1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/compiler.h> 16 #include <linux/cpu.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/ctype.h> 19 #include <linux/kernel.h> 20 #include <linux/linkage.h> 21 #include <linux/irqflags.h> 22 #include <linux/init.h> 23 #include <linux/percpu.h> 24 #include <linux/prctl.h> 25 #include <linux/preempt.h> 26 #include <linux/ptrace.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/task_stack.h> 29 #include <linux/signal.h> 30 #include <linux/slab.h> 31 #include <linux/stddef.h> 32 #include <linux/sysctl.h> 33 #include <linux/swab.h> 34 35 #include <asm/esr.h> 36 #include <asm/exception.h> 37 #include <asm/fpsimd.h> 38 #include <asm/cpufeature.h> 39 #include <asm/cputype.h> 40 #include <asm/neon.h> 41 #include <asm/processor.h> 42 #include <asm/simd.h> 43 #include <asm/sigcontext.h> 44 #include <asm/sysreg.h> 45 #include <asm/traps.h> 46 #include <asm/virt.h> 47 48 #define FPEXC_IOF (1 << 0) 49 #define FPEXC_DZF (1 << 1) 50 #define FPEXC_OFF (1 << 2) 51 #define FPEXC_UFF (1 << 3) 52 #define FPEXC_IXF (1 << 4) 53 #define FPEXC_IDF (1 << 7) 54 55 /* 56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 57 * 58 * In order to reduce the number of times the FPSIMD state is needlessly saved 59 * and restored, we need to keep track of two things: 60 * (a) for each task, we need to remember which CPU was the last one to have 61 * the task's FPSIMD state loaded into its FPSIMD registers; 62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 63 * been loaded into its FPSIMD registers most recently, or whether it has 64 * been used to perform kernel mode NEON in the meantime. 65 * 66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 67 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 69 * address of the userland FPSIMD state of the task that was loaded onto the CPU 70 * the most recently, or NULL if kernel mode NEON has been performed after that. 71 * 72 * With this in place, we no longer have to restore the next FPSIMD state right 73 * when switching between tasks. Instead, we can defer this check to userland 74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 76 * can omit the FPSIMD restore. 77 * 78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 79 * indicate whether or not the userland FPSIMD state of the current task is 80 * present in the registers. The flag is set unless the FPSIMD registers of this 81 * CPU currently contain the most recent userland FPSIMD state of the current 82 * task. If the task is behaving as a VMM, then this is will be managed by 83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently 84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware 85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and 86 * flag the register state as invalid. 87 * 88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 89 * save the task's FPSIMD context back to task_struct from softirq context. 90 * To prevent this from racing with the manipulation of the task's FPSIMD state 91 * from task context and thereby corrupting the state, it is necessary to 92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to 94 * run but prevent them to use FPSIMD. 95 * 96 * For a certain task, the sequence may look something like this: 97 * - the task gets scheduled in; if both the task's fpsimd_cpu field 98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 100 * cleared, otherwise it is set; 101 * 102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 103 * userland FPSIMD state is copied from memory to the registers, the task's 104 * fpsimd_cpu field is set to the id of the current CPU, the current 105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 106 * TIF_FOREIGN_FPSTATE flag is cleared; 107 * 108 * - the task executes an ordinary syscall; upon return to userland, the 109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 110 * restored; 111 * 112 * - the task executes a syscall which executes some NEON instructions; this is 113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 114 * register contents to memory, clears the fpsimd_last_state per-cpu variable 115 * and sets the TIF_FOREIGN_FPSTATE flag; 116 * 117 * - the task gets preempted after kernel_neon_end() is called; as we have not 118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 119 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 120 */ 121 122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state); 123 124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = { 125 #ifdef CONFIG_ARM64_SVE 126 [ARM64_VEC_SVE] = { 127 .type = ARM64_VEC_SVE, 128 .name = "SVE", 129 .min_vl = SVE_VL_MIN, 130 .max_vl = SVE_VL_MIN, 131 .max_virtualisable_vl = SVE_VL_MIN, 132 }, 133 #endif 134 #ifdef CONFIG_ARM64_SME 135 [ARM64_VEC_SME] = { 136 .type = ARM64_VEC_SME, 137 .name = "SME", 138 }, 139 #endif 140 }; 141 142 static unsigned int vec_vl_inherit_flag(enum vec_type type) 143 { 144 switch (type) { 145 case ARM64_VEC_SVE: 146 return TIF_SVE_VL_INHERIT; 147 case ARM64_VEC_SME: 148 return TIF_SME_VL_INHERIT; 149 default: 150 WARN_ON_ONCE(1); 151 return 0; 152 } 153 } 154 155 struct vl_config { 156 int __default_vl; /* Default VL for tasks */ 157 }; 158 159 static struct vl_config vl_config[ARM64_VEC_MAX]; 160 161 static inline int get_default_vl(enum vec_type type) 162 { 163 return READ_ONCE(vl_config[type].__default_vl); 164 } 165 166 #ifdef CONFIG_ARM64_SVE 167 168 static inline int get_sve_default_vl(void) 169 { 170 return get_default_vl(ARM64_VEC_SVE); 171 } 172 173 static inline void set_default_vl(enum vec_type type, int val) 174 { 175 WRITE_ONCE(vl_config[type].__default_vl, val); 176 } 177 178 static inline void set_sve_default_vl(int val) 179 { 180 set_default_vl(ARM64_VEC_SVE, val); 181 } 182 183 static void __percpu *efi_sve_state; 184 185 #else /* ! CONFIG_ARM64_SVE */ 186 187 /* Dummy declaration for code that will be optimised out: */ 188 extern void __percpu *efi_sve_state; 189 190 #endif /* ! CONFIG_ARM64_SVE */ 191 192 #ifdef CONFIG_ARM64_SME 193 194 static int get_sme_default_vl(void) 195 { 196 return get_default_vl(ARM64_VEC_SME); 197 } 198 199 static void set_sme_default_vl(int val) 200 { 201 set_default_vl(ARM64_VEC_SME, val); 202 } 203 204 static void sme_free(struct task_struct *); 205 206 #else 207 208 static inline void sme_free(struct task_struct *t) { } 209 210 #endif 211 212 DEFINE_PER_CPU(bool, fpsimd_context_busy); 213 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy); 214 215 static void fpsimd_bind_task_to_cpu(void); 216 217 static void __get_cpu_fpsimd_context(void) 218 { 219 bool busy = __this_cpu_xchg(fpsimd_context_busy, true); 220 221 WARN_ON(busy); 222 } 223 224 /* 225 * Claim ownership of the CPU FPSIMD context for use by the calling context. 226 * 227 * The caller may freely manipulate the FPSIMD context metadata until 228 * put_cpu_fpsimd_context() is called. 229 * 230 * The double-underscore version must only be called if you know the task 231 * can't be preempted. 232 * 233 * On RT kernels local_bh_disable() is not sufficient because it only 234 * serializes soft interrupt related sections via a local lock, but stays 235 * preemptible. Disabling preemption is the right choice here as bottom 236 * half processing is always in thread context on RT kernels so it 237 * implicitly prevents bottom half processing as well. 238 */ 239 static void get_cpu_fpsimd_context(void) 240 { 241 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 242 local_bh_disable(); 243 else 244 preempt_disable(); 245 __get_cpu_fpsimd_context(); 246 } 247 248 static void __put_cpu_fpsimd_context(void) 249 { 250 bool busy = __this_cpu_xchg(fpsimd_context_busy, false); 251 252 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */ 253 } 254 255 /* 256 * Release the CPU FPSIMD context. 