1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/compiler.h> 16 #include <linux/cpu.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/ctype.h> 19 #include <linux/kernel.h> 20 #include <linux/linkage.h> 21 #include <linux/irqflags.h> 22 #include <linux/init.h> 23 #include <linux/percpu.h> 24 #include <linux/prctl.h> 25 #include <linux/preempt.h> 26 #include <linux/ptrace.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/task_stack.h> 29 #include <linux/signal.h> 30 #include <linux/slab.h> 31 #include <linux/stddef.h> 32 #include <linux/sysctl.h> 33 #include <linux/swab.h> 34 35 #include <asm/esr.h> 36 #include <asm/exception.h> 37 #include <asm/fpsimd.h> 38 #include <asm/cpufeature.h> 39 #include <asm/cputype.h> 40 #include <asm/neon.h> 41 #include <asm/processor.h> 42 #include <asm/simd.h> 43 #include <asm/sigcontext.h> 44 #include <asm/sysreg.h> 45 #include <asm/traps.h> 46 #include <asm/virt.h> 47 48 #define FPEXC_IOF (1 << 0) 49 #define FPEXC_DZF (1 << 1) 50 #define FPEXC_OFF (1 << 2) 51 #define FPEXC_UFF (1 << 3) 52 #define FPEXC_IXF (1 << 4) 53 #define FPEXC_IDF (1 << 7) 54 55 /* 56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 57 * 58 * In order to reduce the number of times the FPSIMD state is needlessly saved 59 * and restored, we need to keep track of two things: 60 * (a) for each task, we need to remember which CPU was the last one to have 61 * the task's FPSIMD state loaded into its FPSIMD registers; 62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 63 * been loaded into its FPSIMD registers most recently, or whether it has 64 * been used to perform kernel mode NEON in the meantime. 65 * 66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 67 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 69 * address of the userland FPSIMD state of the task that was loaded onto the CPU 70 * the most recently, or NULL if kernel mode NEON has been performed after that. 71 * 72 * With this in place, we no longer have to restore the next FPSIMD state right 73 * when switching between tasks. Instead, we can defer this check to userland 74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 76 * can omit the FPSIMD restore. 77 * 78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 79 * indicate whether or not the userland FPSIMD state of the current task is 80 * present in the registers. The flag is set unless the FPSIMD registers of this 81 * CPU currently contain the most recent userland FPSIMD state of the current 82 * task. If the task is behaving as a VMM, then this is will be managed by 83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently 84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware 85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and 86 * flag the register state as invalid. 87 * 88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be 89 * called from softirq context, which will save the task's FPSIMD context back 90 * to task_struct. To prevent this from racing with the manipulation of the 91 * task's FPSIMD state from task context and thereby corrupting the state, it 92 * is necessary to protect any manipulation of a task's fpsimd_state or 93 * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend 94 * softirq servicing entirely until put_cpu_fpsimd_context() is called. 95 * 96 * For a certain task, the sequence may look something like this: 97 * - the task gets scheduled in; if both the task's fpsimd_cpu field 98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 100 * cleared, otherwise it is set; 101 * 102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 103 * userland FPSIMD state is copied from memory to the registers, the task's 104 * fpsimd_cpu field is set to the id of the current CPU, the current 105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 106 * TIF_FOREIGN_FPSTATE flag is cleared; 107 * 108 * - the task executes an ordinary syscall; upon return to userland, the 109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 110 * restored; 111 * 112 * - the task executes a syscall which executes some NEON instructions; this is 113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 114 * register contents to memory, clears the fpsimd_last_state per-cpu variable 115 * and sets the TIF_FOREIGN_FPSTATE flag; 116 * 117 * - the task gets preempted after kernel_neon_end() is called; as we have not 118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 119 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 120 */ 121 122 DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state); 123 124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = { 125 #ifdef CONFIG_ARM64_SVE 126 [ARM64_VEC_SVE] = { 127 .type = ARM64_VEC_SVE, 128 .name = "SVE", 129 .min_vl = SVE_VL_MIN, 130 .max_vl = SVE_VL_MIN, 131 .max_virtualisable_vl = SVE_VL_MIN, 132 }, 133 #endif 134 #ifdef CONFIG_ARM64_SME 135 [ARM64_VEC_SME] = { 136 .type = ARM64_VEC_SME, 137 .name = "SME", 138 }, 139 #endif 140 }; 141 142 static unsigned int vec_vl_inherit_flag(enum vec_type type) 143 { 144 switch (type) { 145 case ARM64_VEC_SVE: 146 return TIF_SVE_VL_INHERIT; 147 case ARM64_VEC_SME: 148 return TIF_SME_VL_INHERIT; 149 default: 150 WARN_ON_ONCE(1); 151 return 0; 152 } 153 } 154 155 struct vl_config { 156 int __default_vl; /* Default VL for tasks */ 157 }; 158 159 static struct vl_config vl_config[ARM64_VEC_MAX]; 160 161 static inline int get_default_vl(enum vec_type type) 162 { 163 return READ_ONCE(vl_config[type].__default_vl); 164 } 165 166 #ifdef CONFIG_ARM64_SVE 167 168 static inline int get_sve_default_vl(void) 169 { 170 return get_default_vl(ARM64_VEC_SVE); 171 } 172 173 static inline void set_default_vl(enum vec_type type, int val) 174 { 175 WRITE_ONCE(vl_config[type].__default_vl, val); 176 } 177 178 static inline void set_sve_default_vl(int val) 179 { 180 set_default_vl(ARM64_VEC_SVE, val); 181 } 182 183 static u8 *efi_sve_state; 184 185 #else /* ! CONFIG_ARM64_SVE */ 186 187 /* Dummy declaration for code that will be optimised out: */ 188 extern u8 *efi_sve_state; 189 190 #endif /* ! CONFIG_ARM64_SVE */ 191 192 #ifdef CONFIG_ARM64_SME 193 194 static int get_sme_default_vl(void) 195 { 196 return get_default_vl(ARM64_VEC_SME); 197 } 198 199 static void set_sme_default_vl(int val) 200 { 201 set_default_vl(ARM64_VEC_SME, val); 202 } 203 204 static void sme_free(struct task_struct *); 205 206 #else 207 208 static inline void sme_free(struct task_struct *t) { } 209 210 #endif 211 212 static void fpsimd_bind_task_to_cpu(void); 213 214 /* 215 * Claim ownership of the CPU FPSIMD context for use by the calling context. 216 * 217 * The caller may freely manipulate the FPSIMD context metadata until 218 * put_cpu_fpsimd_context() is called. 219 * 220 * On RT kernels local_bh_disable() is not sufficient because it only 221 * serializes soft interrupt related sections via a local lock, but stays 222 * preemptible. Disabling preemption is the right choice here as bottom 223 * half processing is always in thread context on RT kernels so it 224 * implicitly prevents bottom half processing as well. 225 */ 226 static void get_cpu_fpsimd_context(void) 227 { 228 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 229 /* 230 * The softirq subsystem lacks a true unmask/mask API, and 231 * re-enabling softirq processing using local_bh_enable() will 232 * not only unmask softirqs, it will also result in immediate 233 * delivery of any pending softirqs. 234 * This is undesirable when running with IRQs disabled, but in 235 * that case, there is no need to mask softirqs in the first 236 * place, so only bother doing so when IRQs are enabled. 237 */ 238 if (!irqs_disabled()) 239 local_bh_disable(); 240 } else { 241 preempt_disable(); 242 } 243 } 244 245 /* 246 * Release the CPU FPSIMD context. 247 * 248 * Must be called from a context in which get_cpu_fpsimd_context() was 249 * previously called, with no call to put_cpu_fpsimd_context() in the 250 * meantime. 