true;
382 			restore_ffr = true;
383 			break;
384 		default:
385 			/*
386 			 * This indicates either a bug in
387 			 * fpsimd_save_user_state() or memory corruption, we
388 			 * should always record an explicit format
389 			 * when we save. We always at least have the
390 			 * memory allocated for FPSIMD registers so
391 			 * try that and hope for the best.
392 			 */
393 			WARN_ON_ONCE(1);
394 			clear_thread_flag(TIF_SVE);
395 			break;
396 		}
397 	}
398 
399 	/* Restore SME, override SVE register configuration if needed */
400 	if (system_supports_sme()) {
401 		unsigned long sme_vl = task_get_sme_vl(current);
402 
403 		/* Ensure VL is set up for restoring data */
404 		if (test_thread_flag(TIF_SME))
405 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
406 
407 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
408 
409 		if (thread_za_enabled(&current->thread))
410 			sme_load_state(current->thread.sme_state,
411 				       system_supports_sme2());
412 
413 		if (thread_sm_enabled(&current->thread))
414 			restore_ffr = system_supports_fa64();
415 	}
416 
417 	if (system_supports_fpmr())
418 		write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
419 
420 	if (restore_sve_regs) {
421 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
422 		sve_load_state(sve_pffr(&current->thread),
423 			       &current->thread.uw.fpsimd_state.fpsr,
424 			       restore_ffr);
425 	} else {
426 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
427 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
428 	}
429 }
430 
431 /*
432  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
433  * date with respect to the CPU registers. Note carefully that the
434  * current context is the context last bound to the CPU stored in
435  * last, if KVM is involved this may be the guest VM context rather
436  * than the host thread for the VM pointed to by current. This means
437  * that we must always reference the state storage via last rather
438  * than via current, if we are saving KVM state then it will have
439  * ensured that the type of registers to save is set in last->to_save.
440  */
441 static void fpsimd_save_user_state(void)
442 {
443 	struct cpu_fp_state const *last =
444 		this_cpu_ptr(&fpsimd_last_state);
445 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
446 	bool save_sve_regs = false;
447 	bool save_ffr;
448 	unsigned int vl;
449 
450 	WARN_ON(!system_supports_fpsimd());
451 	WARN_ON(preemptible());
452 
453 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
454 		return;
455 
456 	if (system_supports_fpmr())
457 		*(last->fpmr) = read_sysreg_s(SYS_FPMR);
458 
459 	/*
460 	 * Save SVE state if it is live.
461 	 *
462 	 * The syscall ABI discards live SVE state at syscall entry. When
463 	 * entering a syscall, fpsimd_syscall_enter() sets to_save to
464 	 * FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until
465 	 * either new SVE state is loaded+bound or fpsimd_syscall_exit() is
466 	 * called prior to a return to userspace.
467 	 */
468 	if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) ||
469 	    last->to_save == FP_STATE_SVE) {
470 		save_sve_regs = true;
471 		save_ffr = true;
472 		vl = last->sve_vl;
473 	}
474 
475 	if (system_supports_sme()) {
476 		u64 *svcr = last->svcr;
477 
478 		*svcr = read_sysreg_s(SYS_SVCR);
479 
480 		if (*svcr & SVCR_ZA_MASK)
481 			sme_save_state(last->sme_state,
482 				       system_supports_sme2());
483 
484 		/* If we are in streaming mode override regular SVE. */
485 		if (*svcr & SVCR_SM_MASK) {
486 			save_sve_regs = true;
487 			save_ffr = system_supports_fa64();
488 			vl = last->sme_vl;
489 		}
490 	}
491 
492 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
493 		/* Get the configured VL from RDVL, will account for SM */
494 		if (WARN_ON(sve_get_vl() != vl)) {
495 			/*
496 			 * Can't save the user regs, so current would
497 			 * re-enter user with corrupt state.
498 			 * There's no way to recover, so kill it:
499 			 */
500 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
501 			return;
502 		}
503 
504 		sve_save_state((char *)last->sve_state +
505 					sve_ffr_offset(vl),
506 			       &last->st->fpsr, save_ffr);
507 		*last->fp_type = FP_STATE_SVE;
508 	} else {
509 		fpsimd_save_state(last->st);
510 		*last->fp_type = FP_STATE_FPSIMD;
511 	}
512 }
513 
514 /*
515  * All vector length selection from userspace comes through here.
516  * We're on a slow path, so some sanity-checks are included.
517  * If things go wrong there's a bug somewhere, but try to fall back to a
518  * safe choice.
519  */
520 static unsigned int find_supported_vector_length(enum vec_type type,
521 						 unsigned int vl)
522 {
523 	struct vl_info *info = &vl_info[type];
524 	int bit;
525 	int max_vl = info->max_vl;
526 
527 	if (WARN_ON(!sve_vl_valid(vl)))
528 		vl = info->min_vl;
529 
530 	if (WARN_ON(!sve_vl_valid(max_vl)))
531 		max_vl = info->min_vl;
532 
533 	if (vl > max_vl)
534 		vl = max_vl;
535 	if (vl < info->min_vl)
536 		vl = info->min_vl;
537 
538 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
539 			    __vq_to_bit(sve_vq_from_vl(vl)));
540 	return sve_vl_from_vq(__bit_to_vq(bit));
541 }
542 
543 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
544 
545 static int vec_proc_do_default_vl(const struct ctl_table *table, int write,
546 				  void *buffer, size_t *lenp, loff_t *ppos)
547 {
548 	struct vl_info *info = table->extra1;
549 	enum vec_type type = info->type;
550 	int ret;
551 	int vl = get_default_vl(type);
552 	struct ctl_table tmp_table = {
553 		.data = &vl,
554 		.maxlen = sizeof(vl),
555 	};
556 
557 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
558 	if (ret || !write)
559 		return ret;
560 
561 	/* Writing -1 has the special meaning "set to max": */
562 	if (vl == -1)
563 		vl = info->max_vl;
564 
565 	if (!sve_vl_valid(vl))
566 		return -EINVAL;
567 
568 	set_default_vl(type, find_supported_vector_length(type, vl));
569 	return 0;
570 }
571 
572 static const struct ctl_table sve_default_vl_table[] = {
573 	{
574 		.procname	= "sve_default_vector_length",
575 		.mode		= 0644,
576 		.proc_handler	= vec_proc_do_default_vl,
577 		.extra1		= &vl_info[ARM64_VEC_SVE],
578 	},
579 };
580 
581 static int __init sve_sysctl_init(void)
582 {
583 	if (system_supports_sve())
584 		if (!register_sysctl("abi", sve_default_vl_table))
585 			return -EINVAL;
586 
587 	return 0;
588 }
589 
590 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
591 static int __init sve_sysctl_init(void) { return 0; }
592 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
593 
594 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
595 static const struct ctl_table sme_default_vl_table[] = {
596 	{
597 		.procname	= "sme_default_vector_length",
598 		.mode		= 0644,
599 		.proc_handler	= vec_proc_do_default_vl,
600 		.extra1		= &vl_info[ARM64_VEC_SME],
601 	},
602 };
603 
604 static int __init sme_sysctl_init(void)
605 {
606 	if (system_supports_sme())
607 		if (!register_sysctl("abi", sme_default_vl_table))
608 			return -EINVAL;
609 
610 	return 0;
611 }
612 
613 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
614 static int __init sme_sysctl_init(void) { return 0; }
615 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
616 
617 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
618 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
619 
620 #ifdef CONFIG_CPU_BIG_ENDIAN
621 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
622 {
623 	u64 a = swab64(x);
624 	u64 b = swab64(x >> 64);
625 
626 	return ((__uint128_t)a << 64) | b;
627 }
628 #else
629 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
630 {
631 	return x;
632 }
633 #endif
634 
635 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
636 
637 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
638 			    unsigned int vq)
639 {
640 	unsigned int i;
641 	__uint128_t *p;
642 
643 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
644 		p = (__uint128_t *)ZREG(sst, vq, i);
645 		*p = arm64_cpu_to_le128(fst->vregs[i]);
646 	}
647 }
648 
649 /*
650  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
651  * task->thread.sve_state.