257 * 258 * Must be called from a context in which get_cpu_fpsimd_context() was 259 * previously called, with no call to put_cpu_fpsimd_context() in the 260 * meantime. 261 */ 262 static void put_cpu_fpsimd_context(void) 263 { 264 __put_cpu_fpsimd_context(); 265 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 266 local_bh_enable(); 267 else 268 preempt_enable(); 269 } 270 271 static bool have_cpu_fpsimd_context(void) 272 { 273 return !preemptible() && __this_cpu_read(fpsimd_context_busy); 274 } 275 276 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type) 277 { 278 return task->thread.vl[type]; 279 } 280 281 void task_set_vl(struct task_struct *task, enum vec_type type, 282 unsigned long vl) 283 { 284 task->thread.vl[type] = vl; 285 } 286 287 unsigned int task_get_vl_onexec(const struct task_struct *task, 288 enum vec_type type) 289 { 290 return task->thread.vl_onexec[type]; 291 } 292 293 void task_set_vl_onexec(struct task_struct *task, enum vec_type type, 294 unsigned long vl) 295 { 296 task->thread.vl_onexec[type] = vl; 297 } 298 299 /* 300 * TIF_SME controls whether a task can use SME without trapping while 301 * in userspace, when TIF_SME is set then we must have storage 302 * allocated in sve_state and sme_state to store the contents of both ZA 303 * and the SVE registers for both streaming and non-streaming modes. 304 * 305 * If both SVCR.ZA and SVCR.SM are disabled then at any point we 306 * may disable TIF_SME and reenable traps. 307 */ 308 309 310 /* 311 * TIF_SVE controls whether a task can use SVE without trapping while 312 * in userspace, and also (together with TIF_SME) the way a task's 313 * FPSIMD/SVE state is stored in thread_struct. 314 * 315 * The kernel uses this flag to track whether a user task is actively 316 * using SVE, and therefore whether full SVE register state needs to 317 * be tracked. If not, the cheaper FPSIMD context handling code can 318 * be used instead of the more costly SVE equivalents. 319 * 320 * * TIF_SVE or SVCR.SM set: 321 * 322 * The task can execute SVE instructions while in userspace without 323 * trapping to the kernel. 324 * 325 * During any syscall, the kernel may optionally clear TIF_SVE and 326 * discard the vector state except for the FPSIMD subset. 327 * 328 * * TIF_SVE clear: 329 * 330 * An attempt by the user task to execute an SVE instruction causes 331 * do_sve_acc() to be called, which does some preparation and then 332 * sets TIF_SVE. 333 * 334 * During any syscall, the kernel may optionally clear TIF_SVE and 335 * discard the vector state except for the FPSIMD subset. 336 * 337 * The data will be stored in one of two formats: 338 * 339 * * FPSIMD only - FP_STATE_FPSIMD: 340 * 341 * When the FPSIMD only state stored task->thread.fp_type is set to 342 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in 343 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 344 * logically zero but not stored anywhere; P0-P15 and FFR are not 345 * stored and have unspecified values from userspace's point of 346 * view. For hygiene purposes, the kernel zeroes them on next use, 347 * but userspace is discouraged from relying on this. 348 * 349 * task->thread.sve_state does not need to be non-NULL, valid or any 350 * particular size: it must not be dereferenced and any data stored 351 * there should be considered stale and not referenced. 352 * 353 * * SVE state - FP_STATE_SVE: 354 * 355 * When the full SVE state is stored task->thread.fp_type is set to 356 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the 357 * corresponding Zn), P0-P15 and FFR are encoded in in 358 * task->thread.sve_state, formatted appropriately for vector 359 * length task->thread.sve_vl or, if SVCR.SM is set, 360 * task->thread.sme_vl. The storage for the vector registers in 361 * task->thread.uw.fpsimd_state should be ignored. 362 * 363 * task->thread.sve_state must point to a valid buffer at least 364 * sve_state_size(task) bytes in size. The data stored in 365 * task->thread.uw.fpsimd_state.vregs should be considered stale 366 * and not referenced. 367 * 368 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 369 * irrespective of whether TIF_SVE is clear or set, since these are 370 * not vector length dependent. 371 */ 372 373 /* 374 * Update current's FPSIMD/SVE registers from thread_struct. 375 * 376 * This function should be called only when the FPSIMD/SVE state in 377 * thread_struct is known to be up to date, when preparing to enter 378 * userspace. 379 */ 380 static void task_fpsimd_load(void) 381 { 382 bool restore_sve_regs = false; 383 bool restore_ffr; 384 385 WARN_ON(!system_supports_fpsimd()); 386 WARN_ON(!have_cpu_fpsimd_context()); 387 388 if (system_supports_sve() || system_supports_sme()) { 389 switch (current->thread.fp_type) { 390 case FP_STATE_FPSIMD: 391 /* Stop tracking SVE for this task until next use. */ 392 if (test_and_clear_thread_flag(TIF_SVE)) 393 sve_user_disable(); 394 break; 395 case FP_STATE_SVE: 396 if (!thread_sm_enabled(¤t->thread) && 397 !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE))) 398 sve_user_enable(); 399 400 if (test_thread_flag(TIF_SVE)) 401 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1); 402 403 restore_sve_regs = true; 404 restore_ffr = true; 405 break; 406 default: 407 /* 408 * This indicates either a bug in 409 * fpsimd_save() or memory corruption, we 410 * should always record an explicit format 411 * when we save. We always at least have the 412 * memory allocated for FPSMID registers so 413 * try that and hope for the best. 414 */ 415 WARN_ON_ONCE(1); 416 clear_thread_flag(TIF_SVE); 417 break; 418 } 419 } 420 421 /* Restore SME, override SVE register configuration if needed */ 422 if (system_supports_sme()) { 423 unsigned long sme_vl = task_get_sme_vl(current); 424 425 /* Ensure VL is set up for restoring data */ 426 if (test_thread_flag(TIF_SME)) 427 sme_set_vq(sve_vq_from_vl(sme_vl) - 1); 428 429 write_sysreg_s(current->thread.svcr, SYS_SVCR); 430 431 if (thread_za_enabled(¤t->thread)) 432 sme_load_state(current->thread.sme_state, 433 system_supports_sme2()); 434 435 if (thread_sm_enabled(¤t->thread)) 436 restore_ffr = system_supports_fa64(); 437 } 438 439 if (restore_sve_regs) { 440 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE); 441 sve_load_state(sve_pffr(¤t->thread), 442 ¤t->thread.uw.fpsimd_state.fpsr, 443 restore_ffr); 444 } else { 445 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD); 446 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 447 } 448 } 449 450 /* 451 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 452 * date with respect to the CPU registers. Note carefully that the 453 * current context is the context last bound to the CPU stored in 454 * last, if KVM is involved this may be the guest VM context rather 455 * than the host thread for the VM pointed to by current. This means 456 * that we must always reference the state storage via last rather 457 * than via current, if we are saving KVM state then it will have 458 * ensured that the type of registers to save is set in last->to_save. 459 */ 460 static void fpsimd_save(void) 461 { 462 struct cpu_fp_state const *last = 463 this_cpu_ptr(&fpsimd_last_state); 464 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 465 bool save_sve_regs = false; 466 bool save_ffr; 467 unsigned int vl; 468 469 WARN_ON(!system_supports_fpsimd()); 470 WARN_ON(!have_cpu_fpsimd_context()); 471 472 if (test_thread_flag(TIF_FOREIGN_FPSTATE)) 473 return; 474 475 /* 476 * If a task is in a syscall the ABI allows us to only 477 * preserve the state shared with FPSIMD so don't bother 478 * saving the full SVE state in that case. 479 */ 480 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) && 481 !in_syscall(current_pt_regs())) || 482 last->to_save == FP_STATE_SVE) { 483 save_sve_regs = true; 484 save_ffr = true; 485 vl = last->sve_vl; 486 } 487 488 if (system_supports_sme()) { 489 u64 *svcr = last->svcr; 490 491 *svcr = read_sysreg_s(SYS_SVCR); 492 493 if (*svcr & SVCR_ZA_MASK) 494 sme_save_state(last->sme_state, 495 system_supports_sme2()); 496 497 /* If we are in streaming mode override regular SVE. */ 498 if (*svcr & SVCR_SM_MASK) { 499 save_sve_regs = true; 500 save_ffr = system_supports_fa64(); 501 vl = last->sme_vl; 502 } 503 } 504 505 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) { 506 /* Get the configured VL from RDVL, will account for SM */ 507 if (WARN_ON(sve_get_vl() != vl)) { 508 /* 509 * Can't save the user regs, so current would 510 * re-enter user with corrupt state. 