251 */ 252 static void put_cpu_fpsimd_context(void) 253 { 254 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 255 if (!irqs_disabled()) 256 local_bh_enable(); 257 } else { 258 preempt_enable(); 259 } 260 } 261 262 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type) 263 { 264 return task->thread.vl[type]; 265 } 266 267 void task_set_vl(struct task_struct *task, enum vec_type type, 268 unsigned long vl) 269 { 270 task->thread.vl[type] = vl; 271 } 272 273 unsigned int task_get_vl_onexec(const struct task_struct *task, 274 enum vec_type type) 275 { 276 return task->thread.vl_onexec[type]; 277 } 278 279 void task_set_vl_onexec(struct task_struct *task, enum vec_type type, 280 unsigned long vl) 281 { 282 task->thread.vl_onexec[type] = vl; 283 } 284 285 /* 286 * TIF_SME controls whether a task can use SME without trapping while 287 * in userspace, when TIF_SME is set then we must have storage 288 * allocated in sve_state and sme_state to store the contents of both ZA 289 * and the SVE registers for both streaming and non-streaming modes. 290 * 291 * If both SVCR.ZA and SVCR.SM are disabled then at any point we 292 * may disable TIF_SME and reenable traps. 293 */ 294 295 296 /* 297 * TIF_SVE controls whether a task can use SVE without trapping while 298 * in userspace, and also (together with TIF_SME) the way a task's 299 * FPSIMD/SVE state is stored in thread_struct. 300 * 301 * The kernel uses this flag to track whether a user task is actively 302 * using SVE, and therefore whether full SVE register state needs to 303 * be tracked. If not, the cheaper FPSIMD context handling code can 304 * be used instead of the more costly SVE equivalents. 305 * 306 * * TIF_SVE or SVCR.SM set: 307 * 308 * The task can execute SVE instructions while in userspace without 309 * trapping to the kernel. 310 * 311 * During any syscall, the kernel may optionally clear TIF_SVE and 312 * discard the vector state except for the FPSIMD subset. 313 * 314 * * TIF_SVE clear: 315 * 316 * An attempt by the user task to execute an SVE instruction causes 317 * do_sve_acc() to be called, which does some preparation and then 318 * sets TIF_SVE. 319 * 320 * During any syscall, the kernel may optionally clear TIF_SVE and 321 * discard the vector state except for the FPSIMD subset. 322 * 323 * The data will be stored in one of two formats: 324 * 325 * * FPSIMD only - FP_STATE_FPSIMD: 326 * 327 * When the FPSIMD only state stored task->thread.fp_type is set to 328 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in 329 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 330 * logically zero but not stored anywhere; P0-P15 and FFR are not 331 * stored and have unspecified values from userspace's point of 332 * view. For hygiene purposes, the kernel zeroes them on next use, 333 * but userspace is discouraged from relying on this. 334 * 335 * task->thread.sve_state does not need to be non-NULL, valid or any 336 * particular size: it must not be dereferenced and any data stored 337 * there should be considered stale and not referenced. 338 * 339 * * SVE state - FP_STATE_SVE: 340 * 341 * When the full SVE state is stored task->thread.fp_type is set to 342 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the 343 * corresponding Zn), P0-P15 and FFR are encoded in in 344 * task->thread.sve_state, formatted appropriately for vector 345 * length task->thread.sve_vl or, if SVCR.SM is set, 346 * task->thread.sme_vl. The storage for the vector registers in 347 * task->thread.uw.fpsimd_state should be ignored. 348 * 349 * task->thread.sve_state must point to a valid buffer at least 350 * sve_state_size(task) bytes in size. The data stored in 351 * task->thread.uw.fpsimd_state.vregs should be considered stale 352 * and not referenced. 353 * 354 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 355 * irrespective of whether TIF_SVE is clear or set, since these are 356 * not vector length dependent. 357 */ 358 359 /* 360 * Update current's FPSIMD/SVE registers from thread_struct. 361 * 362 * This function should be called only when the FPSIMD/SVE state in 363 * thread_struct is known to be up to date, when preparing to enter 364 * userspace. 365 */ 366 static void task_fpsimd_load(void) 367 { 368 bool restore_sve_regs = false; 369 bool restore_ffr; 370 371 WARN_ON(!system_supports_fpsimd()); 372 WARN_ON(preemptible()); 373 WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE)); 374 375 if (system_supports_sve() || system_supports_sme()) { 376 switch (current->thread.fp_type) { 377 case FP_STATE_FPSIMD: 378 /* Stop tracking SVE for this task until next use. */ 379 clear_thread_flag(TIF_SVE); 380 break; 381 case FP_STATE_SVE: 382 if (!thread_sm_enabled(¤t->thread)) 383 WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)); 384 385 if (test_thread_flag(TIF_SVE)) 386 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1); 387 388 restore_sve_regs = true; 389 restore_ffr = true; 390 break; 391 default: 392 /* 393 * This indicates either a bug in 394 * fpsimd_save_user_state() or memory corruption, we 395 * should always record an explicit format 396 * when we save. We always at least have the 397 * memory allocated for FPSIMD registers so 398 * try that and hope for the best. 399 */ 400 WARN_ON_ONCE(1); 401 clear_thread_flag(TIF_SVE); 402 break; 403 } 404 } 405 406 /* Restore SME, override SVE register configuration if needed */ 407 if (system_supports_sme()) { 408 unsigned long sme_vl = task_get_sme_vl(current); 409 410 /* Ensure VL is set up for restoring data */ 411 if (test_thread_flag(TIF_SME)) 412 sme_set_vq(sve_vq_from_vl(sme_vl) - 1); 413 414 write_sysreg_s(current->thread.svcr, SYS_SVCR); 415 416 if (thread_za_enabled(¤t->thread)) 417 sme_load_state(current->thread.sme_state, 418 system_supports_sme2()); 419 420 if (thread_sm_enabled(¤t->thread)) 421 restore_ffr = system_supports_fa64(); 422 } 423 424 if (system_supports_fpmr()) 425 write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR); 426 427 if (restore_sve_regs) { 428 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE); 429 sve_load_state(sve_pffr(¤t->thread), 430 ¤t->thread.uw.fpsimd_state.fpsr, 431 restore_ffr); 432 } else { 433 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD); 434 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 435 } 436 } 437 438 /* 439 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 440 * date with respect to the CPU registers. Note carefully that the 441 * current context is the context last bound to the CPU stored in 442 * last, if KVM is involved this may be the guest VM context rather 443 * than the host thread for the VM pointed to by current. This means 444 * that we must always reference the state storage via last rather 445 * than via current, if we are saving KVM state then it will have 446 * ensured that the type of registers to save is set in last->to_save. 447 */ 448 static void fpsimd_save_user_state(void) 449 { 450 struct cpu_fp_state const *last = 451 this_cpu_ptr(&fpsimd_last_state); 452 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 453 bool save_sve_regs = false; 454 bool save_ffr; 455 unsigned int vl; 456 457 WARN_ON(!system_supports_fpsimd()); 458 WARN_ON(preemptible()); 459 460 if (test_thread_flag(TIF_FOREIGN_FPSTATE)) 461 return; 462 463 if (system_supports_fpmr()) 464 *(last->fpmr) = read_sysreg_s(SYS_FPMR); 465 466 /* 467 * Save SVE state if it is live. 468 * 469 * The syscall ABI discards live SVE state at syscall entry. When 470 * entering a syscall, fpsimd_syscall_enter() sets to_save to 471 * FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until 472 * either new SVE state is loaded+bound or fpsimd_syscall_exit() is 473 * called prior to a return to userspace. 474 */ 475 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) || 476 last->to_save == FP_STATE_SVE) { 477 save_sve_regs = true; 478 save_ffr = true; 479 vl = last->sve_vl; 480 } 481 482 if (system_supports_sme()) { 483 u64 *svcr = last->svcr; 484 485 *svcr = read_sysreg_s(SYS_SVCR); 486 487 if (*svcr & SVCR_ZA_MASK) 488 sme_save_state(last->sme_state, 489 system_supports_sme2()); 490 491 /* If we are in streaming mode override regular SVE. */ 492 if (*svcr & SVCR_SM_MASK) { 493 save_sve_regs = true; 494 save_ffr = system_supports_fa64(); 495 vl = last->sme_vl; 496 } 497 } 498 499 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) { 500 /* Get the configured VL from RDVL, will account for SM */ 501 if (WARN_ON(sve_get_vl() != vl)) { 502 /* 503 * Can't save the user regs, so current would 504 * re-enter user with corrupt state. 