652  *
653  * Task can be a non-runnable task, or current.  In the latter case,
654  * the caller must have ownership of the cpu FPSIMD context before calling
655  * this function.
656  * task->thread.sve_state must point to at least sve_state_size(task)
657  * bytes of allocated kernel memory.
658  * task->thread.uw.fpsimd_state must be up to date before calling this
659  * function.
660  */
661 static inline void fpsimd_to_sve(struct task_struct *task)
662 {
663 	unsigned int vq;
664 	void *sst = task->thread.sve_state;
665 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
666 
667 	if (!system_supports_sve() && !system_supports_sme())
668 		return;
669 
670 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
671 	__fpsimd_to_sve(sst, fst, vq);
672 }
673 
674 /*
675  * Transfer the SVE state in task->thread.sve_state to
676  * task->thread.uw.fpsimd_state.
677  *
678  * Task can be a non-runnable task, or current.  In the latter case,
679  * the caller must have ownership of the cpu FPSIMD context before calling
680  * this function.
681  * task->thread.sve_state must point to at least sve_state_size(task)
682  * bytes of allocated kernel memory.
683  * task->thread.sve_state must be up to date before calling this function.
684  */
685 static inline void sve_to_fpsimd(struct task_struct *task)
686 {
687 	unsigned int vq, vl;
688 	void const *sst = task->thread.sve_state;
689 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
690 	unsigned int i;
691 	__uint128_t const *p;
692 
693 	if (!system_supports_sve() && !system_supports_sme())
694 		return;
695 
696 	vl = thread_get_cur_vl(&task->thread);
697 	vq = sve_vq_from_vl(vl);
698 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
699 		p = (__uint128_t const *)ZREG(sst, vq, i);
700 		fst->vregs[i] = arm64_le128_to_cpu(*p);
701 	}
702 }
703 
704 static inline void __fpsimd_zero_vregs(struct user_fpsimd_state *fpsimd)
705 {
706 	memset(&fpsimd->vregs, 0, sizeof(fpsimd->vregs));
707 }
708 
709 /*
710  * Simulate the effects of an SMSTOP SM instruction.
711  */
712 void task_smstop_sm(struct task_struct *task)
713 {
714 	if (!thread_sm_enabled(&task->thread))
715 		return;
716 
717 	__fpsimd_zero_vregs(&task->thread.uw.fpsimd_state);
718 	task->thread.uw.fpsimd_state.fpsr = 0x0800009f;
719 	if (system_supports_fpmr())
720 		task->thread.uw.fpmr = 0;
721 
722 	task->thread.svcr &= ~SVCR_SM_MASK;
723 	task->thread.fp_type = FP_STATE_FPSIMD;
724 }
725 
726 void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
727 {
728 	write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
729 		       SYS_SCTLR_EL1);
730 }
731 
732 #ifdef CONFIG_ARM64_SVE
733 static void sve_free(struct task_struct *task)
734 {
735 	kfree(task->thread.sve_state);
736 	task->thread.sve_state = NULL;
737 }
738 
739 /*
740  * Ensure that task->thread.sve_state is allocated and sufficiently large.
741  *
742  * This function should be used only in preparation for replacing
743  * task->thread.sve_state with new data.  The memory is always zeroed
744  * here to prevent stale data from showing through: this is done in
745  * the interest of testability and predictability: except in the
746  * do_sve_acc() case, there is no ABI requirement to hide stale data
747  * written previously be task.
748  */
749 void sve_alloc(struct task_struct *task, bool flush)
750 {
751 	if (task->thread.sve_state) {
752 		if (flush)
753 			memset(task->thread.sve_state, 0,
754 			       sve_state_size(task));
755 		return;
756 	}
757 
758 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
759 	task->thread.sve_state =
760 		kzalloc(sve_state_size(task), GFP_KERNEL);
761 }
762 
763 /*
764  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to the
765  * task's currently effective FPSIMD/SVE state.
766  *
767  * The task's FPSIMD/SVE/SME state must not be subject to concurrent
768  * manipulation.
769  */
770 void fpsimd_sync_from_effective_state(struct task_struct *task)
771 {
772 	if (task->thread.fp_type == FP_STATE_SVE)
773 		sve_to_fpsimd(task);
774 }
775 
776 /*
777  * Ensure that the task's currently effective FPSIMD/SVE state is up to date
778  * with respect to task->thread.uw.fpsimd_state, zeroing any effective
779  * non-FPSIMD (S)SVE state.
780  *
781  * The task's FPSIMD/SVE/SME state must not be subject to concurrent
782  * manipulation.
783  */
784 void fpsimd_sync_to_effective_state_zeropad(struct task_struct *task)
785 {
786 	unsigned int vq;
787 	void *sst = task->thread.sve_state;
788 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
789 
790 	if (task->thread.fp_type != FP_STATE_SVE)
791 		return;
792 
793 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
794 
795 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
796 	__fpsimd_to_sve(sst, fst, vq);
797 }
798 
799 static int change_live_vector_length(struct task_struct *task,
800 				     enum vec_type type,
801 				     unsigned long vl)
802 {
803 	unsigned int sve_vl = task_get_sve_vl(task);
804 	unsigned int sme_vl = task_get_sme_vl(task);
805 	void *sve_state = NULL, *sme_state = NULL;
806 
807 	if (type == ARM64_VEC_SME)
808 		sme_vl = vl;
809 	else
810 		sve_vl = vl;
811 
812 	/*
813 	 * Allocate the new sve_state and sme_state before freeing the old
814 	 * copies so that allocation failure can be handled without needing to
815 	 * mutate the task's state in any way.
