xref: /linux/arch/arm64/kernel/entry-common.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Exception handling code
4  *
5  * Copyright (C) 2019 ARM Ltd.
6  */
7 
8 #include <linux/context_tracking.h>
9 #include <linux/kasan.h>
10 #include <linux/linkage.h>
11 #include <linux/lockdep.h>
12 #include <linux/ptrace.h>
13 #include <linux/resume_user_mode.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/thread_info.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/daifflags.h>
20 #include <asm/esr.h>
21 #include <asm/exception.h>
22 #include <asm/irq_regs.h>
23 #include <asm/kprobes.h>
24 #include <asm/mmu.h>
25 #include <asm/processor.h>
26 #include <asm/sdei.h>
27 #include <asm/stacktrace.h>
28 #include <asm/sysreg.h>
29 #include <asm/system_misc.h>
30 
31 /*
32  * Handle IRQ/context state management when entering from kernel mode.
33  * Before this function is called it is not safe to call regular kernel code,
34  * instrumentable code, or any code which may trigger an exception.
35  *
36  * This is intended to match the logic in irqentry_enter(), handling the kernel
37  * mode transitions only.
38  */
39 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
40 {
41 	regs->exit_rcu = false;
42 
43 	if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
44 		lockdep_hardirqs_off(CALLER_ADDR0);
45 		ct_irq_enter();
46 		trace_hardirqs_off_finish();
47 
48 		regs->exit_rcu = true;
49 		return;
50 	}
51 
52 	lockdep_hardirqs_off(CALLER_ADDR0);
53 	rcu_irq_enter_check_tick();
54 	trace_hardirqs_off_finish();
55 }
56 
57 static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
58 {
59 	__enter_from_kernel_mode(regs);
60 	mte_check_tfsr_entry();
61 	mte_disable_tco_entry(current);
62 }
63 
64 /*
65  * Handle IRQ/context state management when exiting to kernel mode.
66  * After this function returns it is not safe to call regular kernel code,
67  * instrumentable code, or any code which may trigger an exception.
68  *
69  * This is intended to match the logic in irqentry_exit(), handling the kernel
70  * mode transitions only, and with preemption handled elsewhere.
71  */
72 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
73 {
74 	lockdep_assert_irqs_disabled();
75 
76 	if (interrupts_enabled(regs)) {
77 		if (regs->exit_rcu) {
78 			trace_hardirqs_on_prepare();
79 			lockdep_hardirqs_on_prepare();
80 			ct_irq_exit();
81 			lockdep_hardirqs_on(CALLER_ADDR0);
82 			return;
83 		}
84 
85 		trace_hardirqs_on();
86 	} else {
87 		if (regs->exit_rcu)
88 			ct_irq_exit();
89 	}
90 }
91 
92 static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
93 {
94 	mte_check_tfsr_exit();
95 	__exit_to_kernel_mode(regs);
96 }
97 
98 /*
99  * Handle IRQ/context state management when entering from user mode.
100  * Before this function is called it is not safe to call regular kernel code,
101  * instrumentable code, or any code which may trigger an exception.
102  */
103 static __always_inline void __enter_from_user_mode(void)
104 {
105 	lockdep_hardirqs_off(CALLER_ADDR0);
106 	CT_WARN_ON(ct_state() != CONTEXT_USER);
107 	user_exit_irqoff();
108 	trace_hardirqs_off_finish();
109 	mte_disable_tco_entry(current);
110 }
111 
112 static __always_inline void enter_from_user_mode(struct pt_regs *regs)
113 {
114 	__enter_from_user_mode();
115 }
116 
117 /*
118  * Handle IRQ/context state management when exiting to user mode.
119  * After this function returns it is not safe to call regular kernel code,
120  * instrumentable code, or any code which may trigger an exception.
