xref: /linux/arch/arm64/kernel/fpsimd.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/kernel.h>
19 #include <linux/linkage.h>
20 #include <linux/irqflags.h>
21 #include <linux/init.h>
22 #include <linux/percpu.h>
23 #include <linux/prctl.h>
24 #include <linux/preempt.h>
25 #include <linux/ptrace.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/signal.h>
29 #include <linux/slab.h>
30 #include <linux/stddef.h>
31 #include <linux/sysctl.h>
32 #include <linux/swab.h>
33 
34 #include <asm/esr.h>
35 #include <asm/exception.h>
36 #include <asm/fpsimd.h>
37 #include <asm/cpufeature.h>
38 #include <asm/cputype.h>
39 #include <asm/neon.h>
40 #include <asm/processor.h>
41 #include <asm/simd.h>
42 #include <asm/sigcontext.h>
43 #include <asm/sysreg.h>
44 #include <asm/traps.h>
45 #include <asm/virt.h>
46 
47 #define FPEXC_IOF	(1 << 0)
48 #define FPEXC_DZF	(1 << 1)
49 #define FPEXC_OFF	(1 << 2)
50 #define FPEXC_UFF	(1 << 3)
51 #define FPEXC_IXF	(1 << 4)
52 #define FPEXC_IDF	(1 << 7)
53 
54 /*
55  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
56  *
57  * In order to reduce the number of times the FPSIMD state is needlessly saved
58  * and restored, we need to keep track of two things:
59  * (a) for each task, we need to remember which CPU was the last one to have
60  *     the task's FPSIMD state loaded into its FPSIMD registers;
61  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
62  *     been loaded into its FPSIMD registers most recently, or whether it has
63  *     been used to perform kernel mode NEON in the meantime.
64  *
65  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
66  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
67  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
68  * address of the userland FPSIMD state of the task that was loaded onto the CPU
69  * the most recently, or NULL if kernel mode NEON has been performed after that.
70  *
71  * With this in place, we no longer have to restore the next FPSIMD state right
72  * when switching between tasks. Instead, we can defer this check to userland
73  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
74  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
75  * can omit the FPSIMD restore.
76  *
77  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
78  * indicate whether or not the userland FPSIMD state of the current task is
79  * present in the registers. The flag is set unless the FPSIMD registers of this
80  * CPU currently contain the most recent userland FPSIMD state of the current
81  * task.
82  *
83  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
84  * save the task's FPSIMD context back to task_struct from softirq context.
85  * To prevent this from racing with the manipulation of the task's FPSIMD state
86  * from task context and thereby corrupting the state, it is necessary to
87  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
88  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
89  * run but prevent them to use FPSIMD.
90  *
91  * For a certain task, the sequence may look something like this:
92  * - the task gets scheduled in; if both the task's fpsimd_cpu field
93  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
94  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
95  *   cleared, otherwise it is set;
96  *
97  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
98  *   userland FPSIMD state is copied from memory to the registers, the task's
99  *   fpsimd_cpu field is set to the id of the current CPU, the current
100  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
101  *   TIF_FOREIGN_FPSTATE flag is cleared;
102  *
103  * - the task executes an ordinary syscall; upon return to userland, the
104  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
105  *   restored;
106  *
107  * - the task executes a syscall which executes some NEON instructions; this is
108  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
109  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
110  *   and sets the TIF_FOREIGN_FPSTATE flag;
111  *
112  * - the task gets preempted after kernel_neon_end() is called; as we have not
113  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
114  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
115  */
116 struct fpsimd_last_state_struct {
117 	struct user_fpsimd_state *st;
118 	void *sve_state;
119 	unsigned int sve_vl;
120 };
121 
122 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
123 
124 /* Default VL for tasks that don't set it explicitly: */
125 static int __sve_default_vl = -1;
126 
127 static int get_sve_default_vl(void)
128 {
129 	return READ_ONCE(__sve_default_vl);
130 }
131 
132 #ifdef CONFIG_ARM64_SVE
133 
134 static void set_sve_default_vl(int val)
135 {
136 	WRITE_ONCE(__sve_default_vl, val);
137 }
138 
139 /* Maximum supported vector length across all CPUs (initially poisoned) */
140 int __ro_after_init sve_max_vl = SVE_VL_MIN;
141 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
142 
143 /*
144  * Set of available vector lengths,
145  * where length vq encoded as bit __vq_to_bit(vq):
146  */
147 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
148 /* Set of vector lengths present on at least one cpu: */
149 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
150 
151 static void __percpu *efi_sve_state;
152 
153 #else /* ! CONFIG_ARM64_SVE */
154 
155 /* Dummy declaration for code that will be optimised out: */
156 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
157 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
158 extern void __percpu *efi_sve_state;
159 
160 #endif /* ! CONFIG_ARM64_SVE */
161 
162 DEFINE_PER_CPU(bool, fpsimd_context_busy);
163 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
164 
165 static void __get_cpu_fpsimd_context(void)
166 {
167 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
168 
169 	WARN_ON(busy);
170 }
171 
172 /*
173  * Claim ownership of the CPU FPSIMD context for use by the calling context.
174  *
175  * The caller may freely manipulate the FPSIMD context metadata until
176  * put_cpu_fpsimd_context() is called.
177  *
178  * The double-underscore version must only be called if you know the task
179  * can't be preempted.