511 * There's no way to recover, so kill it: 512 */ 513 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0); 514 return; 515 } 516 517 sve_save_state((char *)last->sve_state + 518 sve_ffr_offset(vl), 519 &last->st->fpsr, save_ffr); 520 *last->fp_type = FP_STATE_SVE; 521 } else { 522 fpsimd_save_state(last->st); 523 *last->fp_type = FP_STATE_FPSIMD; 524 } 525 } 526 527 /* 528 * All vector length selection from userspace comes through here. 529 * We're on a slow path, so some sanity-checks are included. 530 * If things go wrong there's a bug somewhere, but try to fall back to a 531 * safe choice. 532 */ 533 static unsigned int find_supported_vector_length(enum vec_type type, 534 unsigned int vl) 535 { 536 struct vl_info *info = &vl_info[type]; 537 int bit; 538 int max_vl = info->max_vl; 539 540 if (WARN_ON(!sve_vl_valid(vl))) 541 vl = info->min_vl; 542 543 if (WARN_ON(!sve_vl_valid(max_vl))) 544 max_vl = info->min_vl; 545 546 if (vl > max_vl) 547 vl = max_vl; 548 if (vl < info->min_vl) 549 vl = info->min_vl; 550 551 bit = find_next_bit(info->vq_map, SVE_VQ_MAX, 552 __vq_to_bit(sve_vq_from_vl(vl))); 553 return sve_vl_from_vq(__bit_to_vq(bit)); 554 } 555 556 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL) 557 558 static int vec_proc_do_default_vl(struct ctl_table *table, int write, 559 void *buffer, size_t *lenp, loff_t *ppos) 560 { 561 struct vl_info *info = table->extra1; 562 enum vec_type type = info->type; 563 int ret; 564 int vl = get_default_vl(type); 565 struct ctl_table tmp_table = { 566 .data = &vl, 567 .maxlen = sizeof(vl), 568 }; 569 570 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 571 if (ret || !write) 572 return ret; 573 574 /* Writing -1 has the special meaning "set to max": */ 575 if (vl == -1) 576 vl = info->max_vl; 577 578 if (!sve_vl_valid(vl)) 579 return -EINVAL; 580 581 set_default_vl(type, find_supported_vector_length(type, vl)); 582 return 0; 583 } 584 585 static struct ctl_table sve_default_vl_table[] = { 586 { 587 .procname = "sve_default_vector_length", 588 .mode = 0644, 589 .proc_handler = vec_proc_do_default_vl, 590 .extra1 = &vl_info[ARM64_VEC_SVE], 591 }, 592 }; 593 594 static int __init sve_sysctl_init(void) 595 { 596 if (system_supports_sve()) 597 if (!register_sysctl("abi", sve_default_vl_table)) 598 return -EINVAL; 599 600 return 0; 601 } 602 603 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 604 static int __init sve_sysctl_init(void) { return 0; } 605 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 606 607 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL) 608 static struct ctl_table sme_default_vl_table[] = { 609 { 610 .procname = "sme_default_vector_length", 611 .mode = 0644, 612 .proc_handler = vec_proc_do_default_vl, 613 .extra1 = &vl_info[ARM64_VEC_SME], 614 }, 615 }; 616 617 static int __init sme_sysctl_init(void) 618 { 619 if (system_supports_sme()) 620 if (!register_sysctl("abi", sme_default_vl_table)) 621 return -EINVAL; 622 623 return 0; 624 } 625 626 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 627 static int __init sme_sysctl_init(void) { return 0; } 628 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 629 630 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 631 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 632 633 #ifdef CONFIG_CPU_BIG_ENDIAN 634 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 635 { 636 u64 a = swab64(x); 637 u64 b = swab64(x >> 64); 638 639 return ((__uint128_t)a << 64) | b; 640 } 641 #else 642 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 643 { 644 return x; 645 } 646 #endif 647 648 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 649 650 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, 651 unsigned int vq) 652 { 653 unsigned int i; 654 __uint128_t *p; 655 656 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 657 p = (__uint128_t *)ZREG(sst, vq, i); 658 *p = arm64_cpu_to_le128(fst->vregs[i]); 659 } 660 } 661 662 /* 663 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 664 * task->thread.sve_state. 665 * 666 * Task can be a non-runnable task, or current. In the latter case, 667 * the caller must have ownership of the cpu FPSIMD context before calling 668 * this function. 669 * task->thread.sve_state must point to at least sve_state_size(task) 670 * bytes of allocated kernel memory. 671 * task->thread.uw.fpsimd_state must be up to date before calling this 672 * function. 673 */ 674 static void fpsimd_to_sve(struct task_struct *task) 675 { 676 unsigned int vq; 677 void *sst = task->thread.sve_state; 678 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 679 680 if (!system_supports_sve() && !system_supports_sme()) 681 return; 682 683 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 684 __fpsimd_to_sve(sst, fst, vq); 685 } 686 687 /* 688 * Transfer the SVE state in task->thread.sve_state to 689 * task->thread.uw.fpsimd_state. 690 * 691 * Task can be a non-runnable task, or current. In the latter case, 692 * the caller must have ownership of the cpu FPSIMD context before calling 693 * this function. 694 * task->thread.sve_state must point to at least sve_state_size(task) 695 * bytes of allocated kernel memory. 696 * task->thread.sve_state must be up to date before calling this function. 697 */ 698 static void sve_to_fpsimd(struct task_struct *task) 699 { 700 unsigned int vq, vl; 701 void const *sst = task->thread.sve_state; 702 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 703 unsigned int i; 704 __uint128_t const *p; 705 706 if (!system_supports_sve() && !system_supports_sme()) 707 return; 708 709 vl = thread_get_cur_vl(&task->thread); 710 vq = sve_vq_from_vl(vl); 711 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 712 p = (__uint128_t const *)ZREG(sst, vq, i); 713 fst->vregs[i] = arm64_le128_to_cpu(*p); 714 } 715 } 716 717 #ifdef CONFIG_ARM64_SVE 718 /* 719 * Call __sve_free() directly only if you know task can't be scheduled 720 * or preempted. 721 */ 722 static void __sve_free(struct task_struct *task) 723 { 724 kfree(task->thread.sve_state); 725 task->thread.sve_state = NULL; 726 } 727 728 static void sve_free(struct task_struct *task) 729 { 730 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 731 732 __sve_free(task); 733 } 734 735 /* 736 * Return how many bytes of memory are required to store the full SVE 737 * state for task, given task's currently configured vector length. 738 */ 739 size_t sve_state_size(struct task_struct const *task) 740 { 741 unsigned int vl = 0; 742 743 if (system_supports_sve()) 744 vl = task_get_sve_vl(task); 745 if (system_supports_sme()) 746 vl = max(vl, task_get_sme_vl(task)); 747 748 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)); 749 } 750 751 /* 752 * Ensure that task->thread.sve_state is allocated and sufficiently large. 