121  */
122 static __always_inline void __exit_to_user_mode(void)
123 {
124 	trace_hardirqs_on_prepare();
125 	lockdep_hardirqs_on_prepare();
126 	user_enter_irqoff();
127 	lockdep_hardirqs_on(CALLER_ADDR0);
128 }
129 
130 static void do_notify_resume(struct pt_regs *regs, unsigned long thread_flags)
131 {
132 	do {
133 		local_irq_enable();
134 
135 		if (thread_flags & _TIF_NEED_RESCHED)
136 			schedule();
137 
138 		if (thread_flags & _TIF_UPROBE)
139 			uprobe_notify_resume(regs);
140 
141 		if (thread_flags & _TIF_MTE_ASYNC_FAULT) {
142 			clear_thread_flag(TIF_MTE_ASYNC_FAULT);
143 			send_sig_fault(SIGSEGV, SEGV_MTEAERR,
144 				       (void __user *)NULL, current);
145 		}
146 
147 		if (thread_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL))
148 			do_signal(regs);
149 
150 		if (thread_flags & _TIF_NOTIFY_RESUME)
151 			resume_user_mode_work(regs);
152 
153 		if (thread_flags & _TIF_FOREIGN_FPSTATE)
154 			fpsimd_restore_current_state();
155 
156 		local_irq_disable();
157 		thread_flags = read_thread_flags();
158 	} while (thread_flags & _TIF_WORK_MASK);
159 }
160 
161 static __always_inline void exit_to_user_mode_prepare(struct pt_regs *regs)
162 {
163 	unsigned long flags;
164 
165 	local_irq_disable();
166 
167 	flags = read_thread_flags();
168 	if (unlikely(flags & _TIF_WORK_MASK))
169 		do_notify_resume(regs, flags);
170 
171 	local_daif_mask();
172 
173 	lockdep_sys_exit();
174 }
175 
176 static __always_inline void exit_to_user_mode(struct pt_regs *regs)
177 {
178 	exit_to_user_mode_prepare(regs);
179 	mte_check_tfsr_exit();
180 	__exit_to_user_mode();
181 }
182 
183 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
184 {
185 	exit_to_user_mode(regs);
186 }
187 
188 /*
189  * Handle IRQ/context state management when entering an NMI from user/kernel
190  * mode. Before this function is called it is not safe to call regular kernel
191  * code, instrumentable code, or any code which may trigger an exception.
192  */
193 static void noinstr arm64_enter_nmi(struct pt_regs *regs)
194 {
195 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
196 
197 	__nmi_enter();
198 	lockdep_hardirqs_off(CALLER_ADDR0);
199 	lockdep_hardirq_enter();
200 	ct_nmi_enter();
201 
202 	trace_hardirqs_off_finish();
203 	ftrace_nmi_enter();
204 }
205 
206 /*
207  * Handle IRQ/context state management when exiting an NMI from user/kernel
208  * mode. After this function returns it is not safe to call regular kernel
209  * code, instrumentable code, or any code which may trigger an exception.
210  */
211 static void noinstr arm64_exit_nmi(struct pt_regs *regs)
212 {
213 	bool restore = regs->lockdep_hardirqs;
214 
215 	ftrace_nmi_exit();
216 	if (restore) {
217 		trace_hardirqs_on_prepare();
218 		lockdep_hardirqs_on_prepare();
219 	}
220 
221 	ct_nmi_exit();
222 	lockdep_hardirq_exit();
223 	if (restore)
224 		lockdep_hardirqs_on(CALLER_ADDR0);
225 	__nmi_exit();
226 }
227 
228 /*
229  * Handle IRQ/context state management when entering a debug exception from
230  * kernel mode. Before this function is called it is not safe to call regular
231  * kernel code, instrumentable code, or any code which may trigger an exception.
232  */
233 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
234 {
235 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
236 
237 	lockdep_hardirqs_off(CALLER_ADDR0);
238 	ct_nmi_enter();
239 
240 	trace_hardirqs_off_finish();
241 }
242 
243 /*
244  * Handle IRQ/context state management when exiting a debug exception from
245  * kernel mode. After this function returns it is not safe to call regular
246  * kernel code, instrumentable code, or any code which may trigger an exception.