816 	 *
817 	 * Changes to the SVE vector length must not discard live ZA state or
818 	 * clear PSTATE.ZA, as userspace code which is unaware of the AAPCS64
819 	 * ZA lazy saving scheme may attempt to change the SVE vector length
820 	 * while unsaved/dormant ZA state exists.
821 	 */
822 	sve_state = kzalloc(__sve_state_size(sve_vl, sme_vl), GFP_KERNEL);
823 	if (!sve_state)
824 		goto out_mem;
825 
826 	if (type == ARM64_VEC_SME) {
827 		sme_state = kzalloc(__sme_state_size(sme_vl), GFP_KERNEL);
828 		if (!sme_state)
829 			goto out_mem;
830 	}
831 
832 	if (task == current)
833 		fpsimd_save_and_flush_current_state();
834 	else
835 		fpsimd_flush_task_state(task);
836 
837 	/*
838 	 * Always preserve PSTATE.SM and the effective FPSIMD state, zeroing
839 	 * other SVE state.
840 	 */
841 	fpsimd_sync_from_effective_state(task);
842 	task_set_vl(task, type, vl);
843 	kfree(task->thread.sve_state);
844 	task->thread.sve_state = sve_state;
845 	fpsimd_sync_to_effective_state_zeropad(task);
846 
847 	if (type == ARM64_VEC_SME) {
848 		task->thread.svcr &= ~SVCR_ZA_MASK;
849 		kfree(task->thread.sme_state);
850 		task->thread.sme_state = sme_state;
851 	}
852 
853 	return 0;
854 
855 out_mem:
856 	kfree(sve_state);
857 	kfree(sme_state);
858 	return -ENOMEM;
859 }
860 
861 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
862 			  unsigned long vl, unsigned long flags)
863 {
864 	bool onexec = flags & PR_SVE_SET_VL_ONEXEC;
865 	bool inherit = flags & PR_SVE_VL_INHERIT;
866 
867 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
868 				     PR_SVE_SET_VL_ONEXEC))
869 		return -EINVAL;
870 
871 	if (!sve_vl_valid(vl))
872 		return -EINVAL;
873 
874 	/*
875 	 * Clamp to the maximum vector length that VL-agnostic code
876 	 * can work with.  A flag may be assigned in the future to
877 	 * allow setting of larger vector lengths without confusing
878 	 * older software.
879 	 */
880 	if (vl > VL_ARCH_MAX)
881 		vl = VL_ARCH_MAX;
882 
883 	vl = find_supported_vector_length(type, vl);
884 
885 	if (!onexec && vl != task_get_vl(task, type)) {
886 		if (change_live_vector_length(task, type, vl))
887 			return -ENOMEM;
888 	}
889 
890 	if (onexec || inherit)
891 		task_set_vl_onexec(task, type, vl);
892 	else
893 		/* Reset VL to system default on next exec: */
894 		task_set_vl_onexec(task, type, 0);
895 
896 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
897 			       flags & PR_SVE_VL_INHERIT);
898 
899 	return 0;
900 }
901 
902 /*
903  * Encode the current vector length and flags for return.
904  * This is only required for prctl(): ptrace has separate fields.
905  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
906  *
907  * flags are as for vec_set_vector_length().
908  */
909 static int vec_prctl_status(enum vec_type type, unsigned long flags)
910 {
911 	int ret;
912 
913 	if (flags & PR_SVE_SET_VL_ONEXEC)
914 		ret = task_get_vl_onexec(current, type);
915 	else
916 		ret = task_get_vl(current, type);
917 
918 	if (test_thread_flag(vec_vl_inherit_flag(type)))
919 		ret |= PR_SVE_VL_INHERIT;
920 
921 	return ret;
922 }
923 
924 /* PR_SVE_SET_VL */
925 int sve_set_current_vl(unsigned long arg)
926 {
927 	unsigned long vl, flags;
928 	int ret;
929 
930 	vl = arg & PR_SVE_VL_LEN_MASK;
931 	flags = arg & ~vl;
932 
933 	if (!system_supports_sve() || is_compat_task())
934 		return -EINVAL;
935 
936 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
937 	if (ret)
938 		return ret;
939 
940 	return vec_prctl_status(ARM64_VEC_SVE, flags);
941 }
942 
943 /* PR_SVE_GET_VL */
944 int sve_get_current_vl(void)
945 {
946 	if (!system_supports_sve() || is_compat_task())
947 		return -EINVAL;
948 
949 	return vec_prctl_status(ARM64_VEC_SVE, 0);
950 }
951 
952 #ifdef CONFIG_ARM64_SME
953 /* PR_SME_SET_VL */
954 int sme_set_current_vl(unsigned long arg)
955 {
956 	unsigned long vl, flags;
957 	int ret;
958 
959 	vl = arg & PR_SME_VL_LEN_MASK;
960 	flags = arg & ~vl;
961 
962 	if (!system_supports_sme() || is_compat_task())
963 		return -EINVAL;
964 
965 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
966 	if (ret)
967 		return ret;
968 
969 	return vec_prctl_status(ARM64_VEC_SME, flags);
970 }
971 
972 /* PR_SME_GET_VL */
973 int sme_get_current_vl(void)
974 {
975 	if (!system_supports_sme() || is_compat_task())
976 		return -EINVAL;
977 
978 	return vec_prctl_status(ARM64_VEC_SME, 0);
979 }
980 #endif /* CONFIG_ARM64_SME */
981 
982 static void vec_probe_vqs(struct vl_info *info,
983 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
984 {
985 	unsigned int vq, vl;
986 
987 	bitmap_zero(map, SVE_VQ_MAX);
988 
989 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
990 		write_vl(info->type, vq - 1); /* self-syncing */
991 
992 		switch (info->type) {
993 		case ARM64_VEC_SVE:
994 			vl = sve_get_vl();
995 			break;
996 		case ARM64_VEC_SME:
997 			vl = sme_get_vl();
998 			break;
999 		default:
1000 			vl = 0;
1001 			break;
1002 		}
1003 
1004 		/* Minimum VL identified? */
1005 		if (sve_vq_from_vl(vl) > vq)
1006 			break;
1007 
1008 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1009 		set_bit(__vq_to_bit(vq), map);
1010 	}
1011 }
1012 
1013 /*
1014  * Initialise the set of known supported VQs for the boot CPU.
1015  * This is called during kernel boot, before secondary CPUs are brought up.
1016  */
1017 void __init vec_init_vq_map(enum vec_type type)
1018 {
1019 	struct vl_info *info = &vl_info[type];
1020 	vec_probe_vqs(info, info->vq_map);
1021 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1022 }
1023 
1024 /*
1025  * If we haven't committed to the set of supported VQs yet, filter out
1026  * those not supported by the current CPU.