505 * There's no way to recover, so kill it: 506 */ 507 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0); 508 return; 509 } 510 511 sve_save_state((char *)last->sve_state + 512 sve_ffr_offset(vl), 513 &last->st->fpsr, save_ffr); 514 *last->fp_type = FP_STATE_SVE; 515 } else { 516 fpsimd_save_state(last->st); 517 *last->fp_type = FP_STATE_FPSIMD; 518 } 519 } 520 521 /* 522 * All vector length selection from userspace comes through here. 523 * We're on a slow path, so some sanity-checks are included. 524 * If things go wrong there's a bug somewhere, but try to fall back to a 525 * safe choice. 526 */ 527 static unsigned int find_supported_vector_length(enum vec_type type, 528 unsigned int vl) 529 { 530 struct vl_info *info = &vl_info[type]; 531 int bit; 532 int max_vl = info->max_vl; 533 534 if (WARN_ON(!sve_vl_valid(vl))) 535 vl = info->min_vl; 536 537 if (WARN_ON(!sve_vl_valid(max_vl))) 538 max_vl = info->min_vl; 539 540 if (vl > max_vl) 541 vl = max_vl; 542 if (vl < info->min_vl) 543 vl = info->min_vl; 544 545 bit = find_next_bit(info->vq_map, SVE_VQ_MAX, 546 __vq_to_bit(sve_vq_from_vl(vl))); 547 return sve_vl_from_vq(__bit_to_vq(bit)); 548 } 549 550 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL) 551 552 static int vec_proc_do_default_vl(const struct ctl_table *table, int write, 553 void *buffer, size_t *lenp, loff_t *ppos) 554 { 555 struct vl_info *info = table->extra1; 556 enum vec_type type = info->type; 557 int ret; 558 int vl = get_default_vl(type); 559 struct ctl_table tmp_table = { 560 .data = &vl, 561 .maxlen = sizeof(vl), 562 }; 563 564 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 565 if (ret || !write) 566 return ret; 567 568 /* Writing -1 has the special meaning "set to max": */ 569 if (vl == -1) 570 vl = info->max_vl; 571 572 if (!sve_vl_valid(vl)) 573 return -EINVAL; 574 575 set_default_vl(type, find_supported_vector_length(type, vl)); 576 return 0; 577 } 578 579 static const struct ctl_table sve_default_vl_table[] = { 580 { 581 .procname = "sve_default_vector_length", 582 .mode = 0644, 583 .proc_handler = vec_proc_do_default_vl, 584 .extra1 = &vl_info[ARM64_VEC_SVE], 585 }, 586 }; 587 588 static int __init sve_sysctl_init(void) 589 { 590 if (system_supports_sve()) 591 if (!register_sysctl("abi", sve_default_vl_table)) 592 return -EINVAL; 593 594 return 0; 595 } 596 597 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 598 static int __init sve_sysctl_init(void) { return 0; } 599 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 600 601 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL) 602 static const struct ctl_table sme_default_vl_table[] = { 603 { 604 .procname = "sme_default_vector_length", 605 .mode = 0644, 606 .proc_handler = vec_proc_do_default_vl, 607 .extra1 = &vl_info[ARM64_VEC_SME], 608 }, 609 }; 610 611 static int __init sme_sysctl_init(void) 612 { 613 if (system_supports_sme()) 614 if (!register_sysctl("abi", sme_default_vl_table)) 615 return -EINVAL; 616 617 return 0; 618 } 619 620 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 621 static int __init sme_sysctl_init(void) { return 0; } 622 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 623 624 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 625 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 626 627 #ifdef CONFIG_CPU_BIG_ENDIAN 628 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 629 { 630 u64 a = swab64(x); 631 u64 b = swab64(x >> 64); 632 633 return ((__uint128_t)a << 64) | b; 634 } 635 #else 636 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 637 { 638 return x; 639 } 640 #endif 641 642 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 643 644 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, 645 unsigned int vq) 646 { 647 unsigned int i; 648 __uint128_t *p; 649 650 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 651 p = (__uint128_t *)ZREG(sst, vq, i); 652 *p = arm64_cpu_to_le128(fst->vregs[i]); 653 } 654 } 655 656 /* 657 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 658 * task->thread.sve_state. 659 * 660 * Task can be a non-runnable task, or current. In the latter case, 661 * the caller must have ownership of the cpu FPSIMD context before calling 662 * this function. 663 * task->thread.sve_state must point to at least sve_state_size(task) 664 * bytes of allocated kernel memory. 665 * task->thread.uw.fpsimd_state must be up to date before calling this 666 * function. 667 */ 668 static inline void fpsimd_to_sve(struct task_struct *task) 669 { 670 unsigned int vq; 671 void *sst = task->thread.sve_state; 672 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 673 674 if (!system_supports_sve() && !system_supports_sme()) 675 return; 676 677 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 678 __fpsimd_to_sve(sst, fst, vq); 679 } 680 681 /* 682 * Transfer the SVE state in task->thread.sve_state to 683 * task->thread.uw.fpsimd_state. 684 * 685 * Task can be a non-runnable task, or current. In the latter case, 686 * the caller must have ownership of the cpu FPSIMD context before calling 687 * this function. 688 * task->thread.sve_state must point to at least sve_state_size(task) 689 * bytes of allocated kernel memory. 690 * task->thread.sve_state must be up to date before calling this function. 691 */ 692 static inline void sve_to_fpsimd(struct task_struct *task) 693 { 694 unsigned int vq, vl; 695 void const *sst = task->thread.sve_state; 696 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 697 unsigned int i; 698 __uint128_t const *p; 699 700 if (!system_supports_sve() && !system_supports_sme()) 701 return; 702 703 vl = thread_get_cur_vl(&task->thread); 704 vq = sve_vq_from_vl(vl); 705 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 706 p = (__uint128_t const *)ZREG(sst, vq, i); 707 fst->vregs[i] = arm64_le128_to_cpu(*p); 708 } 709 } 710 711 static inline void __fpsimd_zero_vregs(struct user_fpsimd_state *fpsimd) 712 { 713 memset(&fpsimd->vregs, 0, sizeof(fpsimd->vregs)); 714 } 715 716 /* 717 * Simulate the effects of an SMSTOP SM instruction. 718 */ 719 void task_smstop_sm(struct task_struct *task) 720 { 721 if (!thread_sm_enabled(&task->thread)) 722 return; 723 724 __fpsimd_zero_vregs(&task->thread.uw.fpsimd_state); 725 task->thread.uw.fpsimd_state.fpsr = 0x0800009f; 726 if (system_supports_fpmr()) 727 task->thread.uw.fpmr = 0; 728 729 task->thread.svcr &= ~SVCR_SM_MASK; 730 task->thread.fp_type = FP_STATE_FPSIMD; 731 } 732 733 void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p) 734 { 735 write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK, 736 SYS_SCTLR_EL1); 737 } 738 739 #ifdef CONFIG_ARM64_SVE 740 static void sve_free(struct task_struct *task) 741 { 742 kfree(task->thread.sve_state); 743 task->thread.sve_state = NULL; 744 } 745 746 /* 747 * Ensure that task->thread.sve_state is allocated and sufficiently large. 748 * 749 * This function should be used only in preparation for replacing 750 * task->thread.sve_state with new data. The memory is always zeroed 751 * here to prevent stale data from showing through: this is done in 752 * the interest of testability and predictability: except in the 753 * do_sve_acc() case, there is no ABI requirement to hide stale data 754 * written previously be task. 755 */ 756 void sve_alloc(struct task_struct *task, bool flush) 757 { 758 if (task->thread.sve_state) { 759 if (flush) 760 memset(task->thread.sve_state, 0, 761 sve_state_size(task)); 762 return; 763 } 764 765 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 766 task->thread.sve_state = 767 kzalloc(sve_state_size(task), GFP_KERNEL); 768 } 769 770 /* 771 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to the 772 * task's currently effective FPSIMD/SVE state. 