247  */
248 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
249 {
250 	bool restore = regs->lockdep_hardirqs;
251 
252 	if (restore) {
253 		trace_hardirqs_on_prepare();
254 		lockdep_hardirqs_on_prepare();
255 	}
256 
257 	ct_nmi_exit();
258 	if (restore)
259 		lockdep_hardirqs_on(CALLER_ADDR0);
260 }
261 
262 #ifdef CONFIG_PREEMPT_DYNAMIC
263 DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched);
264 #define need_irq_preemption() \
265 	(static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched))
266 #else
267 #define need_irq_preemption()	(IS_ENABLED(CONFIG_PREEMPTION))
268 #endif
269 
270 static void __sched arm64_preempt_schedule_irq(void)
271 {
272 	if (!need_irq_preemption())
273 		return;
274 
275 	/*
276 	 * Note: thread_info::preempt_count includes both thread_info::count
277 	 * and thread_info::need_resched, and is not equivalent to
278 	 * preempt_count().
279 	 */
280 	if (READ_ONCE(current_thread_info()->preempt_count) != 0)
281 		return;
282 
283 	/*
284 	 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
285 	 * priority masking is used the GIC irqchip driver will clear DAIF.IF
286 	 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in
287 	 * DAIF we must have handled an NMI, so skip preemption.
288 	 */
289 	if (system_uses_irq_prio_masking() && read_sysreg(daif))
290 		return;
291 
292 	/*
293 	 * Preempting a task from an IRQ means we leave copies of PSTATE
294 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
295 	 * resuming one of these preempted tasks would undo those changes.
296 	 *
297 	 * Only allow a task to be preempted once cpufeatures have been
298 	 * enabled.
299 	 */
300 	if (system_capabilities_finalized())
301 		preempt_schedule_irq();
302 }
303 
304 static void do_interrupt_handler(struct pt_regs *regs,
305 				 void (*handler)(struct pt_regs *))
306 {
307 	struct pt_regs *old_regs = set_irq_regs(regs);
308 
309 	if (on_thread_stack())
310 		call_on_irq_stack(regs, handler);
311 	else
312 		handler(regs);
313 
314 	set_irq_regs(old_regs);
315 }
316 
317 extern void (*handle_arch_irq)(struct pt_regs *);
318 extern void (*handle_arch_fiq)(struct pt_regs *);
319 
320 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
321 				      unsigned long esr)
322 {
323 	arm64_enter_nmi(regs);
324 
325 	console_verbose();
326 
327 	pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
328 		vector, smp_processor_id(), esr,
329 		esr_get_class_string(esr));
330 
331 	__show_regs(regs);
332 	panic("Unhandled exception");
333 }
334 
335 #define UNHANDLED(el, regsize, vector)							\
336 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs)	\
337 {											\
338 	const char *desc = #regsize "-bit " #el " " #vector;				\
339 	__panic_unhandled(regs, desc, read_sysreg(esr_el1));				\
340 }
341 
342 #ifdef CONFIG_ARM64_ERRATUM_1463225
343 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
344 
345 static void cortex_a76_erratum_1463225_svc_handler(void)
346 {
347 	u32 reg, val;
348 
349 	if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
350 		return;
351 
352 	if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
353 		return;
354 
355 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
356 	reg = read_sysreg(mdscr_el1);
357 	val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
358 	write_sysreg(val, mdscr_el1);
359 	asm volatile("msr daifclr, #8");
360 	isb();
361 
362 	/* We will have taken a single-step exception by this point */
363 
364 	write_sysreg(reg, mdscr_el1);
365 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
366 }
367 
368 static __always_inline bool
369 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
370 {
371 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
372 		return false;
373 
374 	/*
375 	 * We've taken a dummy step exception from the kernel to ensure
376 	 * that interrupts are re-enabled on the syscall path. Return back
377 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
378 	 * masked so that we can safely restore the mdscr and get on with
379 	 * handling the syscall.
380 	 */
381 	regs->pstate |= PSR_D_BIT;
382 	return true;
383 }
384 #else /* CONFIG_ARM64_ERRATUM_1463225 */
385 static void cortex_a76_erratum_1463225_svc_handler(void) { }
386 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
387 {
388 	return false;
389 }
390 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
391 
392 /*
393  * As per the ABI exit SME streaming mode and clear the SVE state not
394  * shared with FPSIMD on syscall entry.
395  */
396 static inline void fp_user_discard(void)
397 {
398 	/*
399 	 * If SME is active then exit streaming mode.  If ZA is active
400 	 * then flush the SVE registers but leave userspace access to
401 	 * both SVE and SME enabled, otherwise disable SME for the
402 	 * task and fall through to disabling SVE too.  This means
403 	 * that after a syscall we never have any streaming mode
404 	 * register state to track, if this changes the KVM code will
405 	 * need updating.