180  */
181 static void get_cpu_fpsimd_context(void)
182 {
183 	preempt_disable();
184 	__get_cpu_fpsimd_context();
185 }
186 
187 static void __put_cpu_fpsimd_context(void)
188 {
189 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
190 
191 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
192 }
193 
194 /*
195  * Release the CPU FPSIMD context.
196  *
197  * Must be called from a context in which get_cpu_fpsimd_context() was
198  * previously called, with no call to put_cpu_fpsimd_context() in the
199  * meantime.
200  */
201 static void put_cpu_fpsimd_context(void)
202 {
203 	__put_cpu_fpsimd_context();
204 	preempt_enable();
205 }
206 
207 static bool have_cpu_fpsimd_context(void)
208 {
209 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
210 }
211 
212 /*
213  * Call __sve_free() directly only if you know task can't be scheduled
214  * or preempted.
215  */
216 static void __sve_free(struct task_struct *task)
217 {
218 	kfree(task->thread.sve_state);
219 	task->thread.sve_state = NULL;
220 }
221 
222 static void sve_free(struct task_struct *task)
223 {
224 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
225 
226 	__sve_free(task);
227 }
228 
229 /*
230  * TIF_SVE controls whether a task can use SVE without trapping while
231  * in userspace, and also the way a task's FPSIMD/SVE state is stored
232  * in thread_struct.
233  *
234  * The kernel uses this flag to track whether a user task is actively
235  * using SVE, and therefore whether full SVE register state needs to
236  * be tracked.  If not, the cheaper FPSIMD context handling code can
237  * be used instead of the more costly SVE equivalents.
238  *
239  *  * TIF_SVE set:
240  *
241  *    The task can execute SVE instructions while in userspace without
242  *    trapping to the kernel.
243  *
244  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
245  *    corresponding Zn), P0-P15 and FFR are encoded in in
246  *    task->thread.sve_state, formatted appropriately for vector
247  *    length task->thread.sve_vl.
248  *
249  *    task->thread.sve_state must point to a valid buffer at least
250  *    sve_state_size(task) bytes in size.
251  *
252  *    During any syscall, the kernel may optionally clear TIF_SVE and
253  *    discard the vector state except for the FPSIMD subset.
254  *
255  *  * TIF_SVE clear:
256  *
257  *    An attempt by the user task to execute an SVE instruction causes
258  *    do_sve_acc() to be called, which does some preparation and then
259  *    sets TIF_SVE.
260  *
261  *    When stored, FPSIMD registers V0-V31 are encoded in
262  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
263  *    logically zero but not stored anywhere; P0-P15 and FFR are not
264  *    stored and have unspecified values from userspace's point of
265  *    view.  For hygiene purposes, the kernel zeroes them on next use,
266  *    but userspace is discouraged from relying on this.
267  *
268  *    task->thread.sve_state does not need to be non-NULL, valid or any
269  *    particular size: it must not be dereferenced.
270  *
271  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
272  *    irrespective of whether TIF_SVE is clear or set, since these are
273  *    not vector length dependent.
274  */
275 
276 /*
277  * Update current's FPSIMD/SVE registers from thread_struct.
278  *
279  * This function should be called only when the FPSIMD/SVE state in
280  * thread_struct is known to be up to date, when preparing to enter
281  * userspace.
282  */
283 static void task_fpsimd_load(void)
284 {
285 	WARN_ON(!system_supports_fpsimd());
286 	WARN_ON(!have_cpu_fpsimd_context());
287 
288 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
289 		sve_load_state(sve_pffr(&current->thread),
290 			       &current->thread.uw.fpsimd_state.fpsr,
291 			       sve_vq_from_vl(current->thread.sve_vl) - 1);
292 	else
293 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
294 }
295 
296 /*
297  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
298  * date with respect to the CPU registers.
299  */
300 static void fpsimd_save(void)
301 {
302 	struct fpsimd_last_state_struct const *last =
303 		this_cpu_ptr(&fpsimd_last_state);
304 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
305 
306 	WARN_ON(!system_supports_fpsimd());
307 	WARN_ON(!have_cpu_fpsimd_context());
308 
309 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
310 		if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
311 			if (WARN_ON(sve_get_vl() != last->sve_vl)) {
312 				/*
313 				 * Can't save the user regs, so current would
314 				 * re-enter user with corrupt state.
315 				 * There's no way to recover, so kill it:
316 				 */
317 				force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
318 				return;
319 			}
320 
321 			sve_save_state((char *)last->sve_state +
322 						sve_ffr_offset(last->sve_vl),
323 				       &last->st->fpsr);
324 		} else
325 			fpsimd_save_state(last->st);
326 	}
327 }
328 
329 /*
330  * All vector length selection from userspace comes through here.
331  * We're on a slow path, so some sanity-checks are included.
332  * If things go wrong there's a bug somewhere, but try to fall back to a
333  * safe choice.