1027  * This function is called during the bring-up of early secondary CPUs only.
1028  */
1029 void vec_update_vq_map(enum vec_type type)
1030 {
1031 	struct vl_info *info = &vl_info[type];
1032 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1033 
1034 	vec_probe_vqs(info, tmp_map);
1035 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1036 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1037 		  SVE_VQ_MAX);
1038 }
1039 
1040 /*
1041  * Check whether the current CPU supports all VQs in the committed set.
1042  * This function is called during the bring-up of late secondary CPUs only.
1043  */
1044 int vec_verify_vq_map(enum vec_type type)
1045 {
1046 	struct vl_info *info = &vl_info[type];
1047 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1048 	unsigned long b;
1049 
1050 	vec_probe_vqs(info, tmp_map);
1051 
1052 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1053 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1054 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1055 			info->name, smp_processor_id());
1056 		return -EINVAL;
1057 	}
1058 
1059 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1060 		return 0;
1061 
1062 	/*
1063 	 * For KVM, it is necessary to ensure that this CPU doesn't
1064 	 * support any vector length that guests may have probed as
1065 	 * unsupported.
1066 	 */
1067 
1068 	/* Recover the set of supported VQs: */
1069 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1070 	/* Find VQs supported that are not globally supported: */
1071 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1072 
1073 	/* Find the lowest such VQ, if any: */
1074 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1075 	if (b >= SVE_VQ_MAX)
1076 		return 0; /* no mismatches */
1077 
1078 	/*
1079 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1080 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1081 	 */
1082 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1083 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1084 			info->name, smp_processor_id());
1085 		return -EINVAL;
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
1092 {
1093 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1094 	isb();
1095 
1096 	write_sysreg_s(0, SYS_ZCR_EL1);
1097 }
1098 
1099 void __init sve_setup(void)
1100 {
1101 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1102 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1103 	unsigned long b;
1104 	int max_bit;
1105 
1106 	if (!system_supports_sve())
1107 		return;
1108 
1109 	/*
1110 	 * The SVE architecture mandates support for 128-bit vectors,
1111 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1112 	 * If something went wrong, at least try to patch it up:
1113 	 */
1114 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1115 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1116 
1117 	max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1118 	info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1119 
1120 	/*
1121 	 * For the default VL, pick the maximum supported value <= 64.
1122 	 * VL == 64 is guaranteed not to grow the signal frame.
1123 	 */
1124 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1125 
1126 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1127 		      SVE_VQ_MAX);
1128 
1129 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1130 	if (b >= SVE_VQ_MAX)
1131 		/* No non-virtualisable VLs found */
1132 		info->max_virtualisable_vl = SVE_VQ_MAX;
1133 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1134 		/* No virtualisable VLs?  This is architecturally forbidden. */
1135 		info->max_virtualisable_vl = SVE_VQ_MIN;
1136 	else /* b + 1 < SVE_VQ_MAX */
1137 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1138 
1139 	if (info->max_virtualisable_vl > info->max_vl)
1140 		info->max_virtualisable_vl = info->max_vl;
1141 
1142 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1143 		info->name, info->max_vl);
1144 	pr_info("%s: default vector length %u bytes per vector\n",
1145 		info->name, get_sve_default_vl());
1146 
1147 	/* KVM decides whether to support mismatched systems. Just warn here: */
1148 	if (sve_max_virtualisable_vl() < sve_max_vl())
1149 		pr_warn("%s: unvirtualisable vector lengths present\n",
1150 			info->name);
1151 }
1152 
1153 /*
1154  * Called from the put_task_struct() path, which cannot get here
1155  * unless dead_task is really dead and not schedulable.
1156  */
1157 void fpsimd_release_task(struct task_struct *dead_task)
1158 {
1159 	sve_free(dead_task);
1160 	sme_free(dead_task);
1161 }
1162 
1163 #endif /* CONFIG_ARM64_SVE */
1164 
1165 #ifdef CONFIG_ARM64_SME
1166 
1167 /*
1168  * Ensure that task->thread.sme_state is allocated and sufficiently large.
1169  *
1170  * This function should be used only in preparation for replacing
1171  * task->thread.sme_state with new data.  The memory is always zeroed
1172  * here to prevent stale data from showing through: this is done in
1173  * the interest of testability and predictability, the architecture
1174  * guarantees that when ZA is enabled it will be zeroed.
1175  */
1176 void sme_alloc(struct task_struct *task, bool flush)
1177 {
1178 	if (task->thread.sme_state) {
1179 		if (flush)
1180 			memset(task->thread.sme_state, 0,
1181 			       sme_state_size(task));
1182 		return;
1183 	}
1184 
1185 	/* This could potentially be up to 64K. */
1186 	task->thread.sme_state =
1187 		kzalloc(sme_state_size(task), GFP_KERNEL);
1188 }
1189 
1190 static void sme_free(struct task_struct *task)
1191 {
1192 	kfree(task->thread.sme_state);
1193 	task->thread.sme_state = NULL;
1194 }
1195 
1196 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
1197 {
1198 	/* Set priority for all PEs to architecturally defined minimum */
1199 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1200 		       SYS_SMPRI_EL1);
1201 
1202 	/* Allow SME in kernel */
1203 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1204 	isb();
1205 
1206 	/* Ensure all bits in SMCR are set to known values */
1207 	write_sysreg_s(0, SYS_SMCR_EL1);
1208 
1209 	/* Allow EL0 to access TPIDR2 */
1210 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1211 	isb();
1212 }
1213 
1214 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
1215 {
1216 	/* This must be enabled after SME */
1217 	BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
1218 
1219 	/* Allow use of ZT0 */
1220 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1221 		       SYS_SMCR_EL1);
1222 }
1223 
1224 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
1225 {
1226 	/* This must be enabled after SME */
1227 	BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
1228 
1229 	/* Allow use of FA64 */
1230 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1231 		       SYS_SMCR_EL1);
1232 }
1233 
1234 void __init sme_setup(void)
1235 {
1236 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1237 	int min_bit, max_bit;
1238 
1239 	if (!system_supports_sme())
1240 		return;
1241 
1242 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1243 
1244 	/*
1245 	 * SME doesn't require any particular vector length be
1246 	 * supported but it does require at least one.  We should have
1247 	 * disabled the feature entirely while bringing up CPUs but
1248 	 * let's double check here.  The bitmap is SVE_VQ_MAP sized for
1249 	 * sharing with SVE.