406 	 */
407 	if (system_supports_sme())
408 		sme_smstop_sm();
409 
410 	if (!system_supports_sve())
411 		return;
412 
413 	if (test_thread_flag(TIF_SVE)) {
414 		unsigned int sve_vq_minus_one;
415 
416 		sve_vq_minus_one = sve_vq_from_vl(task_get_sve_vl(current)) - 1;
417 		sve_flush_live(true, sve_vq_minus_one);
418 	}
419 }
420 
421 UNHANDLED(el1t, 64, sync)
422 UNHANDLED(el1t, 64, irq)
423 UNHANDLED(el1t, 64, fiq)
424 UNHANDLED(el1t, 64, error)
425 
426 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
427 {
428 	unsigned long far = read_sysreg(far_el1);
429 
430 	enter_from_kernel_mode(regs);
431 	local_daif_inherit(regs);
432 	do_mem_abort(far, esr, regs);
433 	local_daif_mask();
434 	exit_to_kernel_mode(regs);
435 }
436 
437 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
438 {
439 	unsigned long far = read_sysreg(far_el1);
440 
441 	enter_from_kernel_mode(regs);
442 	local_daif_inherit(regs);
443 	do_sp_pc_abort(far, esr, regs);
444 	local_daif_mask();
445 	exit_to_kernel_mode(regs);
446 }
447 
448 static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr)
449 {
450 	enter_from_kernel_mode(regs);
451 	local_daif_inherit(regs);
452 	do_el1_undef(regs, esr);
453 	local_daif_mask();
454 	exit_to_kernel_mode(regs);
455 }
456 
457 static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr)
458 {
459 	enter_from_kernel_mode(regs);
460 	local_daif_inherit(regs);
461 	do_el1_bti(regs, esr);
462 	local_daif_mask();
463 	exit_to_kernel_mode(regs);
464 }
465 
466 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
467 {
468 	unsigned long far = read_sysreg(far_el1);
469 
470 	arm64_enter_el1_dbg(regs);
471 	if (!cortex_a76_erratum_1463225_debug_handler(regs))
472 		do_debug_exception(far, esr, regs);
473 	arm64_exit_el1_dbg(regs);
474 }
475 
476 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
477 {
478 	enter_from_kernel_mode(regs);
479 	local_daif_inherit(regs);
480 	do_el1_fpac(regs, esr);
481 	local_daif_mask();
482 	exit_to_kernel_mode(regs);
483 }
484 
485 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
486 {
487 	unsigned long esr = read_sysreg(esr_el1);
488 
489 	switch (ESR_ELx_EC(esr)) {
490 	case ESR_ELx_EC_DABT_CUR:
491 	case ESR_ELx_EC_IABT_CUR:
492 		el1_abort(regs, esr);
493 		break;
494 	/*
495 	 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
496 	 * recursive exception when trying to push the initial pt_regs.