334  */
335 static unsigned int find_supported_vector_length(unsigned int vl)
336 {
337 	int bit;
338 	int max_vl = sve_max_vl;
339 
340 	if (WARN_ON(!sve_vl_valid(vl)))
341 		vl = SVE_VL_MIN;
342 
343 	if (WARN_ON(!sve_vl_valid(max_vl)))
344 		max_vl = SVE_VL_MIN;
345 
346 	if (vl > max_vl)
347 		vl = max_vl;
348 
349 	bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
350 			    __vq_to_bit(sve_vq_from_vl(vl)));
351 	return sve_vl_from_vq(__bit_to_vq(bit));
352 }
353 
354 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
355 
356 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
357 				  void *buffer, size_t *lenp, loff_t *ppos)
358 {
359 	int ret;
360 	int vl = get_sve_default_vl();
361 	struct ctl_table tmp_table = {
362 		.data = &vl,
363 		.maxlen = sizeof(vl),
364 	};
365 
366 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
367 	if (ret || !write)
368 		return ret;
369 
370 	/* Writing -1 has the special meaning "set to max": */
371 	if (vl == -1)
372 		vl = sve_max_vl;
373 
374 	if (!sve_vl_valid(vl))
375 		return -EINVAL;
376 
377 	set_sve_default_vl(find_supported_vector_length(vl));
378 	return 0;
379 }
380 
381 static struct ctl_table sve_default_vl_table[] = {
382 	{
383 		.procname	= "sve_default_vector_length",
384 		.mode		= 0644,
385 		.proc_handler	= sve_proc_do_default_vl,
386 	},
387 	{ }
388 };
389 
390 static int __init sve_sysctl_init(void)
391 {
392 	if (system_supports_sve())
393 		if (!register_sysctl("abi", sve_default_vl_table))
394 			return -EINVAL;
395 
396 	return 0;
397 }
398 
399 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
400 static int __init sve_sysctl_init(void) { return 0; }
401 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
402 
403 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
404 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
405 
406 #ifdef CONFIG_CPU_BIG_ENDIAN
407 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
408 {
409 	u64 a = swab64(x);
410 	u64 b = swab64(x >> 64);
411 
412 	return ((__uint128_t)a << 64) | b;
413 }
414 #else
415 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
416 {
417 	return x;
418 }
419 #endif
420 
421 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
422 
423 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
424 			    unsigned int vq)
425 {
426 	unsigned int i;
427 	__uint128_t *p;
428 
429 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
430 		p = (__uint128_t *)ZREG(sst, vq, i);
431 		*p = arm64_cpu_to_le128(fst->vregs[i]);
432 	}
433 }
434 
435 /*
436  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
437  * task->thread.sve_state.
438  *
439  * Task can be a non-runnable task, or current.  In the latter case,
440  * the caller must have ownership of the cpu FPSIMD context before calling
441  * this function.
442  * task->thread.sve_state must point to at least sve_state_size(task)
443  * bytes of allocated kernel memory.
444  * task->thread.uw.fpsimd_state must be up to date before calling this
445  * function.
446  */
447 static void fpsimd_to_sve(struct task_struct *task)
448 {
449 	unsigned int vq;
450 	void *sst = task->thread.sve_state;
451 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
452 
453 	if (!system_supports_sve())
454 		return;
455 
456 	vq = sve_vq_from_vl(task->thread.sve_vl);
457 	__fpsimd_to_sve(sst, fst, vq);
458 }
459 
460 /*
461  * Transfer the SVE state in task->thread.sve_state to
462  * task->thread.uw.fpsimd_state.
463  *
464  * Task can be a non-runnable task, or current.  In the latter case,
465  * the caller must have ownership of the cpu FPSIMD context before calling
466  * this function.
467  * task->thread.sve_state must point to at least sve_state_size(task)
468  * bytes of allocated kernel memory.
469  * task->thread.sve_state must be up to date before calling this function.
470  */
471 static void sve_to_fpsimd(struct task_struct *task)
472 {
473 	unsigned int vq;
474 	void const *sst = task->thread.sve_state;
475 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
476 	unsigned int i;
477 	__uint128_t const *p;
478 
479 	if (!system_supports_sve())
480 		return;
481 
482 	vq = sve_vq_from_vl(task->thread.sve_vl);
483 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
484 		p = (__uint128_t const *)ZREG(sst, vq, i);
485 		fst->vregs[i] = arm64_le128_to_cpu(*p);
486 	}
487 }
488 
489 #ifdef CONFIG_ARM64_SVE
490 
491 /*
492  * Return how many bytes of memory are required to store the full SVE
493  * state for task, given task's currently configured vector length.
494  */
495 size_t sve_state_size(struct task_struct const *task)
496 {
497 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
498 }
499 
500 /*
501  * Ensure that task->thread.sve_state is allocated and sufficiently large.
502  *
503  * This function should be used only in preparation for replacing
504  * task->thread.sve_state with new data.  The memory is always zeroed
505  * here to prevent stale data from showing through: this is done in
506  * the interest of testability and predictability: except in the
507  * do_sve_acc() case, there is no ABI requirement to hide stale data
508  * written previously be task.
509  */
510 void sve_alloc(struct task_struct *task)
511 {
512 	if (task->thread.sve_state) {
513 		memset(task->thread.sve_state, 0, sve_state_size(current));
514 		return;
515 	}
516 
517 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
518 	task->thread.sve_state =
519 		kzalloc(sve_state_size(task), GFP_KERNEL);
520 
521 	/*
522 	 * If future SVE revisions can have larger vectors though,
523 	 * this may cease to be true:
524 	 */
525 	BUG_ON(!task->thread.sve_state);
526 }
527 
528 
529 /*
530  * Ensure that task->thread.sve_state is up to date with respect to
531  * the user task, irrespective of when SVE is in use or not.
532  *
533  * This should only be called by ptrace.  task must be non-runnable.
534  * task->thread.sve_state must point to at least sve_state_size(task)
535  * bytes of allocated kernel memory.
536  */
537 void fpsimd_sync_to_sve(struct task_struct *task)
538 {
539 	if (!test_tsk_thread_flag(task, TIF_SVE))
540 		fpsimd_to_sve(task);
541 }
542 
543 /*
544  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
545  * the user task, irrespective of whether SVE is in use or not.