1250 	 */
1251 	WARN_ON(min_bit >= SVE_VQ_MAX);
1252 
1253 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1254 
1255 	max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1256 	info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1257 
1258 	WARN_ON(info->min_vl > info->max_vl);
1259 
1260 	/*
1261 	 * For the default VL, pick the maximum supported value <= 32
1262 	 * (256 bits) if there is one since this is guaranteed not to
1263 	 * grow the signal frame when in streaming mode, otherwise the
1264 	 * minimum available VL will be used.
1265 	 */
1266 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1267 
1268 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1269 		info->min_vl);
1270 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1271 		info->max_vl);
1272 	pr_info("SME: default vector length %u bytes per vector\n",
1273 		get_sme_default_vl());
1274 }
1275 
1276 void sme_suspend_exit(void)
1277 {
1278 	u64 smcr = 0;
1279 
1280 	if (!system_supports_sme())
1281 		return;
1282 
1283 	if (system_supports_fa64())
1284 		smcr |= SMCR_ELx_FA64;
1285 	if (system_supports_sme2())
1286 		smcr |= SMCR_ELx_EZT0;
1287 
1288 	write_sysreg_s(smcr, SYS_SMCR_EL1);
1289 	write_sysreg_s(0, SYS_SMPRI_EL1);
1290 }
1291 
1292 #endif /* CONFIG_ARM64_SME */
1293 
1294 static void sve_init_regs(void)
1295 {
1296 	/*
1297 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1298 	 * is not shared with FPSIMD. If (as is likely) the current
1299 	 * state is live in the registers then do this there and
1300 	 * update our metadata for the current task including
1301 	 * disabling the trap, otherwise update our in-memory copy.
1302 	 * We are guaranteed to not be in streaming mode, we can only
1303 	 * take a SVE trap when not in streaming mode and we can't be
1304 	 * in streaming mode when taking a SME trap.
1305 	 */
1306 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1307 		unsigned long vq_minus_one =
1308 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1309 		sve_set_vq(vq_minus_one);
1310 		sve_flush_live(true, vq_minus_one);
1311 		fpsimd_bind_task_to_cpu();
1312 	} else {
1313 		fpsimd_to_sve(current);
1314 		current->thread.fp_type = FP_STATE_SVE;
1315 		fpsimd_flush_task_state(current);
1316 	}
1317 }
1318 
1319 /*
1320  * Trapped SVE access
1321  *
1322  * Storage is allocated for the full SVE state, the current FPSIMD
1323  * register contents are migrated across, and the access trap is
1324  * disabled.
1325  *
1326  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1327  * would have disabled the SVE access trap for userspace during
1328  * ret_to_user, making an SVE access trap impossible in that case.
1329  */
1330 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1331 {
1332 	/* Even if we chose not to use SVE, the hardware could still trap: */
1333 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1334 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1335 		return;
1336 	}
1337 
1338 	sve_alloc(current, true);
1339 	if (!current->thread.sve_state) {
1340 		force_sig(SIGKILL);
1341 		return;
1342 	}
1343 
1344 	get_cpu_fpsimd_context();
1345 
1346 	if (test_and_set_thread_flag(TIF_SVE))
1347 		WARN_ON(1); /* SVE access shouldn't have trapped */
1348 
1349 	/*
1350 	 * Even if the task can have used streaming mode we can only
1351 	 * generate SVE access traps in normal SVE mode and
1352 	 * transitioning out of streaming mode may discard any
1353 	 * streaming mode state.  Always clear the high bits to avoid
1354 	 * any potential errors tracking what is properly initialised.
1355 	 */
1356 	sve_init_regs();
1357 
1358 	put_cpu_fpsimd_context();
1359 }
1360 
1361 /*
1362  * Trapped SME access
1363  *
1364  * Storage is allocated for the full SVE and SME state, the current
1365  * FPSIMD register contents are migrated to SVE if SVE is not already
1366  * active, and the access trap is disabled.
1367  *
1368  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1369  * would have disabled the SME access trap for userspace during
1370  * ret_to_user, making an SME access trap impossible in that case.
1371  */
1372 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1373 {
1374 	/* Even if we chose not to use SME, the hardware could still trap: */
1375 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1376 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1377 		return;
1378 	}
1379 
1380 	/*
1381 	 * If this not a trap due to SME being disabled then something
1382 	 * is being used in the wrong mode, report as SIGILL.
1383 	 */
1384 	if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) {
1385 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1386 		return;
1387 	}
1388 
1389 	sve_alloc(current, false);
1390 	sme_alloc(current, true);
1391 	if (!current->thread.sve_state || !current->thread.sme_state) {
1392 		force_sig(SIGKILL);
1393 		return;
1394 	}
1395 
1396 	get_cpu_fpsimd_context();
1397 
1398 	/* With TIF_SME userspace shouldn't generate any traps */
1399 	if (test_and_set_thread_flag(TIF_SME))
1400 		WARN_ON(1);
1401 
1402 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1403 		unsigned long vq_minus_one =
1404 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1405 		sme_set_vq(vq_minus_one);
1406 
1407 		fpsimd_bind_task_to_cpu();
1408 	} else {
1409 		fpsimd_flush_task_state(current);
1410 	}
1411 
1412 	put_cpu_fpsimd_context();
1413 }
1414 
1415 /*
1416  * Trapped FP/ASIMD access.
1417  */
1418 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1419 {
1420 	/* Even if we chose not to use FPSIMD, the hardware could still trap: */
1421 	if (!system_supports_fpsimd()) {
1422 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1423 		return;
1424 	}
1425 
1426 	/*
1427 	 * When FPSIMD is enabled, we should never take a trap unless something
1428 	 * has gone very wrong.
1429 	 */
1430 	BUG();
1431 }
1432 
1433 /*
1434  * Raise a SIGFPE for the current process.
1435  */
1436 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1437 {
1438 	unsigned int si_code = FPE_FLTUNK;
1439 
1440 	if (esr & ESR_ELx_FP_EXC_TFV) {
1441 		if (esr & FPEXC_IOF)
1442 			si_code = FPE_FLTINV;
1443 		else if (esr & FPEXC_DZF)
1444 			si_code = FPE_FLTDIV;
1445 		else if (esr & FPEXC_OFF)
1446 			si_code = FPE_FLTOVF;
1447 		else if (esr & FPEXC_UFF)
1448 			si_code = FPE_FLTUND;
1449 		else if (esr & FPEXC_IXF)
1450 			si_code = FPE_FLTRES;
1451 	}
1452 
1453 	send_sig_fault(SIGFPE, si_code,
1454 		       (void __user *)instruction_pointer(regs),
1455 		       current);
1456 }
1457 
1458 static void fpsimd_load_kernel_state(struct task_struct *task)
1459 {
1460 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1461 
1462 	/*
1463 	 * Elide the load if this CPU holds the most recent kernel mode
1464 	 * FPSIMD context of the current task.