753 * 754 * This function should be used only in preparation for replacing 755 * task->thread.sve_state with new data. The memory is always zeroed 756 * here to prevent stale data from showing through: this is done in 757 * the interest of testability and predictability: except in the 758 * do_sve_acc() case, there is no ABI requirement to hide stale data 759 * written previously be task. 760 */ 761 void sve_alloc(struct task_struct *task, bool flush) 762 { 763 if (task->thread.sve_state) { 764 if (flush) 765 memset(task->thread.sve_state, 0, 766 sve_state_size(task)); 767 return; 768 } 769 770 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 771 task->thread.sve_state = 772 kzalloc(sve_state_size(task), GFP_KERNEL); 773 } 774 775 776 /* 777 * Force the FPSIMD state shared with SVE to be updated in the SVE state 778 * even if the SVE state is the current active state. 779 * 780 * This should only be called by ptrace. task must be non-runnable. 781 * task->thread.sve_state must point to at least sve_state_size(task) 782 * bytes of allocated kernel memory. 783 */ 784 void fpsimd_force_sync_to_sve(struct task_struct *task) 785 { 786 fpsimd_to_sve(task); 787 } 788 789 /* 790 * Ensure that task->thread.sve_state is up to date with respect to 791 * the user task, irrespective of when SVE is in use or not. 792 * 793 * This should only be called by ptrace. task must be non-runnable. 794 * task->thread.sve_state must point to at least sve_state_size(task) 795 * bytes of allocated kernel memory. 796 */ 797 void fpsimd_sync_to_sve(struct task_struct *task) 798 { 799 if (!test_tsk_thread_flag(task, TIF_SVE) && 800 !thread_sm_enabled(&task->thread)) 801 fpsimd_to_sve(task); 802 } 803 804 /* 805 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 806 * the user task, irrespective of whether SVE is in use or not. 807 * 808 * This should only be called by ptrace. task must be non-runnable. 809 * task->thread.sve_state must point to at least sve_state_size(task) 810 * bytes of allocated kernel memory. 811 */ 812 void sve_sync_to_fpsimd(struct task_struct *task) 813 { 814 if (task->thread.fp_type == FP_STATE_SVE) 815 sve_to_fpsimd(task); 816 } 817 818 /* 819 * Ensure that task->thread.sve_state is up to date with respect to 820 * the task->thread.uw.fpsimd_state. 821 * 822 * This should only be called by ptrace to merge new FPSIMD register 823 * values into a task for which SVE is currently active. 824 * task must be non-runnable. 825 * task->thread.sve_state must point to at least sve_state_size(task) 826 * bytes of allocated kernel memory. 827 * task->thread.uw.fpsimd_state must already have been initialised with 828 * the new FPSIMD register values to be merged in. 829 */ 830 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 831 { 832 unsigned int vq; 833 void *sst = task->thread.sve_state; 834 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 835 836 if (!test_tsk_thread_flag(task, TIF_SVE) && 837 !thread_sm_enabled(&task->thread)) 838 return; 839 840 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 841 842 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 843 __fpsimd_to_sve(sst, fst, vq); 844 } 845 846 int vec_set_vector_length(struct task_struct *task, enum vec_type type, 847 unsigned long vl, unsigned long flags) 848 { 849 bool free_sme = false; 850 851 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 852 PR_SVE_SET_VL_ONEXEC)) 853 return -EINVAL; 854 855 if (!sve_vl_valid(vl)) 856 return -EINVAL; 857 858 /* 859 * Clamp to the maximum vector length that VL-agnostic code 860 * can work with. A flag may be assigned in the future to 861 * allow setting of larger vector lengths without confusing 862 * older software. 863 */ 864 if (vl > VL_ARCH_MAX) 865 vl = VL_ARCH_MAX; 866 867 vl = find_supported_vector_length(type, vl); 868 869 if (flags & (PR_SVE_VL_INHERIT | 870 PR_SVE_SET_VL_ONEXEC)) 871 task_set_vl_onexec(task, type, vl); 872 else 873 /* Reset VL to system default on next exec: */ 874 task_set_vl_onexec(task, type, 0); 875 876 /* Only actually set the VL if not deferred: */ 877 if (flags & PR_SVE_SET_VL_ONEXEC) 878 goto out; 879 880 if (vl == task_get_vl(task, type)) 881 goto out; 882 883 /* 884 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 885 * write any live register state back to task_struct, and convert to a 886 * regular FPSIMD thread. 887 */ 888 if (task == current) { 889 get_cpu_fpsimd_context(); 890 891 fpsimd_save(); 892 } 893 894 fpsimd_flush_task_state(task); 895 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) || 896 thread_sm_enabled(&task->thread)) { 897 sve_to_fpsimd(task); 898 task->thread.fp_type = FP_STATE_FPSIMD; 899 } 900 901 if (system_supports_sme()) { 902 if (type == ARM64_VEC_SME || 903 !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) { 904 /* 905 * We are changing the SME VL or weren't using 906 * SME anyway, discard the state and force a 907 * reallocation. 908 */ 909 task->thread.svcr &= ~(SVCR_SM_MASK | 910 SVCR_ZA_MASK); 911 clear_tsk_thread_flag(task, TIF_SME); 912 free_sme = true; 913 } 914 } 915 916 if (task == current) 917 put_cpu_fpsimd_context(); 918 919 task_set_vl(task, type, vl); 920 921 /* 922 * Free the changed states if they are not in use, SME will be 923 * reallocated to the correct size on next use and we just 924 * allocate SVE now in case it is needed for use in streaming 925 * mode. 926 */ 927 if (system_supports_sve()) { 928 sve_free(task); 929 sve_alloc(task, true); 930 } 931 932 if (free_sme) 933 sme_free(task); 934 935 out: 936 update_tsk_thread_flag(task, vec_vl_inherit_flag(type), 937 flags & PR_SVE_VL_INHERIT); 938 939 return 0; 940 } 941 942 /* 943 * Encode the current vector length and flags for return. 944 * This is only required for prctl(): ptrace has separate fields. 945 * SVE and SME use the same bits for _ONEXEC and _INHERIT. 946 * 947 * flags are as for vec_set_vector_length(). 948 */ 949 static int vec_prctl_status(enum vec_type type, unsigned long flags) 950 { 951 int ret; 952 953 if (flags & PR_SVE_SET_VL_ONEXEC) 954 ret = task_get_vl_onexec(current, type); 955 else 956 ret = task_get_vl(current, type); 957 958 if (test_thread_flag(vec_vl_inherit_flag(type))) 959 ret |= PR_SVE_VL_INHERIT; 960 961 return ret; 962 } 963 964 /* PR_SVE_SET_VL */ 965 int sve_set_current_vl(unsigned long arg) 966 { 967 unsigned long vl, flags; 968 int ret; 969 970 vl = arg & PR_SVE_VL_LEN_MASK; 971 flags = arg & ~vl; 972 973 if (!system_supports_sve() || is_compat_task()) 974 return -EINVAL; 975 976 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags); 977 if (ret) 978 return ret; 979 980 return vec_prctl_status(ARM64_VEC_SVE, flags); 981 } 982 983 /* PR_SVE_GET_VL */ 984 int sve_get_current_vl(void) 985 { 986 if (!system_supports_sve() || is_compat_task()) 987 return -EINVAL; 988 989 return vec_prctl_status(ARM64_VEC_SVE, 0); 990 } 991 992 #ifdef CONFIG_ARM64_SME 993 /* PR_SME_SET_VL */ 994 int sme_set_current_vl(unsigned long arg) 995 { 996 unsigned long vl, flags; 997 int ret; 998 999 vl = arg & PR_SME_VL_LEN_MASK; 1000 flags = arg & ~vl; 1001 1002 if (!system_supports_sme() || is_compat_task()) 1003 return -EINVAL; 1004 1005 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags); 1006 if (ret) 1007 return ret; 1008 1009 return vec_prctl_status(ARM64_VEC_SME, flags); 1010 } 1011 1012 /* PR_SME_GET_VL */ 1013 int sme_get_current_vl(void) 1014 { 1015 if (!system_supports_sme() || is_compat_task()) 1016 return -EINVAL; 1017 1018 return vec_prctl_status(ARM64_VEC_SME, 0); 1019 } 1020 #endif /* CONFIG_ARM64_SME */ 1021 1022 static void vec_probe_vqs(struct vl_info *info, 1023 DECLARE_BITMAP(map, SVE_VQ_MAX)) 1024 { 1025 unsigned int vq, vl; 1026 1027 bitmap_zero(map, SVE_VQ_MAX); 1028 1029 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 1030 write_vl(info->type, vq - 1); /* self-syncing */ 1031 1032 switch (info->type) { 1033 case ARM64_VEC_SVE: 1034 vl = sve_get_vl(); 1035 break; 1036 case ARM64_VEC_SME: 1037 vl = sme_get_vl(); 1038 break; 1039 default: 1040 vl = 0; 1041 break; 1042 } 1043 1044 /* Minimum VL identified? */ 1045 if (sve_vq_from_vl(vl) > vq) 1046 break; 1047 1048 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 