546  *
547  * This should only be called by ptrace.  task must be non-runnable.
548  * task->thread.sve_state must point to at least sve_state_size(task)
549  * bytes of allocated kernel memory.
550  */
551 void sve_sync_to_fpsimd(struct task_struct *task)
552 {
553 	if (test_tsk_thread_flag(task, TIF_SVE))
554 		sve_to_fpsimd(task);
555 }
556 
557 /*
558  * Ensure that task->thread.sve_state is up to date with respect to
559  * the task->thread.uw.fpsimd_state.
560  *
561  * This should only be called by ptrace to merge new FPSIMD register
562  * values into a task for which SVE is currently active.
563  * task must be non-runnable.
564  * task->thread.sve_state must point to at least sve_state_size(task)
565  * bytes of allocated kernel memory.
566  * task->thread.uw.fpsimd_state must already have been initialised with
567  * the new FPSIMD register values to be merged in.
568  */
569 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
570 {
571 	unsigned int vq;
572 	void *sst = task->thread.sve_state;
573 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
574 
575 	if (!test_tsk_thread_flag(task, TIF_SVE))
576 		return;
577 
578 	vq = sve_vq_from_vl(task->thread.sve_vl);
579 
580 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
581 	__fpsimd_to_sve(sst, fst, vq);
582 }
583 
584 int sve_set_vector_length(struct task_struct *task,
585 			  unsigned long vl, unsigned long flags)
586 {
587 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
588 				     PR_SVE_SET_VL_ONEXEC))
589 		return -EINVAL;
590 
591 	if (!sve_vl_valid(vl))
592 		return -EINVAL;
593 
594 	/*
595 	 * Clamp to the maximum vector length that VL-agnostic SVE code can
596 	 * work with.  A flag may be assigned in the future to allow setting
597 	 * of larger vector lengths without confusing older software.
598 	 */
599 	if (vl > SVE_VL_ARCH_MAX)
600 		vl = SVE_VL_ARCH_MAX;
601 
602 	vl = find_supported_vector_length(vl);
603 
604 	if (flags & (PR_SVE_VL_INHERIT |
605 		     PR_SVE_SET_VL_ONEXEC))
606 		task->thread.sve_vl_onexec = vl;
607 	else
608 		/* Reset VL to system default on next exec: */
609 		task->thread.sve_vl_onexec = 0;
610 
611 	/* Only actually set the VL if not deferred: */
612 	if (flags & PR_SVE_SET_VL_ONEXEC)
613 		goto out;
614 
615 	if (vl == task->thread.sve_vl)
616 		goto out;
617 
618 	/*
619 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
620 	 * write any live register state back to task_struct, and convert to a
621 	 * non-SVE thread.
622 	 */
623 	if (task == current) {
624 		get_cpu_fpsimd_context();
625 
626 		fpsimd_save();
627 	}
628 
629 	fpsimd_flush_task_state(task);
630 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
631 		sve_to_fpsimd(task);
632 
633 	if (task == current)
634 		put_cpu_fpsimd_context();
635 
636 	/*
637 	 * Force reallocation of task SVE state to the correct size
638 	 * on next use:
639 	 */
640 	sve_free(task);
641 
642 	task->thread.sve_vl = vl;
643 
644 out:
645 	update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
646 			       flags & PR_SVE_VL_INHERIT);
647 
648 	return 0;
649 }
650 
651 /*
652  * Encode the current vector length and flags for return.
653  * This is only required for prctl(): ptrace has separate fields
654  *
655  * flags are as for sve_set_vector_length().
656  */
657 static int sve_prctl_status(unsigned long flags)
658 {
659 	int ret;
660 
661 	if (flags & PR_SVE_SET_VL_ONEXEC)
662 		ret = current->thread.sve_vl_onexec;
663 	else
664 		ret = current->thread.sve_vl;
665 
666 	if (test_thread_flag(TIF_SVE_VL_INHERIT))
667 		ret |= PR_SVE_VL_INHERIT;
668 
669 	return ret;
670 }
671 
672 /* PR_SVE_SET_VL */
673 int sve_set_current_vl(unsigned long arg)
674 {
675 	unsigned long vl, flags;
676 	int ret;
677 
678 	vl = arg & PR_SVE_VL_LEN_MASK;
679 	flags = arg & ~vl;
680 
681 	if (!system_supports_sve() || is_compat_task())
682 		return -EINVAL;
683 
684 	ret = sve_set_vector_length(current, vl, flags);
685 	if (ret)
686 		return ret;
687 
688 	return sve_prctl_status(flags);
689 }
690 
691 /* PR_SVE_GET_VL */
692 int sve_get_current_vl(void)
693 {
694 	if (!system_supports_sve() || is_compat_task())
695 		return -EINVAL;
696 
697 	return sve_prctl_status(0);
698 }
699 
700 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
701 {
702 	unsigned int vq, vl;
703 	unsigned long zcr;
704 
705 	bitmap_zero(map, SVE_VQ_MAX);
706 
707 	zcr = ZCR_ELx_LEN_MASK;
708 	zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
709 
710 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
711 		write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
712 		vl = sve_get_vl();
713 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
714 		set_bit(__vq_to_bit(vq), map);
715 	}
716 }
717 
718 /*
719  * Initialise the set of known supported VQs for the boot CPU.
720  * This is called during kernel boot, before secondary CPUs are brought up.