773 * 774 * The task's FPSIMD/SVE/SME state must not be subject to concurrent 775 * manipulation. 776 */ 777 void fpsimd_sync_from_effective_state(struct task_struct *task) 778 { 779 if (task->thread.fp_type == FP_STATE_SVE) 780 sve_to_fpsimd(task); 781 } 782 783 /* 784 * Ensure that the task's currently effective FPSIMD/SVE state is up to date 785 * with respect to task->thread.uw.fpsimd_state, zeroing any effective 786 * non-FPSIMD (S)SVE state. 787 * 788 * The task's FPSIMD/SVE/SME state must not be subject to concurrent 789 * manipulation. 790 */ 791 void fpsimd_sync_to_effective_state_zeropad(struct task_struct *task) 792 { 793 unsigned int vq; 794 void *sst = task->thread.sve_state; 795 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 796 797 if (task->thread.fp_type != FP_STATE_SVE) 798 return; 799 800 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 801 802 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 803 __fpsimd_to_sve(sst, fst, vq); 804 } 805 806 static int change_live_vector_length(struct task_struct *task, 807 enum vec_type type, 808 unsigned long vl) 809 { 810 unsigned int sve_vl = task_get_sve_vl(task); 811 unsigned int sme_vl = task_get_sme_vl(task); 812 void *sve_state = NULL, *sme_state = NULL; 813 814 if (type == ARM64_VEC_SME) 815 sme_vl = vl; 816 else 817 sve_vl = vl; 818 819 /* 820 * Allocate the new sve_state and sme_state before freeing the old 821 * copies so that allocation failure can be handled without needing to 822 * mutate the task's state in any way. 823 * 824 * Changes to the SVE vector length must not discard live ZA state or 825 * clear PSTATE.ZA, as userspace code which is unaware of the AAPCS64 826 * ZA lazy saving scheme may attempt to change the SVE vector length 827 * while unsaved/dormant ZA state exists. 828 */ 829 sve_state = kzalloc(__sve_state_size(sve_vl, sme_vl), GFP_KERNEL); 830 if (!sve_state) 831 goto out_mem; 832 833 if (type == ARM64_VEC_SME) { 834 sme_state = kzalloc(__sme_state_size(sme_vl), GFP_KERNEL); 835 if (!sme_state) 836 goto out_mem; 837 } 838 839 if (task == current) 840 fpsimd_save_and_flush_current_state(); 841 else 842 fpsimd_flush_task_state(task); 843 844 /* 845 * Always preserve PSTATE.SM and the effective FPSIMD state, zeroing 846 * other SVE state. 847 */ 848 fpsimd_sync_from_effective_state(task); 849 task_set_vl(task, type, vl); 850 kfree(task->thread.sve_state); 851 task->thread.sve_state = sve_state; 852 fpsimd_sync_to_effective_state_zeropad(task); 853 854 if (type == ARM64_VEC_SME) { 855 task->thread.svcr &= ~SVCR_ZA_MASK; 856 kfree(task->thread.sme_state); 857 task->thread.sme_state = sme_state; 858 } 859 860 return 0; 861 862 out_mem: 863 kfree(sve_state); 864 kfree(sme_state); 865 return -ENOMEM; 866 } 867 868 int vec_set_vector_length(struct task_struct *task, enum vec_type type, 869 unsigned long vl, unsigned long flags) 870 { 871 bool onexec = flags & PR_SVE_SET_VL_ONEXEC; 872 bool inherit = flags & PR_SVE_VL_INHERIT; 873 874 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 875 PR_SVE_SET_VL_ONEXEC)) 876 return -EINVAL; 877 878 if (!sve_vl_valid(vl)) 879 return -EINVAL; 880 881 /* 882 * Clamp to the maximum vector length that VL-agnostic code 883 * can work with. A flag may be assigned in the future to 884 * allow setting of larger vector lengths without confusing 885 * older software. 886 */ 887 if (vl > VL_ARCH_MAX) 888 vl = VL_ARCH_MAX; 889 890 vl = find_supported_vector_length(type, vl); 891 892 if (!onexec && vl != task_get_vl(task, type)) { 893 if (change_live_vector_length(task, type, vl)) 894 return -ENOMEM; 895 } 896 897 if (onexec || inherit) 898 task_set_vl_onexec(task, type, vl); 899 else 900 /* Reset VL to system default on next exec: */ 901 task_set_vl_onexec(task, type, 0); 902 903 update_tsk_thread_flag(task, vec_vl_inherit_flag(type), 904 flags & PR_SVE_VL_INHERIT); 905 906 return 0; 907 } 908 909 /* 910 * Encode the current vector length and flags for return. 911 * This is only required for prctl(): ptrace has separate fields. 912 * SVE and SME use the same bits for _ONEXEC and _INHERIT. 913 * 914 * flags are as for vec_set_vector_length(). 915 */ 916 static int vec_prctl_status(enum vec_type type, unsigned long flags) 917 { 918 int ret; 919 920 if (flags & PR_SVE_SET_VL_ONEXEC) 921 ret = task_get_vl_onexec(current, type); 922 else 923 ret = task_get_vl(current, type); 924 925 if (test_thread_flag(vec_vl_inherit_flag(type))) 926 ret |= PR_SVE_VL_INHERIT; 927 928 return ret; 929 } 930 931 /* PR_SVE_SET_VL */ 932 int sve_set_current_vl(unsigned long arg) 933 { 934 unsigned long vl, flags; 935 int ret; 936 937 vl = arg & PR_SVE_VL_LEN_MASK; 938 flags = arg & ~vl; 939 940 if (!system_supports_sve() || is_compat_task()) 941 return -EINVAL; 942 943 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags); 944 if (ret) 945 return ret; 946 947 return vec_prctl_status(ARM64_VEC_SVE, flags); 948 } 949 950 /* PR_SVE_GET_VL */ 951 int sve_get_current_vl(void) 952 { 953 if (!system_supports_sve() || is_compat_task()) 954 return -EINVAL; 955 956 return vec_prctl_status(ARM64_VEC_SVE, 0); 957 } 958 959 #ifdef CONFIG_ARM64_SME 960 /* PR_SME_SET_VL */ 961 int sme_set_current_vl(unsigned long arg) 962 { 963 unsigned long vl, flags; 964 int ret; 965 966 vl = arg & PR_SME_VL_LEN_MASK; 967 flags = arg & ~vl; 968 969 if (!system_supports_sme() || is_compat_task()) 970 return -EINVAL; 971 972 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags); 973 if (ret) 974 return ret; 975 976 return vec_prctl_status(ARM64_VEC_SME, flags); 977 } 978 979 /* PR_SME_GET_VL */ 980 int sme_get_current_vl(void) 981 { 982 if (!system_supports_sme() || is_compat_task()) 983 return -EINVAL; 984 985 return vec_prctl_status(ARM64_VEC_SME, 0); 986 } 987 #endif /* CONFIG_ARM64_SME */ 988 989 static void vec_probe_vqs(struct vl_info *info, 990 DECLARE_BITMAP(map, SVE_VQ_MAX)) 991 { 992 unsigned int vq, vl; 993 994 bitmap_zero(map, SVE_VQ_MAX); 995 996 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 997 write_vl(info->type, vq - 1); /* self-syncing */ 998 999 switch (info->type) { 1000 case ARM64_VEC_SVE: 1001 vl = sve_get_vl(); 1002 break; 1003 case ARM64_VEC_SME: 1004 vl = sme_get_vl(); 1005 break; 1006 default: 1007 vl = 0; 1008 break; 1009 } 1010 1011 /* Minimum VL identified? */ 1012 if (sve_vq_from_vl(vl) > vq) 1013 break; 1014 1015 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 1016 set_bit(__vq_to_bit(vq), map); 1017 } 1018 } 1019 1020 /* 1021 * Initialise the set of known supported VQs for the boot CPU. 1022 * This is called during kernel boot, before secondary CPUs are brought up. 1023 */ 1024 void __init vec_init_vq_map(enum vec_type type) 1025 { 1026 struct vl_info *info = &vl_info[type]; 1027 vec_probe_vqs(info, info->vq_map); 1028 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX); 1029 } 1030 1031 /* 1032 * If we haven't committed to the set of supported VQs yet, filter out 1033 * those not supported by the current CPU. 1034 * This function is called during the bring-up of early secondary CPUs only. 1035 */ 1036 void vec_update_vq_map(enum vec_type type) 1037 { 1038 struct vl_info *info = &vl_info[type]; 1039 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1040 1041 vec_probe_vqs(info, tmp_map); 1042 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX); 1043 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map, 1044 SVE_VQ_MAX); 1045 } 1046 1047 /* 1048 * Check whether the current CPU supports all VQs in the committed set. 1049 * This function is called during the bring-up of late secondary CPUs only. 1050 */ 1051 int vec_verify_vq_map(enum vec_type type) 1052 { 1053 struct vl_info *info = &vl_info[type]; 1054 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1055 unsigned long b; 1056 1057 vec_probe_vqs(info, tmp_map); 1058 1059 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1060 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) { 1061 pr_warn("%s: cpu%d: Required vector length(s) missing\n", 1062 info->name, smp_processor_id()); 1063 return -EINVAL; 1064 } 1065 1066 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 1067 return 0; 1068 1069 /* 1070 * For KVM, it is necessary to ensure that this CPU doesn't 1071 * support any vector length that guests may have probed as 1072 * unsupported. 