1049 set_bit(__vq_to_bit(vq), map); 1050 } 1051 } 1052 1053 /* 1054 * Initialise the set of known supported VQs for the boot CPU. 1055 * This is called during kernel boot, before secondary CPUs are brought up. 1056 */ 1057 void __init vec_init_vq_map(enum vec_type type) 1058 { 1059 struct vl_info *info = &vl_info[type]; 1060 vec_probe_vqs(info, info->vq_map); 1061 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX); 1062 } 1063 1064 /* 1065 * If we haven't committed to the set of supported VQs yet, filter out 1066 * those not supported by the current CPU. 1067 * This function is called during the bring-up of early secondary CPUs only. 1068 */ 1069 void vec_update_vq_map(enum vec_type type) 1070 { 1071 struct vl_info *info = &vl_info[type]; 1072 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1073 1074 vec_probe_vqs(info, tmp_map); 1075 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX); 1076 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map, 1077 SVE_VQ_MAX); 1078 } 1079 1080 /* 1081 * Check whether the current CPU supports all VQs in the committed set. 1082 * This function is called during the bring-up of late secondary CPUs only. 1083 */ 1084 int vec_verify_vq_map(enum vec_type type) 1085 { 1086 struct vl_info *info = &vl_info[type]; 1087 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1088 unsigned long b; 1089 1090 vec_probe_vqs(info, tmp_map); 1091 1092 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1093 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) { 1094 pr_warn("%s: cpu%d: Required vector length(s) missing\n", 1095 info->name, smp_processor_id()); 1096 return -EINVAL; 1097 } 1098 1099 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 1100 return 0; 1101 1102 /* 1103 * For KVM, it is necessary to ensure that this CPU doesn't 1104 * support any vector length that guests may have probed as 1105 * unsupported. 1106 */ 1107 1108 /* Recover the set of supported VQs: */ 1109 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1110 /* Find VQs supported that are not globally supported: */ 1111 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX); 1112 1113 /* Find the lowest such VQ, if any: */ 1114 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1115 if (b >= SVE_VQ_MAX) 1116 return 0; /* no mismatches */ 1117 1118 /* 1119 * Mismatches above sve_max_virtualisable_vl are fine, since 1120 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 1121 */ 1122 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) { 1123 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n", 1124 info->name, smp_processor_id()); 1125 return -EINVAL; 1126 } 1127 1128 return 0; 1129 } 1130 1131 static void __init sve_efi_setup(void) 1132 { 1133 int max_vl = 0; 1134 int i; 1135 1136 if (!IS_ENABLED(CONFIG_EFI)) 1137 return; 1138 1139 for (i = 0; i < ARRAY_SIZE(vl_info); i++) 1140 max_vl = max(vl_info[i].max_vl, max_vl); 1141 1142 /* 1143 * alloc_percpu() warns and prints a backtrace if this goes wrong. 1144 * This is evidence of a crippled system and we are returning void, 1145 * so no attempt is made to handle this situation here. 1146 */ 1147 if (!sve_vl_valid(max_vl)) 1148 goto fail; 1149 1150 efi_sve_state = __alloc_percpu( 1151 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES); 1152 if (!efi_sve_state) 1153 goto fail; 1154 1155 return; 1156 1157 fail: 1158 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 1159 } 1160 1161 void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p) 1162 { 1163 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 1164 isb(); 1165 } 1166 1167 void __init sve_setup(void) 1168 { 1169 struct vl_info *info = &vl_info[ARM64_VEC_SVE]; 1170 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1171 unsigned long b; 1172 int max_bit; 1173 1174 if (!cpus_have_cap(ARM64_SVE)) 1175 return; 1176 1177 /* 1178 * The SVE architecture mandates support for 128-bit vectors, 1179 * so sve_vq_map must have at least SVE_VQ_MIN set. 1180 * If something went wrong, at least try to patch it up: 1181 */ 1182 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map))) 1183 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map); 1184 1185 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX); 1186 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit)); 1187 1188 /* 1189 * For the default VL, pick the maximum supported value <= 64. 1190 * VL == 64 is guaranteed not to grow the signal frame. 1191 */ 1192 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64)); 1193 1194 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map, 1195 SVE_VQ_MAX); 1196 1197 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1198 if (b >= SVE_VQ_MAX) 1199 /* No non-virtualisable VLs found */ 1200 info->max_virtualisable_vl = SVE_VQ_MAX; 1201 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 1202 /* No virtualisable VLs? This is architecturally forbidden. */ 1203 info->max_virtualisable_vl = SVE_VQ_MIN; 1204 else /* b + 1 < SVE_VQ_MAX */ 1205 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 1206 1207 if (info->max_virtualisable_vl > info->max_vl) 1208 info->max_virtualisable_vl = info->max_vl; 1209 1210 pr_info("%s: maximum available vector length %u bytes per vector\n", 1211 info->name, info->max_vl); 1212 pr_info("%s: default vector length %u bytes per vector\n", 1213 info->name, get_sve_default_vl()); 1214 1215 /* KVM decides whether to support mismatched systems. Just warn here: */ 1216 if (sve_max_virtualisable_vl() < sve_max_vl()) 1217 pr_warn("%s: unvirtualisable vector lengths present\n", 1218 info->name); 1219 1220 sve_efi_setup(); 1221 } 1222 1223 /* 1224 * Called from the put_task_struct() path, which cannot get here 1225 * unless dead_task is really dead and not schedulable. 1226 */ 1227 void fpsimd_release_task(struct task_struct *dead_task) 1228 { 1229 __sve_free(dead_task); 1230 sme_free(dead_task); 1231 } 1232 1233 #endif /* CONFIG_ARM64_SVE */ 1234 1235 #ifdef CONFIG_ARM64_SME 1236 1237 /* 1238 * Ensure that task->thread.sme_state is allocated and sufficiently large. 1239 * 1240 * This function should be used only in preparation for replacing 1241 * task->thread.sme_state with new data. The memory is always zeroed 1242 * here to prevent stale data from showing through: this is done in 1243 * the interest of testability and predictability, the architecture 1244 * guarantees that when ZA is enabled it will be zeroed. 1245 */ 1246 void sme_alloc(struct task_struct *task, bool flush) 1247 { 1248 if (task->thread.sme_state && flush) { 1249 memset(task->thread.sme_state, 0, sme_state_size(task)); 1250 return; 1251 } 1252 1253 /* This could potentially be up to 64K. */ 1254 task->thread.sme_state = 1255 kzalloc(sme_state_size(task), GFP_KERNEL); 1256 } 1257 1258 static void sme_free(struct task_struct *task) 1259 { 1260 kfree(task->thread.sme_state); 1261 task->thread.sme_state = NULL; 1262 } 1263 1264 void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p) 1265 { 1266 /* Set priority for all PEs to architecturally defined minimum */ 1267 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK, 1268 SYS_SMPRI_EL1); 1269 1270 /* Allow SME in kernel */ 1271 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1); 1272 isb(); 1273 1274 /* Allow EL0 to access TPIDR2 */ 1275 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1); 1276 isb(); 1277 } 1278 1279 void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p) 1280 { 1281 /* This must be enabled after SME */ 1282 BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME); 1283 1284 /* Allow use of ZT0 */ 1285 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK, 1286 SYS_SMCR_EL1); 1287 } 1288 1289 void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p) 1290 { 1291 /* This must be enabled after SME */ 1292 BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME); 