721  */
722 void __init sve_init_vq_map(void)
723 {
724 	sve_probe_vqs(sve_vq_map);
725 	bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
726 }
727 
728 /*
729  * If we haven't committed to the set of supported VQs yet, filter out
730  * those not supported by the current CPU.
731  * This function is called during the bring-up of early secondary CPUs only.
732  */
733 void sve_update_vq_map(void)
734 {
735 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
736 
737 	sve_probe_vqs(tmp_map);
738 	bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
739 	bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
740 }
741 
742 /*
743  * Check whether the current CPU supports all VQs in the committed set.
744  * This function is called during the bring-up of late secondary CPUs only.
745  */
746 int sve_verify_vq_map(void)
747 {
748 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
749 	unsigned long b;
750 
751 	sve_probe_vqs(tmp_map);
752 
753 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
754 	if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
755 		pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
756 			smp_processor_id());
757 		return -EINVAL;
758 	}
759 
760 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
761 		return 0;
762 
763 	/*
764 	 * For KVM, it is necessary to ensure that this CPU doesn't
765 	 * support any vector length that guests may have probed as
766 	 * unsupported.
767 	 */
768 
769 	/* Recover the set of supported VQs: */
770 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
771 	/* Find VQs supported that are not globally supported: */
772 	bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
773 
774 	/* Find the lowest such VQ, if any: */
775 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
776 	if (b >= SVE_VQ_MAX)
777 		return 0; /* no mismatches */
778 
779 	/*
780 	 * Mismatches above sve_max_virtualisable_vl are fine, since
781 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
782 	 */
783 	if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
784 		pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
785 			smp_processor_id());
786 		return -EINVAL;
787 	}
788 
789 	return 0;
790 }
791 
792 static void __init sve_efi_setup(void)
793 {
794 	if (!IS_ENABLED(CONFIG_EFI))
795 		return;
796 
797 	/*
798 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
799 	 * This is evidence of a crippled system and we are returning void,
800 	 * so no attempt is made to handle this situation here.
801 	 */
802 	if (!sve_vl_valid(sve_max_vl))
803 		goto fail;
804 
805 	efi_sve_state = __alloc_percpu(
806 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
807 	if (!efi_sve_state)
808 		goto fail;
809 
810 	return;
811 
812 fail:
813 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
814 }
815 
816 /*
817  * Enable SVE for EL1.
818  * Intended for use by the cpufeatures code during CPU boot.
819  */
820 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
821 {
822 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
823 	isb();
824 }
825 
826 /*
827  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
828  * vector length.
829  *
830  * Use only if SVE is present.
831  * This function clobbers the SVE vector length.
832  */
833 u64 read_zcr_features(void)
834 {
835 	u64 zcr;
836 	unsigned int vq_max;
837 
838 	/*
839 	 * Set the maximum possible VL, and write zeroes to all other
840 	 * bits to see if they stick.
841 	 */
842 	sve_kernel_enable(NULL);
843 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
844 
845 	zcr = read_sysreg_s(SYS_ZCR_EL1);
846 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
847 	vq_max = sve_vq_from_vl(sve_get_vl());
848 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
849 
850 	return zcr;
851 }
852 
853 void __init sve_setup(void)
854 {
855 	u64 zcr;
856 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
857 	unsigned long b;
858 
859 	if (!system_supports_sve())
860 		return;
861 
862 	/*
863 	 * The SVE architecture mandates support for 128-bit vectors,
864 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
865 	 * If something went wrong, at least try to patch it up:
866 	 */
867 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
868 		set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
869 
870 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
871 	sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
872 
873 	/*
874 	 * Sanity-check that the max VL we determined through CPU features
875 	 * corresponds properly to sve_vq_map.  If not, do our best:
876 	 */
877 	if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
878 		sve_max_vl = find_supported_vector_length(sve_max_vl);
879 
880 	/*
881 	 * For the default VL, pick the maximum supported value <= 64.
882 	 * VL == 64 is guaranteed not to grow the signal frame.
883 	 */
884 	set_sve_default_vl(find_supported_vector_length(64));
885 
886 	bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
887 		      SVE_VQ_MAX);
888 
889 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
890 	if (b >= SVE_VQ_MAX)
891 		/* No non-virtualisable VLs found */
892 		sve_max_virtualisable_vl = SVE_VQ_MAX;
893 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
894 		/* No virtualisable VLs?  This is architecturally forbidden. */
895 		sve_max_virtualisable_vl = SVE_VQ_MIN;
896 	else /* b + 1 < SVE_VQ_MAX */
897 		sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
898 
899 	if (sve_max_virtualisable_vl > sve_max_vl)
900 		sve_max_virtualisable_vl = sve_max_vl;
901 
902 	pr_info("SVE: maximum available vector length %u bytes per vector\n",
903 		sve_max_vl);
904 	pr_info("SVE: default vector length %u bytes per vector\n",
905 		get_sve_default_vl());
906 
907 	/* KVM decides whether to support mismatched systems. Just warn here: */
908 	if (sve_max_virtualisable_vl < sve_max_vl)
909 		pr_warn("SVE: unvirtualisable vector lengths present\n");
910 
911 	sve_efi_setup();
912 }
913 
914 /*
915  * Called from the put_task_struct() path, which cannot get here
916  * unless dead_task is really dead and not schedulable.