1073 */ 1074 1075 /* Recover the set of supported VQs: */ 1076 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1077 /* Find VQs supported that are not globally supported: */ 1078 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX); 1079 1080 /* Find the lowest such VQ, if any: */ 1081 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1082 if (b >= SVE_VQ_MAX) 1083 return 0; /* no mismatches */ 1084 1085 /* 1086 * Mismatches above sve_max_virtualisable_vl are fine, since 1087 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 1088 */ 1089 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) { 1090 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n", 1091 info->name, smp_processor_id()); 1092 return -EINVAL; 1093 } 1094 1095 return 0; 1096 } 1097 1098 static void __init sve_efi_setup(void) 1099 { 1100 int max_vl = 0; 1101 int i; 1102 1103 if (!IS_ENABLED(CONFIG_EFI)) 1104 return; 1105 1106 for (i = 0; i < ARRAY_SIZE(vl_info); i++) 1107 max_vl = max(vl_info[i].max_vl, max_vl); 1108 1109 /* 1110 * alloc_percpu() warns and prints a backtrace if this goes wrong. 1111 * This is evidence of a crippled system and we are returning void, 1112 * so no attempt is made to handle this situation here. 1113 */ 1114 if (!sve_vl_valid(max_vl)) 1115 goto fail; 1116 1117 efi_sve_state = kmalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), 1118 GFP_KERNEL); 1119 if (!efi_sve_state) 1120 goto fail; 1121 1122 return; 1123 1124 fail: 1125 panic("Cannot allocate memory for EFI SVE save/restore"); 1126 } 1127 1128 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p) 1129 { 1130 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 1131 isb(); 1132 1133 write_sysreg_s(0, SYS_ZCR_EL1); 1134 } 1135 1136 void __init sve_setup(void) 1137 { 1138 struct vl_info *info = &vl_info[ARM64_VEC_SVE]; 1139 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1140 unsigned long b; 1141 int max_bit; 1142 1143 if (!system_supports_sve()) 1144 return; 1145 1146 /* 1147 * The SVE architecture mandates support for 128-bit vectors, 1148 * so sve_vq_map must have at least SVE_VQ_MIN set. 1149 * If something went wrong, at least try to patch it up: 1150 */ 1151 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map))) 1152 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map); 1153 1154 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX); 1155 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit)); 1156 1157 /* 1158 * For the default VL, pick the maximum supported value <= 64. 1159 * VL == 64 is guaranteed not to grow the signal frame. 1160 */ 1161 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64)); 1162 1163 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map, 1164 SVE_VQ_MAX); 1165 1166 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1167 if (b >= SVE_VQ_MAX) 1168 /* No non-virtualisable VLs found */ 1169 info->max_virtualisable_vl = SVE_VQ_MAX; 1170 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 1171 /* No virtualisable VLs? This is architecturally forbidden. */ 1172 info->max_virtualisable_vl = SVE_VQ_MIN; 1173 else /* b + 1 < SVE_VQ_MAX */ 1174 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 1175 1176 if (info->max_virtualisable_vl > info->max_vl) 1177 info->max_virtualisable_vl = info->max_vl; 1178 1179 pr_info("%s: maximum available vector length %u bytes per vector\n", 1180 info->name, info->max_vl); 1181 pr_info("%s: default vector length %u bytes per vector\n", 1182 info->name, get_sve_default_vl()); 1183 1184 /* KVM decides whether to support mismatched systems. Just warn here: */ 1185 if (sve_max_virtualisable_vl() < sve_max_vl()) 1186 pr_warn("%s: unvirtualisable vector lengths present\n", 1187 info->name); 1188 1189 sve_efi_setup(); 1190 } 1191 1192 /* 1193 * Called from the put_task_struct() path, which cannot get here 1194 * unless dead_task is really dead and not schedulable. 1195 */ 1196 void fpsimd_release_task(struct task_struct *dead_task) 1197 { 1198 sve_free(dead_task); 1199 sme_free(dead_task); 1200 } 1201 1202 #endif /* CONFIG_ARM64_SVE */ 1203 1204 #ifdef CONFIG_ARM64_SME 1205 1206 /* 1207 * Ensure that task->thread.sme_state is allocated and sufficiently large. 1208 * 1209 * This function should be used only in preparation for replacing 1210 * task->thread.sme_state with new data. The memory is always zeroed 1211 * here to prevent stale data from showing through: this is done in 1212 * the interest of testability and predictability, the architecture 1213 * guarantees that when ZA is enabled it will be zeroed. 1214 */ 1215 void sme_alloc(struct task_struct *task, bool flush) 1216 { 1217 if (task->thread.sme_state) { 1218 if (flush) 1219 memset(task->thread.sme_state, 0, 1220 sme_state_size(task)); 1221 return; 1222 } 1223 1224 /* This could potentially be up to 64K. */ 1225 task->thread.sme_state = 1226 kzalloc(sme_state_size(task), GFP_KERNEL); 1227 } 1228 1229 static void sme_free(struct task_struct *task) 1230 { 1231 kfree(task->thread.sme_state); 1232 task->thread.sme_state = NULL; 1233 } 1234 1235 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p) 1236 { 1237 /* Set priority for all PEs to architecturally defined minimum */ 1238 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK, 1239 SYS_SMPRI_EL1); 1240 1241 /* Allow SME in kernel */ 1242 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1); 1243 isb(); 1244 1245 /* Ensure all bits in SMCR are set to known values */ 1246 write_sysreg_s(0, SYS_SMCR_EL1); 1247 1248 /* Allow EL0 to access TPIDR2 */ 1249 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1); 1250 isb(); 1251 } 1252 1253 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p) 1254 { 1255 /* This must be enabled after SME */ 1256 BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME); 1257 1258 /* Allow use of ZT0 */ 1259 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK, 1260 SYS_SMCR_EL1); 1261 } 1262 1263 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p) 1264 { 1265 /* This must be enabled after SME */ 1266 BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME); 1267 1268 /* Allow use of FA64 */ 1269 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK, 1270 SYS_SMCR_EL1); 1271 } 1272 1273 void __init sme_setup(void) 1274 { 1275 struct vl_info *info = &vl_info[ARM64_VEC_SME]; 1276 int min_bit, max_bit; 1277 1278 if (!system_supports_sme()) 1279 return; 1280 1281 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX); 1282 1283 /* 1284 * SME doesn't require any particular vector length be 1285 * supported but it does require at least one. We should have 1286 * disabled the feature entirely while bringing up CPUs but 1287 * let's double check here. The bitmap is SVE_VQ_MAP sized for 1288 * sharing with SVE. 1289 */ 1290 WARN_ON(min_bit >= SVE_VQ_MAX); 1291 1292 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit)); 1293 1294 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX); 1295 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit)); 1296 1297 WARN_ON(info->min_vl > info->max_vl); 1298 1299 /* 1300 * For the default VL, pick the maximum supported value <= 32 1301 * (256 bits) if there is one since this is guaranteed not to 1302 * grow the signal frame when in streaming mode, otherwise the 1303 * minimum available VL will be used. 1304 */ 1305 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32)); 1306 1307 pr_info("SME: minimum available vector length %u bytes per vector\n", 1308 info->min_vl); 1309 pr_info("SME: maximum available vector length %u bytes per vector\n", 1310 info->max_vl); 1311 pr_info("SME: default vector length %u bytes per vector\n", 1312 get_sme_default_vl()); 1313 } 1314 1315 void sme_suspend_exit(void) 1316 { 1317 u64 smcr = 0; 1318 1319 if (!system_supports_sme()) 1320 return; 1321 1322 if (system_supports_fa64()) 1323 smcr |= SMCR_ELx_FA64; 1324 if (system_supports_sme2()) 