1293 1294 /* Allow use of FA64 */ 1295 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK, 1296 SYS_SMCR_EL1); 1297 } 1298 1299 void __init sme_setup(void) 1300 { 1301 struct vl_info *info = &vl_info[ARM64_VEC_SME]; 1302 int min_bit, max_bit; 1303 1304 if (!cpus_have_cap(ARM64_SME)) 1305 return; 1306 1307 /* 1308 * SME doesn't require any particular vector length be 1309 * supported but it does require at least one. We should have 1310 * disabled the feature entirely while bringing up CPUs but 1311 * let's double check here. The bitmap is SVE_VQ_MAP sized for 1312 * sharing with SVE. 1313 */ 1314 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX)); 1315 1316 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX); 1317 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit)); 1318 1319 max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX); 1320 info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit)); 1321 1322 WARN_ON(info->min_vl > info->max_vl); 1323 1324 /* 1325 * For the default VL, pick the maximum supported value <= 32 1326 * (256 bits) if there is one since this is guaranteed not to 1327 * grow the signal frame when in streaming mode, otherwise the 1328 * minimum available VL will be used. 1329 */ 1330 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32)); 1331 1332 pr_info("SME: minimum available vector length %u bytes per vector\n", 1333 info->min_vl); 1334 pr_info("SME: maximum available vector length %u bytes per vector\n", 1335 info->max_vl); 1336 pr_info("SME: default vector length %u bytes per vector\n", 1337 get_sme_default_vl()); 1338 } 1339 1340 #endif /* CONFIG_ARM64_SME */ 1341 1342 static void sve_init_regs(void) 1343 { 1344 /* 1345 * Convert the FPSIMD state to SVE, zeroing all the state that 1346 * is not shared with FPSIMD. If (as is likely) the current 1347 * state is live in the registers then do this there and 1348 * update our metadata for the current task including 1349 * disabling the trap, otherwise update our in-memory copy. 1350 * We are guaranteed to not be in streaming mode, we can only 1351 * take a SVE trap when not in streaming mode and we can't be 1352 * in streaming mode when taking a SME trap. 1353 */ 1354 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1355 unsigned long vq_minus_one = 1356 sve_vq_from_vl(task_get_sve_vl(current)) - 1; 1357 sve_set_vq(vq_minus_one); 1358 sve_flush_live(true, vq_minus_one); 1359 fpsimd_bind_task_to_cpu(); 1360 } else { 1361 fpsimd_to_sve(current); 1362 current->thread.fp_type = FP_STATE_SVE; 1363 } 1364 } 1365 1366 /* 1367 * Trapped SVE access 1368 * 1369 * Storage is allocated for the full SVE state, the current FPSIMD 1370 * register contents are migrated across, and the access trap is 1371 * disabled. 1372 * 1373 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state() 1374 * would have disabled the SVE access trap for userspace during 1375 * ret_to_user, making an SVE access trap impossible in that case. 1376 */ 1377 void do_sve_acc(unsigned long esr, struct pt_regs *regs) 1378 { 1379 /* Even if we chose not to use SVE, the hardware could still trap: */ 1380 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 1381 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1382 return; 1383 } 1384 1385 sve_alloc(current, true); 1386 if (!current->thread.sve_state) { 1387 force_sig(SIGKILL); 1388 return; 1389 } 1390 1391 get_cpu_fpsimd_context(); 1392 1393 if (test_and_set_thread_flag(TIF_SVE)) 1394 WARN_ON(1); /* SVE access shouldn't have trapped */ 1395 1396 /* 1397 * Even if the task can have used streaming mode we can only 1398 * generate SVE access traps in normal SVE mode and 1399 * transitioning out of streaming mode may discard any 1400 * streaming mode state. Always clear the high bits to avoid 1401 * any potential errors tracking what is properly initialised. 1402 */ 1403 sve_init_regs(); 1404 1405 put_cpu_fpsimd_context(); 1406 } 1407 1408 /* 1409 * Trapped SME access 1410 * 1411 * Storage is allocated for the full SVE and SME state, the current 1412 * FPSIMD register contents are migrated to SVE if SVE is not already 1413 * active, and the access trap is disabled. 1414 * 1415 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state() 1416 * would have disabled the SME access trap for userspace during 1417 * ret_to_user, making an SME access trap impossible in that case. 1418 */ 1419 void do_sme_acc(unsigned long esr, struct pt_regs *regs) 1420 { 1421 /* Even if we chose not to use SME, the hardware could still trap: */ 1422 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) { 1423 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1424 return; 1425 } 1426 1427 /* 1428 * If this not a trap due to SME being disabled then something 1429 * is being used in the wrong mode, report as SIGILL. 1430 */ 1431 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) { 1432 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1433 return; 1434 } 1435 1436 sve_alloc(current, false); 1437 sme_alloc(current, true); 1438 if (!current->thread.sve_state || !current->thread.sme_state) { 1439 force_sig(SIGKILL); 1440 return; 1441 } 1442 1443 get_cpu_fpsimd_context(); 1444 1445 /* With TIF_SME userspace shouldn't generate any traps */ 1446 if (test_and_set_thread_flag(TIF_SME)) 1447 WARN_ON(1); 1448 1449 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1450 unsigned long vq_minus_one = 1451 sve_vq_from_vl(task_get_sme_vl(current)) - 1; 1452 sme_set_vq(vq_minus_one); 1453 1454 fpsimd_bind_task_to_cpu(); 1455 } 1456 1457 put_cpu_fpsimd_context(); 1458 } 1459 1460 /* 1461 * Trapped FP/ASIMD access. 1462 */ 1463 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs) 1464 { 1465 /* Even if we chose not to use FPSIMD, the hardware could still trap: */ 1466 if (!system_supports_fpsimd()) { 1467 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1468 return; 1469 } 1470 1471 /* 1472 * When FPSIMD is enabled, we should never take a trap unless something 1473 * has gone very wrong. 1474 */ 1475 BUG(); 1476 } 1477 1478 /* 1479 * Raise a SIGFPE for the current process. 1480 */ 1481 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs) 1482 { 1483 unsigned int si_code = FPE_FLTUNK; 1484 1485 if (esr & ESR_ELx_FP_EXC_TFV) { 1486 if (esr & FPEXC_IOF) 1487 si_code = FPE_FLTINV; 1488 else if (esr & FPEXC_DZF) 1489 si_code = FPE_FLTDIV; 1490 else if (esr & FPEXC_OFF) 1491 si_code = FPE_FLTOVF; 1492 else if (esr & FPEXC_UFF) 1493 si_code = FPE_FLTUND; 1494 else if (esr & FPEXC_IXF) 1495 si_code = FPE_FLTRES; 1496 } 1497 1498 send_sig_fault(SIGFPE, si_code, 1499 (void __user *)instruction_pointer(regs), 1500 current); 1501 } 1502 1503 void fpsimd_thread_switch(struct task_struct *next) 1504 { 1505 bool wrong_task, wrong_cpu; 1506 1507 if (!system_supports_fpsimd()) 1508 return; 1509 1510 __get_cpu_fpsimd_context(); 1511 1512 /* Save unsaved fpsimd state, if any: */ 1513 fpsimd_save(); 1514 1515 /* 1516 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 1517 * state. For kernel threads, FPSIMD registers are never loaded 1518 * and wrong_task and wrong_cpu will always be true. 1519 */ 1520 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 1521 &next->thread.uw.fpsimd_state; 1522 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 1523 1524 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 1525 wrong_task || wrong_cpu); 1526 1527 __put_cpu_fpsimd_context(); 1528 } 1529 1530 static void fpsimd_flush_thread_vl(enum vec_type type) 1531 { 1532 int vl, supported_vl; 1533 1534 /* 1535 * Reset the task vector length as required. This is where we 1536 * ensure that all user tasks have a valid vector length 1537 * configured: no kernel task can become a user task without 1538 * an exec and hence a call to this function. By the time the 1539 * first call to this function is made, all early hardware 1540 * probing is complete, so __sve_default_vl should be valid. 