917  */
918 void fpsimd_release_task(struct task_struct *dead_task)
919 {
920 	__sve_free(dead_task);
921 }
922 
923 #endif /* CONFIG_ARM64_SVE */
924 
925 /*
926  * Trapped SVE access
927  *
928  * Storage is allocated for the full SVE state, the current FPSIMD
929  * register contents are migrated across, and TIF_SVE is set so that
930  * the SVE access trap will be disabled the next time this task
931  * reaches ret_to_user.
932  *
933  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
934  * would have disabled the SVE access trap for userspace during
935  * ret_to_user, making an SVE access trap impossible in that case.
936  */
937 void do_sve_acc(unsigned int esr, struct pt_regs *regs)
938 {
939 	/* Even if we chose not to use SVE, the hardware could still trap: */
940 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
941 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
942 		return;
943 	}
944 
945 	sve_alloc(current);
946 
947 	get_cpu_fpsimd_context();
948 
949 	fpsimd_save();
950 
951 	/* Force ret_to_user to reload the registers: */
952 	fpsimd_flush_task_state(current);
953 
954 	fpsimd_to_sve(current);
955 	if (test_and_set_thread_flag(TIF_SVE))
956 		WARN_ON(1); /* SVE access shouldn't have trapped */
957 
958 	put_cpu_fpsimd_context();
959 }
960 
961 /*
962  * Trapped FP/ASIMD access.
963  */
964 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
965 {
966 	/* TODO: implement lazy context saving/restoring */
967 	WARN_ON(1);
968 }
969 
970 /*
971  * Raise a SIGFPE for the current process.
972  */
973 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
974 {
975 	unsigned int si_code = FPE_FLTUNK;
976 
977 	if (esr & ESR_ELx_FP_EXC_TFV) {
978 		if (esr & FPEXC_IOF)
979 			si_code = FPE_FLTINV;
980 		else if (esr & FPEXC_DZF)
981 			si_code = FPE_FLTDIV;
982 		else if (esr & FPEXC_OFF)
983 			si_code = FPE_FLTOVF;
984 		else if (esr & FPEXC_UFF)
985 			si_code = FPE_FLTUND;
986 		else if (esr & FPEXC_IXF)
987 			si_code = FPE_FLTRES;
988 	}
989 
990 	send_sig_fault(SIGFPE, si_code,
991 		       (void __user *)instruction_pointer(regs),
992 		       current);
993 }
994 
995 void fpsimd_thread_switch(struct task_struct *next)
996 {
997 	bool wrong_task, wrong_cpu;
998 
999 	if (!system_supports_fpsimd())
1000 		return;
1001 
1002 	__get_cpu_fpsimd_context();
1003 
1004 	/* Save unsaved fpsimd state, if any: */
1005 	fpsimd_save();
1006 
1007 	/*
1008 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1009 	 * state.  For kernel threads, FPSIMD registers are never loaded
1010 	 * and wrong_task and wrong_cpu will always be true.
1011 	 */
1012 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1013 					&next->thread.uw.fpsimd_state;
1014 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1015 
1016 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1017 			       wrong_task || wrong_cpu);
1018 
1019 	__put_cpu_fpsimd_context();
1020 }
1021 
1022 void fpsimd_flush_thread(void)
1023 {
1024 	int vl, supported_vl;
1025 
1026 	if (!system_supports_fpsimd())
1027 		return;
1028 
1029 	get_cpu_fpsimd_context();
1030 
1031 	fpsimd_flush_task_state(current);
1032 	memset(&current->thread.uw.fpsimd_state, 0,
1033 	       sizeof(current->thread.uw.fpsimd_state));
1034 
1035 	if (system_supports_sve()) {
1036 		clear_thread_flag(TIF_SVE);
1037 		sve_free(current);
1038 
1039 		/*
1040 		 * Reset the task vector length as required.
1041 		 * This is where we ensure that all user tasks have a valid
1042 		 * vector length configured: no kernel task can become a user
1043 		 * task without an exec and hence a call to this function.
1044 		 * By the time the first call to this function is made, all
1045 		 * early hardware probing is complete, so __sve_default_vl
1046 		 * should be valid.
1047 		 * If a bug causes this to go wrong, we make some noise and
1048 		 * try to fudge thread.sve_vl to a safe value here.
1049 		 */
1050 		vl = current->thread.sve_vl_onexec ?
1051 			current->thread.sve_vl_onexec : get_sve_default_vl();
1052 
1053 		if (WARN_ON(!sve_vl_valid(vl)))
1054 			vl = SVE_VL_MIN;
1055 
1056 		supported_vl = find_supported_vector_length(vl);
1057 		if (WARN_ON(supported_vl != vl))
1058 			vl = supported_vl;
1059 
1060 		current->thread.sve_vl = vl;
1061 
1062 		/*
1063 		 * If the task is not set to inherit, ensure that the vector
1064 		 * length will be reset by a subsequent exec:
1065 		 */
1066 		if (!test_thread_flag(TIF_SVE_VL_INHERIT))
1067 			current->thread.sve_vl_onexec = 0;
1068 	}
1069 
1070 	put_cpu_fpsimd_context();
1071 }
1072 
1073 /*
1074  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1075  * currently held in the registers does in fact belong to 'current'
1076  */
1077 void fpsimd_preserve_current_state(void)
1078 {
1079 	if (!system_supports_fpsimd())
1080 		return;
1081 
1082 	get_cpu_fpsimd_context();
1083 	fpsimd_save();
1084 	put_cpu_fpsimd_context();
1085 }
1086 
1087 /*
1088  * Like fpsimd_preserve_current_state(), but ensure that
1089  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1090  * the signal frame.