1465 	 */
1466 	if (last->st == task->thread.kernel_fpsimd_state &&
1467 	    task->thread.kernel_fpsimd_cpu == smp_processor_id())
1468 		return;
1469 
1470 	fpsimd_load_state(task->thread.kernel_fpsimd_state);
1471 }
1472 
1473 static void fpsimd_save_kernel_state(struct task_struct *task)
1474 {
1475 	struct cpu_fp_state cpu_fp_state = {
1476 		.st		= task->thread.kernel_fpsimd_state,
1477 		.to_save	= FP_STATE_FPSIMD,
1478 	};
1479 
1480 	BUG_ON(!cpu_fp_state.st);
1481 
1482 	fpsimd_save_state(task->thread.kernel_fpsimd_state);
1483 	fpsimd_bind_state_to_cpu(&cpu_fp_state);
1484 
1485 	task->thread.kernel_fpsimd_cpu = smp_processor_id();
1486 }
1487 
1488 /*
1489  * Invalidate any task's FPSIMD state that is present on this cpu.
1490  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1491  * before calling this function.
1492  */
1493 static void fpsimd_flush_cpu_state(void)
1494 {
1495 	WARN_ON(!system_supports_fpsimd());
1496 	__this_cpu_write(fpsimd_last_state.st, NULL);
1497 
1498 	/*
1499 	 * Leaving streaming mode enabled will cause issues for any kernel
1500 	 * NEON and leaving streaming mode or ZA enabled may increase power
1501 	 * consumption.
1502 	 */
1503 	if (system_supports_sme())
1504 		sme_smstop();
1505 
1506 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1507 }
1508 
1509 void fpsimd_thread_switch(struct task_struct *next)
1510 {
1511 	bool wrong_task, wrong_cpu;
1512 
1513 	if (!system_supports_fpsimd())
1514 		return;
1515 
1516 	WARN_ON_ONCE(!irqs_disabled());
1517 
1518 	/* Save unsaved fpsimd state, if any: */
1519 	if (test_thread_flag(TIF_KERNEL_FPSTATE))
1520 		fpsimd_save_kernel_state(current);
1521 	else
1522 		fpsimd_save_user_state();
1523 
1524 	if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
1525 		fpsimd_flush_cpu_state();
1526 		fpsimd_load_kernel_state(next);
1527 	} else {
1528 		/*
1529 		 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1530 		 * state.  For kernel threads, FPSIMD registers are never
1531 		 * loaded with user mode FPSIMD state and so wrong_task and
1532 		 * wrong_cpu will always be true.
1533 		 */
1534 		wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1535 			&next->thread.uw.fpsimd_state;
1536 		wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1537 
1538 		update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1539 				       wrong_task || wrong_cpu);
1540 	}
1541 }
1542 
1543 static void fpsimd_flush_thread_vl(enum vec_type type)
1544 {
1545 	int vl, supported_vl;
1546 
1547 	/*
1548 	 * Reset the task vector length as required.  This is where we
1549 	 * ensure that all user tasks have a valid vector length
1550 	 * configured: no kernel task can become a user task without
1551 	 * an exec and hence a call to this function.  By the time the
1552 	 * first call to this function is made, all early hardware
1553 	 * probing is complete, so __sve_default_vl should be valid.
1554 	 * If a bug causes this to go wrong, we make some noise and
1555 	 * try to fudge thread.sve_vl to a safe value here.
1556 	 */
1557 	vl = task_get_vl_onexec(current, type);
1558 	if (!vl)
1559 		vl = get_default_vl(type);
1560 
1561 	if (WARN_ON(!sve_vl_valid(vl)))
1562 		vl = vl_info[type].min_vl;
1563 
1564 	supported_vl = find_supported_vector_length(type, vl);
1565 	if (WARN_ON(supported_vl != vl))
1566 		vl = supported_vl;
1567 
1568 	task_set_vl(current, type, vl);
1569 
1570 	/*
1571 	 * If the task is not set to inherit, ensure that the vector
1572 	 * length will be reset by a subsequent exec:
1573 	 */
1574 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1575 		task_set_vl_onexec(current, type, 0);
1576 }
1577 
1578 void fpsimd_flush_thread(void)
1579 {
1580 	void *sve_state = NULL;
1581 	void *sme_state = NULL;
1582 
1583 	if (!system_supports_fpsimd())
1584 		return;
1585 
1586 	get_cpu_fpsimd_context();
1587 
1588 	fpsimd_flush_task_state(current);
1589 	memset(&current->thread.uw.fpsimd_state, 0,
1590 	       sizeof(current->thread.uw.fpsimd_state));
1591 
1592 	if (system_supports_sve()) {
1593 		clear_thread_flag(TIF_SVE);
1594 
1595 		/* Defer kfree() while in atomic context */
1596 		sve_state = current->thread.sve_state;
1597 		current->thread.sve_state = NULL;
1598 
1599 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1600 	}
1601 
1602 	if (system_supports_sme()) {
1603 		clear_thread_flag(TIF_SME);
1604 
1605 		/* Defer kfree() while in atomic context */
1606 		sme_state = current->thread.sme_state;
1607 		current->thread.sme_state = NULL;
1608 
1609 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1610 		current->thread.svcr = 0;
1611 	}
1612 
1613 	if (system_supports_fpmr())
1614 		current->thread.uw.fpmr = 0;
1615 
1616 	current->thread.fp_type = FP_STATE_FPSIMD;
1617 
1618 	put_cpu_fpsimd_context();
1619 	kfree(sve_state);
1620 	kfree(sme_state);
1621 }
1622 
1623 /*
1624  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1625  * currently held in the registers does in fact belong to 'current'
1626  */
1627 void fpsimd_preserve_current_state(void)
1628 {
1629 	if (!system_supports_fpsimd())
1630 		return;
1631 
1632 	get_cpu_fpsimd_context();
1633 	fpsimd_save_user_state();
1634 	put_cpu_fpsimd_context();
1635 }
1636 
1637 /*
1638  * Associate current's FPSIMD context with this cpu
1639  * The caller must have ownership of the cpu FPSIMD context before calling
1640  * this function.
1641  */
1642 static void fpsimd_bind_task_to_cpu(void)
1643 {
1644 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1645 
1646 	WARN_ON(!system_supports_fpsimd());
1647 	last->st = &current->thread.uw.fpsimd_state;
1648 	last->sve_state = current->thread.sve_state;
1649 	last->sme_state = current->thread.sme_state;
1650 	last->sve_vl = task_get_sve_vl(current);
1651 	last->sme_vl = task_get_sme_vl(current);
1652 	last->svcr = &current->thread.svcr;
1653 	last->fpmr = &current->thread.uw.fpmr;
1654 	last->fp_type = &current->thread.fp_type;
1655 	last->to_save = FP_STATE_CURRENT;
1656 	current->thread.fpsimd_cpu = smp_processor_id();
1657 
1658 	/*
1659 	 * Toggle SVE and SME trapping for userspace if needed, these
1660 	 * are serialsied by ret_to_user().