1325 smcr |= SMCR_ELx_EZT0; 1326 1327 write_sysreg_s(smcr, SYS_SMCR_EL1); 1328 write_sysreg_s(0, SYS_SMPRI_EL1); 1329 } 1330 1331 #endif /* CONFIG_ARM64_SME */ 1332 1333 static void sve_init_regs(void) 1334 { 1335 /* 1336 * Convert the FPSIMD state to SVE, zeroing all the state that 1337 * is not shared with FPSIMD. If (as is likely) the current 1338 * state is live in the registers then do this there and 1339 * update our metadata for the current task including 1340 * disabling the trap, otherwise update our in-memory copy. 1341 * We are guaranteed to not be in streaming mode, we can only 1342 * take a SVE trap when not in streaming mode and we can't be 1343 * in streaming mode when taking a SME trap. 1344 */ 1345 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1346 unsigned long vq_minus_one = 1347 sve_vq_from_vl(task_get_sve_vl(current)) - 1; 1348 sve_set_vq(vq_minus_one); 1349 sve_flush_live(true, vq_minus_one); 1350 fpsimd_bind_task_to_cpu(); 1351 } else { 1352 fpsimd_to_sve(current); 1353 current->thread.fp_type = FP_STATE_SVE; 1354 fpsimd_flush_task_state(current); 1355 } 1356 } 1357 1358 /* 1359 * Trapped SVE access 1360 * 1361 * Storage is allocated for the full SVE state, the current FPSIMD 1362 * register contents are migrated across, and the access trap is 1363 * disabled. 1364 * 1365 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state() 1366 * would have disabled the SVE access trap for userspace during 1367 * ret_to_user, making an SVE access trap impossible in that case. 1368 */ 1369 void do_sve_acc(unsigned long esr, struct pt_regs *regs) 1370 { 1371 /* Even if we chose not to use SVE, the hardware could still trap: */ 1372 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 1373 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1374 return; 1375 } 1376 1377 sve_alloc(current, true); 1378 if (!current->thread.sve_state) { 1379 force_sig(SIGKILL); 1380 return; 1381 } 1382 1383 get_cpu_fpsimd_context(); 1384 1385 if (test_and_set_thread_flag(TIF_SVE)) 1386 WARN_ON(1); /* SVE access shouldn't have trapped */ 1387 1388 /* 1389 * Even if the task can have used streaming mode we can only 1390 * generate SVE access traps in normal SVE mode and 1391 * transitioning out of streaming mode may discard any 1392 * streaming mode state. Always clear the high bits to avoid 1393 * any potential errors tracking what is properly initialised. 1394 */ 1395 sve_init_regs(); 1396 1397 put_cpu_fpsimd_context(); 1398 } 1399 1400 /* 1401 * Trapped SME access 1402 * 1403 * Storage is allocated for the full SVE and SME state, the current 1404 * FPSIMD register contents are migrated to SVE if SVE is not already 1405 * active, and the access trap is disabled. 1406 * 1407 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state() 1408 * would have disabled the SME access trap for userspace during 1409 * ret_to_user, making an SME access trap impossible in that case. 1410 */ 1411 void do_sme_acc(unsigned long esr, struct pt_regs *regs) 1412 { 1413 /* Even if we chose not to use SME, the hardware could still trap: */ 1414 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) { 1415 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1416 return; 1417 } 1418 1419 /* 1420 * If this not a trap due to SME being disabled then something 1421 * is being used in the wrong mode, report as SIGILL. 1422 */ 1423 if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) { 1424 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1425 return; 1426 } 1427 1428 sve_alloc(current, false); 1429 sme_alloc(current, true); 1430 if (!current->thread.sve_state || !current->thread.sme_state) { 1431 force_sig(SIGKILL); 1432 return; 1433 } 1434 1435 get_cpu_fpsimd_context(); 1436 1437 /* With TIF_SME userspace shouldn't generate any traps */ 1438 if (test_and_set_thread_flag(TIF_SME)) 1439 WARN_ON(1); 1440 1441 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1442 unsigned long vq_minus_one = 1443 sve_vq_from_vl(task_get_sme_vl(current)) - 1; 1444 sme_set_vq(vq_minus_one); 1445 1446 fpsimd_bind_task_to_cpu(); 1447 } else { 1448 fpsimd_flush_task_state(current); 1449 } 1450 1451 put_cpu_fpsimd_context(); 1452 } 1453 1454 /* 1455 * Trapped FP/ASIMD access. 1456 */ 1457 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs) 1458 { 1459 /* Even if we chose not to use FPSIMD, the hardware could still trap: */ 1460 if (!system_supports_fpsimd()) { 1461 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1462 return; 1463 } 1464 1465 /* 1466 * When FPSIMD is enabled, we should never take a trap unless something 1467 * has gone very wrong. 1468 */ 1469 BUG(); 1470 } 1471 1472 /* 1473 * Raise a SIGFPE for the current process. 1474 */ 1475 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs) 1476 { 1477 unsigned int si_code = FPE_FLTUNK; 1478 1479 if (esr & ESR_ELx_FP_EXC_TFV) { 1480 if (esr & FPEXC_IOF) 1481 si_code = FPE_FLTINV; 1482 else if (esr & FPEXC_DZF) 1483 si_code = FPE_FLTDIV; 1484 else if (esr & FPEXC_OFF) 1485 si_code = FPE_FLTOVF; 1486 else if (esr & FPEXC_UFF) 1487 si_code = FPE_FLTUND; 1488 else if (esr & FPEXC_IXF) 1489 si_code = FPE_FLTRES; 1490 } 1491 1492 send_sig_fault(SIGFPE, si_code, 1493 (void __user *)instruction_pointer(regs), 1494 current); 1495 } 1496 1497 static void fpsimd_load_kernel_state(struct task_struct *task) 1498 { 1499 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1500 1501 /* 1502 * Elide the load if this CPU holds the most recent kernel mode 1503 * FPSIMD context of the current task. 1504 */ 1505 if (last->st == task->thread.kernel_fpsimd_state && 1506 task->thread.kernel_fpsimd_cpu == smp_processor_id()) 1507 return; 1508 1509 fpsimd_load_state(task->thread.kernel_fpsimd_state); 1510 } 1511 1512 static void fpsimd_save_kernel_state(struct task_struct *task) 1513 { 1514 struct cpu_fp_state cpu_fp_state = { 1515 .st = task->thread.kernel_fpsimd_state, 1516 .to_save = FP_STATE_FPSIMD, 1517 }; 1518 1519 BUG_ON(!cpu_fp_state.st); 1520 1521 fpsimd_save_state(task->thread.kernel_fpsimd_state); 1522 fpsimd_bind_state_to_cpu(&cpu_fp_state); 1523 1524 task->thread.kernel_fpsimd_cpu = smp_processor_id(); 1525 } 1526 1527 /* 1528 * Invalidate any task's FPSIMD state that is present on this cpu. 1529 * The FPSIMD context should be acquired with get_cpu_fpsimd_context() 1530 * before calling this function. 1531 */ 1532 static void fpsimd_flush_cpu_state(void) 1533 { 1534 WARN_ON(!system_supports_fpsimd()); 1535 __this_cpu_write(fpsimd_last_state.st, NULL); 1536 1537 /* 1538 * Leaving streaming mode enabled will cause issues for any kernel 1539 * NEON and leaving streaming mode or ZA enabled may increase power 1540 * consumption. 1541 */ 1542 if (system_supports_sme()) 1543 sme_smstop(); 1544 1545 set_thread_flag(TIF_FOREIGN_FPSTATE); 1546 } 1547 1548 void fpsimd_thread_switch(struct task_struct *next) 1549 { 1550 bool wrong_task, wrong_cpu; 1551 1552 if (!system_supports_fpsimd()) 1553 return; 1554 1555 WARN_ON_ONCE(!irqs_disabled()); 1556 1557 /* Save unsaved fpsimd state, if any: */ 1558 if (test_thread_flag(TIF_KERNEL_FPSTATE)) 1559 fpsimd_save_kernel_state(current); 1560 else 1561 fpsimd_save_user_state(); 1562 1563 if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) { 1564 fpsimd_flush_cpu_state(); 1565 fpsimd_load_kernel_state(next); 1566 } else { 1567 /* 1568 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 1569 * state. For kernel threads, FPSIMD registers are never 1570 * loaded with user mode FPSIMD state and so wrong_task and 1571 * wrong_cpu will always be true. 1572 */ 1573 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 1574 &next->thread.uw.fpsimd_state; 1575 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 1576 1577 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 1578 wrong_task || wrong_cpu); 1579 } 1580 } 1581 1582 static void fpsimd_flush_thread_vl(enum vec_type type) 1583 { 1584 int vl, supported_vl; 1585 1586 /* 1587 * Reset the task vector length as required. This is where we 1588 * ensure that all user tasks have a valid vector length 1589 * configured: no kernel task can become a user task without 1590 * an exec and hence a call to this function. By the time the 1591 * first call to this function is made, all early hardware 1592 * probing is complete, so __sve_default_vl should be valid. 