1091  */
1092 void fpsimd_signal_preserve_current_state(void)
1093 {
1094 	fpsimd_preserve_current_state();
1095 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1096 		sve_to_fpsimd(current);
1097 }
1098 
1099 /*
1100  * Associate current's FPSIMD context with this cpu
1101  * The caller must have ownership of the cpu FPSIMD context before calling
1102  * this function.
1103  */
1104 void fpsimd_bind_task_to_cpu(void)
1105 {
1106 	struct fpsimd_last_state_struct *last =
1107 		this_cpu_ptr(&fpsimd_last_state);
1108 
1109 	WARN_ON(!system_supports_fpsimd());
1110 	last->st = &current->thread.uw.fpsimd_state;
1111 	last->sve_state = current->thread.sve_state;
1112 	last->sve_vl = current->thread.sve_vl;
1113 	current->thread.fpsimd_cpu = smp_processor_id();
1114 
1115 	if (system_supports_sve()) {
1116 		/* Toggle SVE trapping for userspace if needed */
1117 		if (test_thread_flag(TIF_SVE))
1118 			sve_user_enable();
1119 		else
1120 			sve_user_disable();
1121 
1122 		/* Serialised by exception return to user */
1123 	}
1124 }
1125 
1126 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1127 			      unsigned int sve_vl)
1128 {
1129 	struct fpsimd_last_state_struct *last =
1130 		this_cpu_ptr(&fpsimd_last_state);
1131 
1132 	WARN_ON(!system_supports_fpsimd());
1133 	WARN_ON(!in_softirq() && !irqs_disabled());
1134 
1135 	last->st = st;
1136 	last->sve_state = sve_state;
1137 	last->sve_vl = sve_vl;
1138 }
1139 
1140 /*
1141  * Load the userland FPSIMD state of 'current' from memory, but only if the
1142  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1143  * state of 'current'
1144  */
1145 void fpsimd_restore_current_state(void)
1146 {
1147 	/*
1148 	 * For the tasks that were created before we detected the absence of
1149 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1150 	 * e.g, init. This could be then inherited by the children processes.
1151 	 * If we later detect that the system doesn't support FP/SIMD,
1152 	 * we must clear the flag for  all the tasks to indicate that the
1153 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1154 	 * do_notify_resume().
1155 	 */
1156 	if (!system_supports_fpsimd()) {
1157 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1158 		return;
1159 	}
1160 
1161 	get_cpu_fpsimd_context();
1162 
1163 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1164 		task_fpsimd_load();
1165 		fpsimd_bind_task_to_cpu();
1166 	}
1167 
1168 	put_cpu_fpsimd_context();
1169 }
1170 
1171 /*
1172  * Load an updated userland FPSIMD state for 'current' from memory and set the
1173  * flag that indicates that the FPSIMD register contents are the most recent
1174  * FPSIMD state of 'current'
1175  */
1176 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1177 {
1178 	if (WARN_ON(!system_supports_fpsimd()))
1179 		return;
1180 
1181 	get_cpu_fpsimd_context();
1182 
1183 	current->thread.uw.fpsimd_state = *state;
1184 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1185 		fpsimd_to_sve(current);
1186 
1187 	task_fpsimd_load();
1188 	fpsimd_bind_task_to_cpu();
1189 
1190 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1191 
1192 	put_cpu_fpsimd_context();
1193 }
1194 
1195 /*
1196  * Invalidate live CPU copies of task t's FPSIMD state
1197  *
1198  * This function may be called with preemption enabled.  The barrier()
1199  * ensures that the assignment to fpsimd_cpu is visible to any
1200  * preemption/softirq that could race with set_tsk_thread_flag(), so
1201  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1202  *
1203  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1204  * subsequent code.
1205  */
1206 void fpsimd_flush_task_state(struct task_struct *t)
1207 {
1208 	t->thread.fpsimd_cpu = NR_CPUS;
1209 	/*
1210 	 * If we don't support fpsimd, bail out after we have
1211 	 * reset the fpsimd_cpu for this task and clear the
1212 	 * FPSTATE.
1213 	 */
1214 	if (!system_supports_fpsimd())
1215 		return;
1216 	barrier();
1217 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1218 
1219 	barrier();
1220 }
1221 
1222 /*
1223  * Invalidate any task's FPSIMD state that is present on this cpu.
1224  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1225  * before calling this function.
1226  */
1227 static void fpsimd_flush_cpu_state(void)
1228 {
1229 	WARN_ON(!system_supports_fpsimd());
1230 	__this_cpu_write(fpsimd_last_state.st, NULL);
1231 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1232 }
1233 
1234 /*
1235  * Save the FPSIMD state to memory and invalidate cpu view.
1236  * This function must be called with preemption disabled.
1237  */
1238 void fpsimd_save_and_flush_cpu_state(void)
1239 {
1240 	if (!system_supports_fpsimd())
1241 		return;
1242 	WARN_ON(preemptible());
1243 	__get_cpu_fpsimd_context();
1244 	fpsimd_save();
1245 	fpsimd_flush_cpu_state();
1246 	__put_cpu_fpsimd_context();
1247 }
1248 
1249 #ifdef CONFIG_KERNEL_MODE_NEON
1250 
1251 /*
1252  * Kernel-side NEON support functions
1253  */
1254 
1255 /*
1256  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1257  * context
1258  *
1259  * Must not be called unless may_use_simd() returns true.