1661 	 */
1662 	if (system_supports_sme()) {
1663 		if (test_thread_flag(TIF_SME))
1664 			sme_user_enable();
1665 		else
1666 			sme_user_disable();
1667 	}
1668 
1669 	if (system_supports_sve()) {
1670 		if (test_thread_flag(TIF_SVE))
1671 			sve_user_enable();
1672 		else
1673 			sve_user_disable();
1674 	}
1675 }
1676 
1677 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1678 {
1679 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1680 
1681 	WARN_ON(!system_supports_fpsimd());
1682 	WARN_ON(!in_softirq() && !irqs_disabled());
1683 
1684 	*last = *state;
1685 }
1686 
1687 /*
1688  * Load the userland FPSIMD state of 'current' from memory, but only if the
1689  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1690  * state of 'current'.  This is called when we are preparing to return to
1691  * userspace to ensure that userspace sees a good register state.
1692  */
1693 void fpsimd_restore_current_state(void)
1694 {
1695 	/*
1696 	 * TIF_FOREIGN_FPSTATE is set on the init task and copied by
1697 	 * arch_dup_task_struct() regardless of whether FP/SIMD is detected.
1698 	 * Thus user threads can have this set even when FP/SIMD hasn't been
1699 	 * detected.
1700 	 *
1701 	 * When FP/SIMD is detected, begin_new_exec() will set
1702 	 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
1703 	 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
1704 	 * switching tasks. We detect FP/SIMD before we exec the first user
1705 	 * process, ensuring this has TIF_FOREIGN_FPSTATE set and
1706 	 * do_notify_resume() will call fpsimd_restore_current_state() to
1707 	 * install the user FP/SIMD context.
1708 	 *
1709 	 * When FP/SIMD is not detected, nothing else will clear or set
1710 	 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
1711 	 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
1712 	 * looping forever calling fpsimd_restore_current_state().
1713 	 */
1714 	if (!system_supports_fpsimd()) {
1715 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1716 		return;
1717 	}
1718 
1719 	get_cpu_fpsimd_context();
1720 
1721 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1722 		task_fpsimd_load();
1723 		fpsimd_bind_task_to_cpu();
1724 	}
1725 
1726 	put_cpu_fpsimd_context();
1727 }
1728 
1729 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1730 {
1731 	if (WARN_ON(!system_supports_fpsimd()))
1732 		return;
1733 
1734 	current->thread.uw.fpsimd_state = *state;
1735 	if (current->thread.fp_type == FP_STATE_SVE)
1736 		fpsimd_to_sve(current);
1737 }
1738 
1739 /*
1740  * Invalidate live CPU copies of task t's FPSIMD state
1741  *
1742  * This function may be called with preemption enabled.  The barrier()
1743  * ensures that the assignment to fpsimd_cpu is visible to any
1744  * preemption/softirq that could race with set_tsk_thread_flag(), so
1745  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1746  *
1747  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1748  * subsequent code.
1749  */
1750 void fpsimd_flush_task_state(struct task_struct *t)
1751 {
1752 	t->thread.fpsimd_cpu = NR_CPUS;
1753 	t->thread.kernel_fpsimd_state = NULL;
1754 	/*
1755 	 * If we don't support fpsimd, bail out after we have
1756 	 * reset the fpsimd_cpu for this task and clear the
1757 	 * FPSTATE.
1758 	 */
1759 	if (!system_supports_fpsimd())
1760 		return;
1761 	barrier();
1762 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1763 
1764 	barrier();
1765 }
1766 
1767 void fpsimd_save_and_flush_current_state(void)
1768 {
1769 	if (!system_supports_fpsimd())
1770 		return;
1771 
1772 	get_cpu_fpsimd_context();
1773 	fpsimd_save_user_state();
1774 	fpsimd_flush_task_state(current);
1775 	put_cpu_fpsimd_context();
1776 }
1777 
1778 /*
1779  * Save the FPSIMD state to memory and invalidate cpu view.
1780  * This function must be called with preemption disabled.
1781  */
1782 void fpsimd_save_and_flush_cpu_state(void)
1783 {
1784 	unsigned long flags;
1785 
1786 	if (!system_supports_fpsimd())
1787 		return;
1788 	WARN_ON(preemptible());
1789 	local_irq_save(flags);
1790 	fpsimd_save_user_state();
1791 	fpsimd_flush_cpu_state();
1792 	local_irq_restore(flags);
1793 }
1794 
1795 #ifdef CONFIG_KERNEL_MODE_NEON
1796 
1797 /*
1798  * Kernel-side NEON support functions
1799  */
1800 
1801 /*
1802  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1803  * context
1804  *
1805  * Must not be called unless may_use_simd() returns true.
1806  * Task context in the FPSIMD registers is saved back to memory as necessary.
1807  *
1808  * A matching call to kernel_neon_end() must be made before returning from the
1809  * calling context.
1810  *
1811  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1812  * called.
1813  *
1814  * Unless called from non-preemptible task context, @state must point to a
1815  * caller provided buffer that will be used to preserve the task's kernel mode
1816  * FPSIMD context when it is scheduled out, or if it is interrupted by kernel
1817  * mode FPSIMD occurring in softirq context. May be %NULL otherwise.
1818  */
1819 void kernel_neon_begin(struct user_fpsimd_state *state)
1820 {
1821 	if (WARN_ON(!system_supports_fpsimd()))
1822 		return;
1823 
1824 	WARN_ON((preemptible() || in_serving_softirq()) && !state);
1825 
1826 	BUG_ON(!may_use_simd());
1827 
1828 	get_cpu_fpsimd_context();
1829 
1830 	/* Save unsaved fpsimd state, if any: */
1831 	if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
1832 		BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
1833 		fpsimd_save_state(state);
1834 	} else {
1835 		fpsimd_save_user_state();
1836 
1837 		/*
1838 		 * Set the thread flag so that the kernel mode FPSIMD state
1839 		 * will be context switched along with the rest of the task
1840 		 * state.
1841 		 *
1842 		 * On non-PREEMPT_RT, softirqs may interrupt task level kernel
1843 		 * mode FPSIMD, but the task will not be preemptible so setting
1844 		 * TIF_KERNEL_FPSTATE for those would be both wrong (as it
1845 		 * would mark the task context FPSIMD state as requiring a
1846 		 * context switch) and unnecessary.
1847 		 *
1848 		 * On PREEMPT_RT, softirqs are serviced from a separate thread,
1849 		 * which is scheduled as usual, and this guarantees that these
1850 		 * softirqs are not interrupting use of the FPSIMD in kernel
1851 		 * mode in task context. So in this case, setting the flag here
1852 		 * is always appropriate.