1593 * If a bug causes this to go wrong, we make some noise and 1594 * try to fudge thread.sve_vl to a safe value here. 1595 */ 1596 vl = task_get_vl_onexec(current, type); 1597 if (!vl) 1598 vl = get_default_vl(type); 1599 1600 if (WARN_ON(!sve_vl_valid(vl))) 1601 vl = vl_info[type].min_vl; 1602 1603 supported_vl = find_supported_vector_length(type, vl); 1604 if (WARN_ON(supported_vl != vl)) 1605 vl = supported_vl; 1606 1607 task_set_vl(current, type, vl); 1608 1609 /* 1610 * If the task is not set to inherit, ensure that the vector 1611 * length will be reset by a subsequent exec: 1612 */ 1613 if (!test_thread_flag(vec_vl_inherit_flag(type))) 1614 task_set_vl_onexec(current, type, 0); 1615 } 1616 1617 void fpsimd_flush_thread(void) 1618 { 1619 void *sve_state = NULL; 1620 void *sme_state = NULL; 1621 1622 if (!system_supports_fpsimd()) 1623 return; 1624 1625 get_cpu_fpsimd_context(); 1626 1627 fpsimd_flush_task_state(current); 1628 memset(¤t->thread.uw.fpsimd_state, 0, 1629 sizeof(current->thread.uw.fpsimd_state)); 1630 1631 if (system_supports_sve()) { 1632 clear_thread_flag(TIF_SVE); 1633 1634 /* Defer kfree() while in atomic context */ 1635 sve_state = current->thread.sve_state; 1636 current->thread.sve_state = NULL; 1637 1638 fpsimd_flush_thread_vl(ARM64_VEC_SVE); 1639 } 1640 1641 if (system_supports_sme()) { 1642 clear_thread_flag(TIF_SME); 1643 1644 /* Defer kfree() while in atomic context */ 1645 sme_state = current->thread.sme_state; 1646 current->thread.sme_state = NULL; 1647 1648 fpsimd_flush_thread_vl(ARM64_VEC_SME); 1649 current->thread.svcr = 0; 1650 } 1651 1652 if (system_supports_fpmr()) 1653 current->thread.uw.fpmr = 0; 1654 1655 current->thread.fp_type = FP_STATE_FPSIMD; 1656 1657 put_cpu_fpsimd_context(); 1658 kfree(sve_state); 1659 kfree(sme_state); 1660 } 1661 1662 /* 1663 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1664 * currently held in the registers does in fact belong to 'current' 1665 */ 1666 void fpsimd_preserve_current_state(void) 1667 { 1668 if (!system_supports_fpsimd()) 1669 return; 1670 1671 get_cpu_fpsimd_context(); 1672 fpsimd_save_user_state(); 1673 put_cpu_fpsimd_context(); 1674 } 1675 1676 /* 1677 * Associate current's FPSIMD context with this cpu 1678 * The caller must have ownership of the cpu FPSIMD context before calling 1679 * this function. 1680 */ 1681 static void fpsimd_bind_task_to_cpu(void) 1682 { 1683 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1684 1685 WARN_ON(!system_supports_fpsimd()); 1686 last->st = ¤t->thread.uw.fpsimd_state; 1687 last->sve_state = current->thread.sve_state; 1688 last->sme_state = current->thread.sme_state; 1689 last->sve_vl = task_get_sve_vl(current); 1690 last->sme_vl = task_get_sme_vl(current); 1691 last->svcr = ¤t->thread.svcr; 1692 last->fpmr = ¤t->thread.uw.fpmr; 1693 last->fp_type = ¤t->thread.fp_type; 1694 last->to_save = FP_STATE_CURRENT; 1695 current->thread.fpsimd_cpu = smp_processor_id(); 1696 1697 /* 1698 * Toggle SVE and SME trapping for userspace if needed, these 1699 * are serialsied by ret_to_user(). 1700 */ 1701 if (system_supports_sme()) { 1702 if (test_thread_flag(TIF_SME)) 1703 sme_user_enable(); 1704 else 1705 sme_user_disable(); 1706 } 1707 1708 if (system_supports_sve()) { 1709 if (test_thread_flag(TIF_SVE)) 1710 sve_user_enable(); 1711 else 1712 sve_user_disable(); 1713 } 1714 } 1715 1716 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state) 1717 { 1718 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1719 1720 WARN_ON(!system_supports_fpsimd()); 1721 WARN_ON(!in_softirq() && !irqs_disabled()); 1722 1723 *last = *state; 1724 } 1725 1726 /* 1727 * Load the userland FPSIMD state of 'current' from memory, but only if the 1728 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1729 * state of 'current'. This is called when we are preparing to return to 1730 * userspace to ensure that userspace sees a good register state. 1731 */ 1732 void fpsimd_restore_current_state(void) 1733 { 1734 /* 1735 * TIF_FOREIGN_FPSTATE is set on the init task and copied by 1736 * arch_dup_task_struct() regardless of whether FP/SIMD is detected. 1737 * Thus user threads can have this set even when FP/SIMD hasn't been 1738 * detected. 1739 * 1740 * When FP/SIMD is detected, begin_new_exec() will set 1741 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(), 1742 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when 1743 * switching tasks. We detect FP/SIMD before we exec the first user 1744 * process, ensuring this has TIF_FOREIGN_FPSTATE set and 1745 * do_notify_resume() will call fpsimd_restore_current_state() to 1746 * install the user FP/SIMD context. 1747 * 1748 * When FP/SIMD is not detected, nothing else will clear or set 1749 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and 1750 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume() 1751 * looping forever calling fpsimd_restore_current_state(). 1752 */ 1753 if (!system_supports_fpsimd()) { 1754 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1755 return; 1756 } 1757 1758 get_cpu_fpsimd_context(); 1759 1760 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1761 task_fpsimd_load(); 1762 fpsimd_bind_task_to_cpu(); 1763 } 1764 1765 put_cpu_fpsimd_context(); 1766 } 1767 1768 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1769 { 1770 if (WARN_ON(!system_supports_fpsimd())) 1771 return; 1772 1773 current->thread.uw.fpsimd_state = *state; 1774 if (current->thread.fp_type == FP_STATE_SVE) 1775 fpsimd_to_sve(current); 1776 } 1777 1778 /* 1779 * Invalidate live CPU copies of task t's FPSIMD state 1780 * 1781 * This function may be called with preemption enabled. The barrier() 1782 * ensures that the assignment to fpsimd_cpu is visible to any 1783 * preemption/softirq that could race with set_tsk_thread_flag(), so 1784 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1785 * 1786 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1787 * subsequent code. 1788 */ 1789 void fpsimd_flush_task_state(struct task_struct *t) 1790 { 1791 t->thread.fpsimd_cpu = NR_CPUS; 1792 t->thread.kernel_fpsimd_state = NULL; 1793 /* 1794 * If we don't support fpsimd, bail out after we have 1795 * reset the fpsimd_cpu for this task and clear the 1796 * FPSTATE. 1797 */ 1798 if (!system_supports_fpsimd()) 1799 return; 1800 barrier(); 1801 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1802 1803 barrier(); 1804 } 1805 1806 void fpsimd_save_and_flush_current_state(void) 1807 { 1808 if (!system_supports_fpsimd()) 1809 return; 1810 1811 get_cpu_fpsimd_context(); 1812 fpsimd_save_user_state(); 1813 fpsimd_flush_task_state(current); 1814 put_cpu_fpsimd_context(); 1815 } 1816 1817 /* 1818 * Save the FPSIMD state to memory and invalidate cpu view. 1819 * This function must be called with preemption disabled. 1820 */ 1821 void fpsimd_save_and_flush_cpu_state(void) 1822 { 1823 unsigned long flags; 1824 1825 if (!system_supports_fpsimd()) 1826 return; 1827 WARN_ON(preemptible()); 1828 local_irq_save(flags); 1829 fpsimd_save_user_state(); 1830 fpsimd_flush_cpu_state(); 1831 local_irq_restore(flags); 1832 } 1833 1834 #ifdef CONFIG_KERNEL_MODE_NEON 1835 1836 /* 1837 * Kernel-side NEON support functions 1838 */ 1839 1840 /* 1841 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1842 * context 1843 * 1844 * Must not be called unless may_use_simd() returns true. 1845 * Task context in the FPSIMD registers is saved back to memory as necessary. 1846 * 1847 * A matching call to kernel_neon_end() must be made before returning from the 1848 * calling context. 1849 * 1850 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1851 * called. 1852 * 1853 * Unless called from non-preemptible task context, @state must point to a 1854 * caller provided buffer that will be used to preserve the task's kernel mode 1855 * FPSIMD context when it is scheduled out, or if it is interrupted by kernel 1856 * mode FPSIMD occurring in softirq context. May be %NULL otherwise. 