1260  * Task context in the FPSIMD registers is saved back to memory as necessary.
1261  *
1262  * A matching call to kernel_neon_end() must be made before returning from the
1263  * calling context.
1264  *
1265  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1266  * called.
1267  */
1268 void kernel_neon_begin(void)
1269 {
1270 	if (WARN_ON(!system_supports_fpsimd()))
1271 		return;
1272 
1273 	BUG_ON(!may_use_simd());
1274 
1275 	get_cpu_fpsimd_context();
1276 
1277 	/* Save unsaved fpsimd state, if any: */
1278 	fpsimd_save();
1279 
1280 	/* Invalidate any task state remaining in the fpsimd regs: */
1281 	fpsimd_flush_cpu_state();
1282 }
1283 EXPORT_SYMBOL(kernel_neon_begin);
1284 
1285 /*
1286  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1287  *
1288  * Must be called from a context in which kernel_neon_begin() was previously
1289  * called, with no call to kernel_neon_end() in the meantime.
1290  *
1291  * The caller must not use the FPSIMD registers after this function is called,
1292  * unless kernel_neon_begin() is called again in the meantime.
1293  */
1294 void kernel_neon_end(void)
1295 {
1296 	if (!system_supports_fpsimd())
1297 		return;
1298 
1299 	put_cpu_fpsimd_context();
1300 }
1301 EXPORT_SYMBOL(kernel_neon_end);
1302 
1303 #ifdef CONFIG_EFI
1304 
1305 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1306 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1307 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1308 
1309 /*
1310  * EFI runtime services support functions
1311  *
1312  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1313  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1314  * is always used rather than being an optional accelerator.
1315  *
1316  * These functions provide the necessary support for ensuring FPSIMD
1317  * save/restore in the contexts from which EFI is used.
1318  *
1319  * Do not use them for any other purpose -- if tempted to do so, you are
1320  * either doing something wrong or you need to propose some refactoring.
1321  */
1322 
1323 /*
1324  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1325  */
1326 void __efi_fpsimd_begin(void)
1327 {
1328 	if (!system_supports_fpsimd())
1329 		return;
1330 
1331 	WARN_ON(preemptible());
1332 
1333 	if (may_use_simd()) {
1334 		kernel_neon_begin();
1335 	} else {
1336 		/*
1337 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1338 		 * preserving:
1339 		 */
1340 		if (system_supports_sve() && likely(efi_sve_state)) {
1341 			char *sve_state = this_cpu_ptr(efi_sve_state);
1342 
1343 			__this_cpu_write(efi_sve_state_used, true);
1344 
1345 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1346 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1347 		} else {
1348 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1349 		}
1350 
1351 		__this_cpu_write(efi_fpsimd_state_used, true);
1352 	}
1353 }
1354 
1355 /*
1356  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1357  */
1358 void __efi_fpsimd_end(void)
1359 {
1360 	if (!system_supports_fpsimd())
1361 		return;
1362 
1363 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1364 		kernel_neon_end();
1365 	} else {
1366 		if (system_supports_sve() &&
1367 		    likely(__this_cpu_read(efi_sve_state_used))) {
1368 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1369 
1370 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1371 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1372 				       sve_vq_from_vl(sve_get_vl()) - 1);
1373 
1374 			__this_cpu_write(efi_sve_state_used, false);
1375 		} else {
1376 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1377 		}
1378 	}
1379 }
1380 
1381 #endif /* CONFIG_EFI */
1382 
1383 #endif /* CONFIG_KERNEL_MODE_NEON */
1384 
1385 #ifdef CONFIG_CPU_PM
1386 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1387 				  unsigned long cmd, void *v)
1388 {
1389 	switch (cmd) {
1390 	case CPU_PM_ENTER:
1391 		fpsimd_save_and_flush_cpu_state();
1392 		break;
1393 	case CPU_PM_EXIT:
1394 		break;
1395 	case CPU_PM_ENTER_FAILED:
1396 	default:
1397 		return NOTIFY_DONE;
1398 	}
1399 	return NOTIFY_OK;
1400 }
1401 
1402 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1403 	.notifier_call = fpsimd_cpu_pm_notifier,
1404 };
1405 
1406 static void __init fpsimd_pm_init(void)
1407 {
1408 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1409 }
1410 
1411 #else
1412 static inline void fpsimd_pm_init(void) { }
1413 #endif /* CONFIG_CPU_PM */
1414 
1415 #ifdef CONFIG_HOTPLUG_CPU
1416 static int fpsimd_cpu_dead(unsigned int cpu)
1417 {
1418 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1419 	return 0;
1420 }
1421 
1422 static inline void fpsimd_hotplug_init(void)
1423 {
1424 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1425 				  NULL, fpsimd_cpu_dead);
1426 }
1427 
1428 #else
1429 static inline void fpsimd_hotplug_init(void) { }
1430 #endif
1431 
1432 /*
1433  * FP/SIMD support code initialisation.
1434  */
1435 static int __init fpsimd_init(void)
1436 {
1437 	if (cpu_have_named_feature(FP)) {
1438 		fpsimd_pm_init();
1439 		fpsimd_hotplug_init();
1440 	} else {
1441 		pr_notice("Floating-point is not implemented\n");
1442 	}
1443 
1444 	if (!cpu_have_named_feature(ASIMD))
1445 		pr_notice("Advanced SIMD is not implemented\n");
1446 
1447 	return sve_sysctl_init();
1448 }
1449 core_initcall(fpsimd_init);
1450