1541 * If a bug causes this to go wrong, we make some noise and 1542 * try to fudge thread.sve_vl to a safe value here. 1543 */ 1544 vl = task_get_vl_onexec(current, type); 1545 if (!vl) 1546 vl = get_default_vl(type); 1547 1548 if (WARN_ON(!sve_vl_valid(vl))) 1549 vl = vl_info[type].min_vl; 1550 1551 supported_vl = find_supported_vector_length(type, vl); 1552 if (WARN_ON(supported_vl != vl)) 1553 vl = supported_vl; 1554 1555 task_set_vl(current, type, vl); 1556 1557 /* 1558 * If the task is not set to inherit, ensure that the vector 1559 * length will be reset by a subsequent exec: 1560 */ 1561 if (!test_thread_flag(vec_vl_inherit_flag(type))) 1562 task_set_vl_onexec(current, type, 0); 1563 } 1564 1565 void fpsimd_flush_thread(void) 1566 { 1567 void *sve_state = NULL; 1568 void *sme_state = NULL; 1569 1570 if (!system_supports_fpsimd()) 1571 return; 1572 1573 get_cpu_fpsimd_context(); 1574 1575 fpsimd_flush_task_state(current); 1576 memset(¤t->thread.uw.fpsimd_state, 0, 1577 sizeof(current->thread.uw.fpsimd_state)); 1578 1579 if (system_supports_sve()) { 1580 clear_thread_flag(TIF_SVE); 1581 1582 /* Defer kfree() while in atomic context */ 1583 sve_state = current->thread.sve_state; 1584 current->thread.sve_state = NULL; 1585 1586 fpsimd_flush_thread_vl(ARM64_VEC_SVE); 1587 } 1588 1589 if (system_supports_sme()) { 1590 clear_thread_flag(TIF_SME); 1591 1592 /* Defer kfree() while in atomic context */ 1593 sme_state = current->thread.sme_state; 1594 current->thread.sme_state = NULL; 1595 1596 fpsimd_flush_thread_vl(ARM64_VEC_SME); 1597 current->thread.svcr = 0; 1598 } 1599 1600 current->thread.fp_type = FP_STATE_FPSIMD; 1601 1602 put_cpu_fpsimd_context(); 1603 kfree(sve_state); 1604 kfree(sme_state); 1605 } 1606 1607 /* 1608 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1609 * currently held in the registers does in fact belong to 'current' 1610 */ 1611 void fpsimd_preserve_current_state(void) 1612 { 1613 if (!system_supports_fpsimd()) 1614 return; 1615 1616 get_cpu_fpsimd_context(); 1617 fpsimd_save(); 1618 put_cpu_fpsimd_context(); 1619 } 1620 1621 /* 1622 * Like fpsimd_preserve_current_state(), but ensure that 1623 * current->thread.uw.fpsimd_state is updated so that it can be copied to 1624 * the signal frame. 1625 */ 1626 void fpsimd_signal_preserve_current_state(void) 1627 { 1628 fpsimd_preserve_current_state(); 1629 if (test_thread_flag(TIF_SVE)) 1630 sve_to_fpsimd(current); 1631 } 1632 1633 /* 1634 * Called by KVM when entering the guest. 1635 */ 1636 void fpsimd_kvm_prepare(void) 1637 { 1638 if (!system_supports_sve()) 1639 return; 1640 1641 /* 1642 * KVM does not save host SVE state since we can only enter 1643 * the guest from a syscall so the ABI means that only the 1644 * non-saved SVE state needs to be saved. If we have left 1645 * SVE enabled for performance reasons then update the task 1646 * state to be FPSIMD only. 1647 */ 1648 get_cpu_fpsimd_context(); 1649 1650 if (test_and_clear_thread_flag(TIF_SVE)) { 1651 sve_to_fpsimd(current); 1652 current->thread.fp_type = FP_STATE_FPSIMD; 1653 } 1654 1655 put_cpu_fpsimd_context(); 1656 } 1657 1658 /* 1659 * Associate current's FPSIMD context with this cpu 1660 * The caller must have ownership of the cpu FPSIMD context before calling 1661 * this function. 1662 */ 1663 static void fpsimd_bind_task_to_cpu(void) 1664 { 1665 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1666 1667 WARN_ON(!system_supports_fpsimd()); 1668 last->st = ¤t->thread.uw.fpsimd_state; 1669 last->sve_state = current->thread.sve_state; 1670 last->sme_state = current->thread.sme_state; 1671 last->sve_vl = task_get_sve_vl(current); 1672 last->sme_vl = task_get_sme_vl(current); 1673 last->svcr = ¤t->thread.svcr; 1674 last->fp_type = ¤t->thread.fp_type; 1675 last->to_save = FP_STATE_CURRENT; 1676 current->thread.fpsimd_cpu = smp_processor_id(); 1677 1678 /* 1679 * Toggle SVE and SME trapping for userspace if needed, these 1680 * are serialsied by ret_to_user(). 1681 */ 1682 if (system_supports_sme()) { 1683 if (test_thread_flag(TIF_SME)) 1684 sme_user_enable(); 1685 else 1686 sme_user_disable(); 1687 } 1688 1689 if (system_supports_sve()) { 1690 if (test_thread_flag(TIF_SVE)) 1691 sve_user_enable(); 1692 else 1693 sve_user_disable(); 1694 } 1695 } 1696 1697 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state) 1698 { 1699 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1700 1701 WARN_ON(!system_supports_fpsimd()); 1702 WARN_ON(!in_softirq() && !irqs_disabled()); 1703 1704 *last = *state; 1705 } 1706 1707 /* 1708 * Load the userland FPSIMD state of 'current' from memory, but only if the 1709 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1710 * state of 'current'. This is called when we are preparing to return to 1711 * userspace to ensure that userspace sees a good register state. 1712 */ 1713 void fpsimd_restore_current_state(void) 1714 { 1715 /* 1716 * TIF_FOREIGN_FPSTATE is set on the init task and copied by 1717 * arch_dup_task_struct() regardless of whether FP/SIMD is detected. 1718 * Thus user threads can have this set even when FP/SIMD hasn't been 1719 * detected. 1720 * 1721 * When FP/SIMD is detected, begin_new_exec() will set 1722 * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(), 1723 * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when 1724 * switching tasks. We detect FP/SIMD before we exec the first user 1725 * process, ensuring this has TIF_FOREIGN_FPSTATE set and 1726 * do_notify_resume() will call fpsimd_restore_current_state() to 1727 * install the user FP/SIMD context. 1728 * 1729 * When FP/SIMD is not detected, nothing else will clear or set 1730 * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and 1731 * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume() 1732 * looping forever calling fpsimd_restore_current_state(). 1733 */ 1734 if (!system_supports_fpsimd()) { 1735 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1736 return; 1737 } 1738 1739 get_cpu_fpsimd_context(); 1740 1741 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1742 task_fpsimd_load(); 1743 fpsimd_bind_task_to_cpu(); 1744 } 1745 1746 put_cpu_fpsimd_context(); 1747 } 1748 1749 /* 1750 * Load an updated userland FPSIMD state for 'current' from memory and set the 1751 * flag that indicates that the FPSIMD register contents are the most recent 1752 * FPSIMD state of 'current'. This is used by the signal code to restore the 1753 * register state when returning from a signal handler in FPSIMD only cases, 1754 * any SVE context will be discarded. 1755 */ 1756 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1757 { 1758 if (WARN_ON(!system_supports_fpsimd())) 1759 return; 1760 1761 get_cpu_fpsimd_context(); 1762 1763 current->thread.uw.fpsimd_state = *state; 1764 if (test_thread_flag(TIF_SVE)) 1765 fpsimd_to_sve(current); 1766 1767 task_fpsimd_load(); 1768 fpsimd_bind_task_to_cpu(); 1769 1770 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1771 1772 put_cpu_fpsimd_context(); 1773 } 1774 1775 /* 1776 * Invalidate live CPU copies of task t's FPSIMD state 1777 * 1778 * This function may be called with preemption enabled. The barrier() 1779 * ensures that the assignment to fpsimd_cpu is visible to any 1780 * preemption/softirq that could race with set_tsk_thread_flag(), so 1781 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1782 * 1783 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1784 * subsequent code. 1785 */ 1786 void fpsimd_flush_task_state(struct task_struct *t) 1787 { 1788 t->thread.fpsimd_cpu = NR_CPUS; 1789 /* 1790 * If we don't support fpsimd, bail out after we have 1791 * reset the fpsimd_cpu for this task and clear the 1792 * FPSTATE. 