1853 		 */
1854 		if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()) {
1855 			/*
1856 			 * Record the caller provided buffer as the kernel mode
1857 			 * FP/SIMD buffer for this task, so that the state can
1858 			 * be preserved and restored on a context switch.
1859 			 */
1860 			WARN_ON(current->thread.kernel_fpsimd_state != NULL);
1861 			current->thread.kernel_fpsimd_state = state;
1862 			set_thread_flag(TIF_KERNEL_FPSTATE);
1863 		}
1864 	}
1865 
1866 	/* Invalidate any task state remaining in the fpsimd regs: */
1867 	fpsimd_flush_cpu_state();
1868 
1869 	put_cpu_fpsimd_context();
1870 }
1871 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1872 
1873 /*
1874  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1875  *
1876  * Must be called from a context in which kernel_neon_begin() was previously
1877  * called, with no call to kernel_neon_end() in the meantime.
1878  *
1879  * The caller must not use the FPSIMD registers after this function is called,
1880  * unless kernel_neon_begin() is called again in the meantime.
1881  *
1882  * The value of @state must match the value passed to the preceding call to
1883  * kernel_neon_begin().
1884  */
1885 void kernel_neon_end(struct user_fpsimd_state *state)
1886 {
1887 	if (!system_supports_fpsimd())
1888 		return;
1889 
1890 	if (!test_thread_flag(TIF_KERNEL_FPSTATE))
1891 		return;
1892 
1893 	/*
1894 	 * If we are returning from a nested use of kernel mode FPSIMD, restore
1895 	 * the task context kernel mode FPSIMD state. This can only happen when
1896 	 * running in softirq context on non-PREEMPT_RT.
1897 	 */
1898 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq()) {
1899 		fpsimd_load_state(state);
1900 	} else {
1901 		clear_thread_flag(TIF_KERNEL_FPSTATE);
1902 		WARN_ON(current->thread.kernel_fpsimd_state != state);
1903 		current->thread.kernel_fpsimd_state = NULL;
1904 	}
1905 }
1906 EXPORT_SYMBOL_GPL(kernel_neon_end);
1907 
1908 #ifdef CONFIG_EFI
1909 
1910 static struct user_fpsimd_state efi_fpsimd_state;
1911 
1912 /*
1913  * EFI runtime services support functions
1914  *
1915  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1916  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1917  * is always used rather than being an optional accelerator.
1918  *
1919  * These functions provide the necessary support for ensuring FPSIMD
1920  * save/restore in the contexts from which EFI is used.
1921  *
1922  * Do not use them for any other purpose -- if tempted to do so, you are
1923  * either doing something wrong or you need to propose some refactoring.
1924  */
1925 
1926 /*
1927  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1928  */
1929 void __efi_fpsimd_begin(void)
1930 {
1931 	if (!system_supports_fpsimd())
1932 		return;
1933 
1934 	if (may_use_simd()) {
1935 		kernel_neon_begin(&efi_fpsimd_state);
1936 	} else {
1937 		/*
1938 		 * We are running in hardirq or NMI context, and the only
1939 		 * legitimate case where this might happen is when EFI pstore
1940 		 * is attempting to record the system's dying gasps into EFI
1941 		 * variables. This could be due to an oops, a panic or a call
1942 		 * to emergency_restart(), and in none of those cases, we can
1943 		 * expect the current task to ever return to user space again,
1944 		 * or for the kernel to resume any normal execution, for that
1945 		 * matter (an oops in hardirq context triggers a panic too).
1946 		 *
1947 		 * Therefore, there is no point in attempting to preserve any
1948 		 * SVE/SME state here. On the off chance that we might have
1949 		 * ended up here for a different reason inadvertently, kill the
1950 		 * task and preserve/restore the base FP/SIMD state, which
1951 		 * might belong to kernel mode FP/SIMD.
1952 		 */
1953 		pr_warn_ratelimited("Calling EFI runtime from %s context\n",
1954 				    in_nmi() ? "NMI" : "hardirq");
1955 		force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
1956 		fpsimd_save_state(&efi_fpsimd_state);
1957 	}
1958 }
1959 
1960 /*
1961  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1962  */
1963 void __efi_fpsimd_end(void)
1964 {
1965 	if (!system_supports_fpsimd())
1966 		return;
1967 
1968 	if (may_use_simd()) {
1969 		kernel_neon_end(&efi_fpsimd_state);
1970 	} else {
1971 		fpsimd_load_state(&efi_fpsimd_state);
1972 	}
1973 }
1974 
1975 #endif /* CONFIG_EFI */
1976 
1977 #endif /* CONFIG_KERNEL_MODE_NEON */
1978 
1979 #ifdef CONFIG_CPU_PM
1980 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1981 				  unsigned long cmd, void *v)
1982 {
1983 	switch (cmd) {
1984 	case CPU_PM_ENTER:
1985 		fpsimd_save_and_flush_cpu_state();
1986 		break;
1987 	case CPU_PM_EXIT:
1988 		break;
1989 	case CPU_PM_ENTER_FAILED:
1990 	default:
1991 		return NOTIFY_DONE;
1992 	}
1993 	return NOTIFY_OK;
1994 }
1995 
1996 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1997 	.notifier_call = fpsimd_cpu_pm_notifier,
1998 };
1999 
2000 static void __init fpsimd_pm_init(void)
2001 {
2002 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2003 }
2004 
2005 #else
2006 static inline void fpsimd_pm_init(void) { }
2007 #endif /* CONFIG_CPU_PM */
2008 
2009 #ifdef CONFIG_HOTPLUG_CPU
2010 static int fpsimd_cpu_dead(unsigned int cpu)
2011 {
2012 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2013 	return 0;
2014 }
2015 
2016 static inline void fpsimd_hotplug_init(void)
2017 {
2018 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2019 				  NULL, fpsimd_cpu_dead);
2020 }
2021 
2022 #else
2023 static inline void fpsimd_hotplug_init(void) { }
2024 #endif
2025 
2026 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
2027 {
2028 	unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
2029 	write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
2030 	isb();
2031 }
2032 
2033 /*
2034  * FP/SIMD support code initialisation.
2035  */
2036 static int __init fpsimd_init(void)
2037 {
2038 	if (cpu_have_named_feature(FP)) {
2039 		fpsimd_pm_init();
2040 		fpsimd_hotplug_init();
2041 	} else {
2042 		pr_notice("Floating-point is not implemented\n");
2043 	}
2044 
2045 	if (!cpu_have_named_feature(ASIMD))
2046 		pr_notice("Advanced SIMD is not implemented\n");
2047 
2048 
2049 	sve_sysctl_init();
2050 	sme_sysctl_init();
2051 
2052 	return 0;
2053 }
2054 core_initcall(fpsimd_init);
2055