1857 */ 1858 void kernel_neon_begin(struct user_fpsimd_state *state) 1859 { 1860 if (WARN_ON(!system_supports_fpsimd())) 1861 return; 1862 1863 WARN_ON((preemptible() || in_serving_softirq()) && !state); 1864 1865 BUG_ON(!may_use_simd()); 1866 1867 get_cpu_fpsimd_context(); 1868 1869 /* Save unsaved fpsimd state, if any: */ 1870 if (test_thread_flag(TIF_KERNEL_FPSTATE)) { 1871 BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()); 1872 fpsimd_save_state(state); 1873 } else { 1874 fpsimd_save_user_state(); 1875 1876 /* 1877 * Set the thread flag so that the kernel mode FPSIMD state 1878 * will be context switched along with the rest of the task 1879 * state. 1880 * 1881 * On non-PREEMPT_RT, softirqs may interrupt task level kernel 1882 * mode FPSIMD, but the task will not be preemptible so setting 1883 * TIF_KERNEL_FPSTATE for those would be both wrong (as it 1884 * would mark the task context FPSIMD state as requiring a 1885 * context switch) and unnecessary. 1886 * 1887 * On PREEMPT_RT, softirqs are serviced from a separate thread, 1888 * which is scheduled as usual, and this guarantees that these 1889 * softirqs are not interrupting use of the FPSIMD in kernel 1890 * mode in task context. So in this case, setting the flag here 1891 * is always appropriate. 1892 */ 1893 if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()) { 1894 /* 1895 * Record the caller provided buffer as the kernel mode 1896 * FP/SIMD buffer for this task, so that the state can 1897 * be preserved and restored on a context switch. 1898 */ 1899 WARN_ON(current->thread.kernel_fpsimd_state != NULL); 1900 current->thread.kernel_fpsimd_state = state; 1901 set_thread_flag(TIF_KERNEL_FPSTATE); 1902 } 1903 } 1904 1905 /* Invalidate any task state remaining in the fpsimd regs: */ 1906 fpsimd_flush_cpu_state(); 1907 1908 put_cpu_fpsimd_context(); 1909 } 1910 EXPORT_SYMBOL_GPL(kernel_neon_begin); 1911 1912 /* 1913 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1914 * 1915 * Must be called from a context in which kernel_neon_begin() was previously 1916 * called, with no call to kernel_neon_end() in the meantime. 1917 * 1918 * The caller must not use the FPSIMD registers after this function is called, 1919 * unless kernel_neon_begin() is called again in the meantime. 1920 * 1921 * The value of @state must match the value passed to the preceding call to 1922 * kernel_neon_begin(). 1923 */ 1924 void kernel_neon_end(struct user_fpsimd_state *state) 1925 { 1926 if (!system_supports_fpsimd()) 1927 return; 1928 1929 if (!test_thread_flag(TIF_KERNEL_FPSTATE)) 1930 return; 1931 1932 /* 1933 * If we are returning from a nested use of kernel mode FPSIMD, restore 1934 * the task context kernel mode FPSIMD state. This can only happen when 1935 * running in softirq context on non-PREEMPT_RT. 1936 */ 1937 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq()) { 1938 fpsimd_load_state(state); 1939 } else { 1940 clear_thread_flag(TIF_KERNEL_FPSTATE); 1941 WARN_ON(current->thread.kernel_fpsimd_state != state); 1942 current->thread.kernel_fpsimd_state = NULL; 1943 } 1944 } 1945 EXPORT_SYMBOL_GPL(kernel_neon_end); 1946 1947 #ifdef CONFIG_EFI 1948 1949 static struct user_fpsimd_state efi_fpsimd_state; 1950 static bool efi_fpsimd_state_used; 1951 static bool efi_sve_state_used; 1952 static bool efi_sm_state; 1953 1954 /* 1955 * EFI runtime services support functions 1956 * 1957 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1958 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1959 * is always used rather than being an optional accelerator. 1960 * 1961 * These functions provide the necessary support for ensuring FPSIMD 1962 * save/restore in the contexts from which EFI is used. 1963 * 1964 * Do not use them for any other purpose -- if tempted to do so, you are 1965 * either doing something wrong or you need to propose some refactoring. 1966 */ 1967 1968 /* 1969 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1970 */ 1971 void __efi_fpsimd_begin(void) 1972 { 1973 if (!system_supports_fpsimd()) 1974 return; 1975 1976 if (may_use_simd()) { 1977 kernel_neon_begin(&efi_fpsimd_state); 1978 } else { 1979 WARN_ON(preemptible()); 1980 1981 /* 1982 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1983 * preserving: 1984 */ 1985 if (system_supports_sve() && efi_sve_state != NULL) { 1986 bool ffr = true; 1987 u64 svcr; 1988 1989 efi_sve_state_used = true; 1990 1991 if (system_supports_sme()) { 1992 svcr = read_sysreg_s(SYS_SVCR); 1993 1994 efi_sm_state = svcr & SVCR_SM_MASK; 1995 1996 /* 1997 * Unless we have FA64 FFR does not 1998 * exist in streaming mode. 1999 */ 2000 if (!system_supports_fa64()) 2001 ffr = !(svcr & SVCR_SM_MASK); 2002 } 2003 2004 sve_save_state(efi_sve_state + sve_ffr_offset(sve_max_vl()), 2005 &efi_fpsimd_state.fpsr, ffr); 2006 2007 if (system_supports_sme()) 2008 sysreg_clear_set_s(SYS_SVCR, 2009 SVCR_SM_MASK, 0); 2010 2011 } else { 2012 fpsimd_save_state(&efi_fpsimd_state); 2013 } 2014 2015 efi_fpsimd_state_used = true; 2016 } 2017 } 2018 2019 /* 2020 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 2021 */ 2022 void __efi_fpsimd_end(void) 2023 { 2024 if (!system_supports_fpsimd()) 2025 return; 2026 2027 if (!efi_fpsimd_state_used) { 2028 kernel_neon_end(&efi_fpsimd_state); 2029 } else { 2030 if (system_supports_sve() && efi_sve_state_used) { 2031 bool ffr = true; 2032 2033 /* 2034 * Restore streaming mode; EFI calls are 2035 * normal function calls so should not return in 2036 * streaming mode. 2037 */ 2038 if (system_supports_sme()) { 2039 if (efi_sm_state) { 2040 sysreg_clear_set_s(SYS_SVCR, 2041 0, 2042 SVCR_SM_MASK); 2043 2044 /* 2045 * Unless we have FA64 FFR does not 2046 * exist in streaming mode. 2047 */ 2048 if (!system_supports_fa64()) 2049 ffr = false; 2050 } 2051 } 2052 2053 sve_load_state(efi_sve_state + sve_ffr_offset(sve_max_vl()), 2054 &efi_fpsimd_state.fpsr, ffr); 2055 2056 efi_sve_state_used = false; 2057 } else { 2058 fpsimd_load_state(&efi_fpsimd_state); 2059 } 2060 2061 efi_fpsimd_state_used = false; 2062 } 2063 } 2064 2065 #endif /* CONFIG_EFI */ 2066 2067 #endif /* CONFIG_KERNEL_MODE_NEON */ 2068 2069 #ifdef CONFIG_CPU_PM 2070 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 2071 unsigned long cmd, void *v) 2072 { 2073 switch (cmd) { 2074 case CPU_PM_ENTER: 2075 fpsimd_save_and_flush_cpu_state(); 2076 break; 2077 case CPU_PM_EXIT: 2078 break; 2079 case CPU_PM_ENTER_FAILED: 2080 default: 2081 return NOTIFY_DONE; 2082 } 2083 return NOTIFY_OK; 2084 } 2085 2086 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 2087 .notifier_call = fpsimd_cpu_pm_notifier, 2088 }; 2089 2090 static void __init fpsimd_pm_init(void) 2091 { 2092 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 2093 } 2094 2095 #else 2096 static inline void fpsimd_pm_init(void) { } 2097 #endif /* CONFIG_CPU_PM */ 2098 2099 #ifdef CONFIG_HOTPLUG_CPU 2100 static int fpsimd_cpu_dead(unsigned int cpu) 2101 { 2102 per_cpu(fpsimd_last_state.st, cpu) = NULL; 2103 return 0; 2104 } 2105 2106 static inline void fpsimd_hotplug_init(void) 2107 { 2108 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 2109 NULL, fpsimd_cpu_dead); 2110 } 2111 2112 #else 2113 static inline void fpsimd_hotplug_init(void) { } 2114 #endif 2115 2116 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p) 2117 { 2118 unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN; 2119 write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1); 2120 isb(); 2121 } 2122 2123 /* 2124 * FP/SIMD support code initialisation. 2125 */ 2126 static int __init fpsimd_init(void) 2127 { 2128 if (cpu_have_named_feature(FP)) { 2129 fpsimd_pm_init(); 2130 fpsimd_hotplug_init(); 2131 } else { 2132 pr_notice("Floating-point is not implemented\n"); 2133 } 2134 2135 if (!cpu_have_named_feature(ASIMD)) 2136 pr_notice("Advanced SIMD is not implemented\n"); 2137 2138 2139 sve_sysctl_init(); 2140 sme_sysctl_init(); 2141 2142 return 0; 2143 } 2144 core_initcall(fpsimd_init); 2145