1793 */ 1794 if (!system_supports_fpsimd()) 1795 return; 1796 barrier(); 1797 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1798 1799 barrier(); 1800 } 1801 1802 /* 1803 * Invalidate any task's FPSIMD state that is present on this cpu. 1804 * The FPSIMD context should be acquired with get_cpu_fpsimd_context() 1805 * before calling this function. 1806 */ 1807 static void fpsimd_flush_cpu_state(void) 1808 { 1809 WARN_ON(!system_supports_fpsimd()); 1810 __this_cpu_write(fpsimd_last_state.st, NULL); 1811 1812 /* 1813 * Leaving streaming mode enabled will cause issues for any kernel 1814 * NEON and leaving streaming mode or ZA enabled may increase power 1815 * consumption. 1816 */ 1817 if (system_supports_sme()) 1818 sme_smstop(); 1819 1820 set_thread_flag(TIF_FOREIGN_FPSTATE); 1821 } 1822 1823 /* 1824 * Save the FPSIMD state to memory and invalidate cpu view. 1825 * This function must be called with preemption disabled. 1826 */ 1827 void fpsimd_save_and_flush_cpu_state(void) 1828 { 1829 if (!system_supports_fpsimd()) 1830 return; 1831 WARN_ON(preemptible()); 1832 __get_cpu_fpsimd_context(); 1833 fpsimd_save(); 1834 fpsimd_flush_cpu_state(); 1835 __put_cpu_fpsimd_context(); 1836 } 1837 1838 #ifdef CONFIG_KERNEL_MODE_NEON 1839 1840 /* 1841 * Kernel-side NEON support functions 1842 */ 1843 1844 /* 1845 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1846 * context 1847 * 1848 * Must not be called unless may_use_simd() returns true. 1849 * Task context in the FPSIMD registers is saved back to memory as necessary. 1850 * 1851 * A matching call to kernel_neon_end() must be made before returning from the 1852 * calling context. 1853 * 1854 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1855 * called. 1856 */ 1857 void kernel_neon_begin(void) 1858 { 1859 if (WARN_ON(!system_supports_fpsimd())) 1860 return; 1861 1862 BUG_ON(!may_use_simd()); 1863 1864 get_cpu_fpsimd_context(); 1865 1866 /* Save unsaved fpsimd state, if any: */ 1867 fpsimd_save(); 1868 1869 /* Invalidate any task state remaining in the fpsimd regs: */ 1870 fpsimd_flush_cpu_state(); 1871 } 1872 EXPORT_SYMBOL_GPL(kernel_neon_begin); 1873 1874 /* 1875 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1876 * 1877 * Must be called from a context in which kernel_neon_begin() was previously 1878 * called, with no call to kernel_neon_end() in the meantime. 1879 * 1880 * The caller must not use the FPSIMD registers after this function is called, 1881 * unless kernel_neon_begin() is called again in the meantime. 1882 */ 1883 void kernel_neon_end(void) 1884 { 1885 if (!system_supports_fpsimd()) 1886 return; 1887 1888 put_cpu_fpsimd_context(); 1889 } 1890 EXPORT_SYMBOL_GPL(kernel_neon_end); 1891 1892 #ifdef CONFIG_EFI 1893 1894 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1895 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1896 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1897 static DEFINE_PER_CPU(bool, efi_sm_state); 1898 1899 /* 1900 * EFI runtime services support functions 1901 * 1902 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1903 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1904 * is always used rather than being an optional accelerator. 1905 * 1906 * These functions provide the necessary support for ensuring FPSIMD 1907 * save/restore in the contexts from which EFI is used. 1908 * 1909 * Do not use them for any other purpose -- if tempted to do so, you are 1910 * either doing something wrong or you need to propose some refactoring. 1911 */ 1912 1913 /* 1914 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1915 */ 1916 void __efi_fpsimd_begin(void) 1917 { 1918 if (!system_supports_fpsimd()) 1919 return; 1920 1921 WARN_ON(preemptible()); 1922 1923 if (may_use_simd()) { 1924 kernel_neon_begin(); 1925 } else { 1926 /* 1927 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1928 * preserving: 1929 */ 1930 if (system_supports_sve() && likely(efi_sve_state)) { 1931 char *sve_state = this_cpu_ptr(efi_sve_state); 1932 bool ffr = true; 1933 u64 svcr; 1934 1935 __this_cpu_write(efi_sve_state_used, true); 1936 1937 if (system_supports_sme()) { 1938 svcr = read_sysreg_s(SYS_SVCR); 1939 1940 __this_cpu_write(efi_sm_state, 1941 svcr & SVCR_SM_MASK); 1942 1943 /* 1944 * Unless we have FA64 FFR does not 1945 * exist in streaming mode. 1946 */ 1947 if (!system_supports_fa64()) 1948 ffr = !(svcr & SVCR_SM_MASK); 1949 } 1950 1951 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()), 1952 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1953 ffr); 1954 1955 if (system_supports_sme()) 1956 sysreg_clear_set_s(SYS_SVCR, 1957 SVCR_SM_MASK, 0); 1958 1959 } else { 1960 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1961 } 1962 1963 __this_cpu_write(efi_fpsimd_state_used, true); 1964 } 1965 } 1966 1967 /* 1968 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1969 */ 1970 void __efi_fpsimd_end(void) 1971 { 1972 if (!system_supports_fpsimd()) 1973 return; 1974 1975 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1976 kernel_neon_end(); 1977 } else { 1978 if (system_supports_sve() && 1979 likely(__this_cpu_read(efi_sve_state_used))) { 1980 char const *sve_state = this_cpu_ptr(efi_sve_state); 1981 bool ffr = true; 1982 1983 /* 1984 * Restore streaming mode; EFI calls are 1985 * normal function calls so should not return in 1986 * streaming mode. 1987 */ 1988 if (system_supports_sme()) { 1989 if (__this_cpu_read(efi_sm_state)) { 1990 sysreg_clear_set_s(SYS_SVCR, 1991 0, 1992 SVCR_SM_MASK); 1993 1994 /* 1995 * Unless we have FA64 FFR does not 1996 * exist in streaming mode. 1997 */ 1998 if (!system_supports_fa64()) 1999 ffr = false; 2000 } 2001 } 2002 2003 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()), 2004 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 2005 ffr); 2006 2007 __this_cpu_write(efi_sve_state_used, false); 2008 } else { 2009 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 2010 } 2011 } 2012 } 2013 2014 #endif /* CONFIG_EFI */ 2015 2016 #endif /* CONFIG_KERNEL_MODE_NEON */ 2017 2018 #ifdef CONFIG_CPU_PM 2019 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 2020 unsigned long cmd, void *v) 2021 { 2022 switch (cmd) { 2023 case CPU_PM_ENTER: 2024 fpsimd_save_and_flush_cpu_state(); 2025 break; 2026 case CPU_PM_EXIT: 2027 break; 2028 case CPU_PM_ENTER_FAILED: 2029 default: 2030 return NOTIFY_DONE; 2031 } 2032 return NOTIFY_OK; 2033 } 2034 2035 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 2036 .notifier_call = fpsimd_cpu_pm_notifier, 2037 }; 2038 2039 static void __init fpsimd_pm_init(void) 2040 { 2041 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 2042 } 2043 2044 #else 2045 static inline void fpsimd_pm_init(void) { } 2046 #endif /* CONFIG_CPU_PM */ 2047 2048 #ifdef CONFIG_HOTPLUG_CPU 2049 static int fpsimd_cpu_dead(unsigned int cpu) 2050 { 2051 per_cpu(fpsimd_last_state.st, cpu) = NULL; 2052 return 0; 2053 } 2054 2055 static inline void fpsimd_hotplug_init(void) 2056 { 2057 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 2058 NULL, fpsimd_cpu_dead); 2059 } 2060 2061 #else 2062 static inline void fpsimd_hotplug_init(void) { } 2063 #endif 2064 2065 void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p) 2066 { 2067 unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN; 2068 write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1); 2069 isb(); 2070 } 2071 2072 /* 2073 * FP/SIMD support code initialisation. 2074 */ 2075 static int __init fpsimd_init(void) 2076 { 2077 if (cpu_have_named_feature(FP)) { 2078 fpsimd_pm_init(); 2079 fpsimd_hotplug_init(); 2080 } else { 2081 pr_notice("Floating-point is not implemented\n"); 2082 } 2083 2084 if (!cpu_have_named_feature(ASIMD)) 2085 pr_notice("Advanced SIMD is not implemented\n"); 2086 2087 2088 sve_sysctl_init(); 2089 sme_sysctl_init(); 2090 2091 return 0; 2092 } 2093 core_initcall(fpsimd_init); 2094