497 	 */
498 	case ESR_ELx_EC_PC_ALIGN:
499 		el1_pc(regs, esr);
500 		break;
501 	case ESR_ELx_EC_SYS64:
502 	case ESR_ELx_EC_UNKNOWN:
503 		el1_undef(regs, esr);
504 		break;
505 	case ESR_ELx_EC_BTI:
506 		el1_bti(regs, esr);
507 		break;
508 	case ESR_ELx_EC_BREAKPT_CUR:
509 	case ESR_ELx_EC_SOFTSTP_CUR:
510 	case ESR_ELx_EC_WATCHPT_CUR:
511 	case ESR_ELx_EC_BRK64:
512 		el1_dbg(regs, esr);
513 		break;
514 	case ESR_ELx_EC_FPAC:
515 		el1_fpac(regs, esr);
516 		break;
517 	default:
518 		__panic_unhandled(regs, "64-bit el1h sync", esr);
519 	}
520 }
521 
522 static __always_inline void __el1_pnmi(struct pt_regs *regs,
523 				       void (*handler)(struct pt_regs *))
524 {
525 	arm64_enter_nmi(regs);
526 	do_interrupt_handler(regs, handler);
527 	arm64_exit_nmi(regs);
528 }
529 
530 static __always_inline void __el1_irq(struct pt_regs *regs,
531 				      void (*handler)(struct pt_regs *))
532 {
533 	enter_from_kernel_mode(regs);
534 
535 	irq_enter_rcu();
536 	do_interrupt_handler(regs, handler);
537 	irq_exit_rcu();
538 
539 	arm64_preempt_schedule_irq();
540 
541 	exit_to_kernel_mode(regs);
542 }
543 static void noinstr el1_interrupt(struct pt_regs *regs,
544 				  void (*handler)(struct pt_regs *))
545 {
546 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
547 
548 	if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
549 		__el1_pnmi(regs, handler);
550 	else
551 		__el1_irq(regs, handler);
552 }
553 
554 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
555 {
556 	el1_interrupt(regs, handle_arch_irq);
557 }
558 
559 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
560 {
561 	el1_interrupt(regs, handle_arch_fiq);
562 }
563 
564 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
565 {
566 	unsigned long esr = read_sysreg(esr_el1);
567 
568 	local_daif_restore(DAIF_ERRCTX);
569 	arm64_enter_nmi(regs);
570 	do_serror(regs, esr);
571 	arm64_exit_nmi(regs);
572 }
573 
574 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
575 {
576 	unsigned long far = read_sysreg(far_el1);
577 
578 	enter_from_user_mode(regs);
579 	local_daif_restore(DAIF_PROCCTX);
580 	do_mem_abort(far, esr, regs);
581 	exit_to_user_mode(regs);
582 }
583 
584 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
585 {
586 	unsigned long far = read_sysreg(far_el1);
587 
588 	/*
589 	 * We've taken an instruction abort from userspace and not yet
590 	 * re-enabled IRQs. If the address is a kernel address, apply
591 	 * BP hardening prior to enabling IRQs and pre-emption.
592 	 */
593 	if (!is_ttbr0_addr(far))
594 		arm64_apply_bp_hardening();
595 
596 	enter_from_user_mode(regs);
597 	local_daif_restore(DAIF_PROCCTX);
598 	do_mem_abort(far, esr, regs);
599 	exit_to_user_mode(regs);
600 }
601 
602 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
603 {
604 	enter_from_user_mode(regs);
605 	local_daif_restore(DAIF_PROCCTX);
606 	do_fpsimd_acc(esr, regs);
607 	exit_to_user_mode(regs);
608 }
609 
610 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
611 {
612 	enter_from_user_mode(regs);
613 	local_daif_restore(DAIF_PROCCTX);
614 	do_sve_acc(esr, regs);
615 	exit_to_user_mode(regs);
616 }
617 
618 static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
619 {
620 	enter_from_user_mode(regs);
621 	local_daif_restore(DAIF_PROCCTX);
622 	do_sme_acc(esr, regs);
623 	exit_to_user_mode(regs);
624 }
625 
626 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
627 {
628 	enter_from_user_mode(regs);
629 	local_daif_restore(DAIF_PROCCTX);
630 	do_fpsimd_exc(esr, regs);
631 	exit_to_user_mode(regs);
632 }
633 
634 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
635 {
636 	enter_from_user_mode(regs);
637 	local_daif_restore(DAIF_PROCCTX);
638 	do_el0_sys(esr, regs);
639 	exit_to_user_mode(regs);
640 }
641 
642 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
643 {
644 	unsigned long far = read_sysreg(far_el1);
645 
646 	if (!is_ttbr0_addr(instruction_pointer(regs)))
647 		arm64_apply_bp_hardening();
648 
649 	enter_from_user_mode(regs);
650 	local_daif_restore(DAIF_PROCCTX);
651 	do_sp_pc_abort(far, esr, regs);
652 	exit_to_user_mode(regs);
653 }
654 
655 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
656 {
657 	enter_from_user_mode(regs);
658 	local_daif_restore(DAIF_PROCCTX);
659 	do_sp_pc_abort(regs->sp, esr, regs);
660 	exit_to_user_mode(regs);
661 }
662 
663 static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr)
664 {
665 	enter_from_user_mode(regs);
666 	local_daif_restore(DAIF_PROCCTX);
667 	do_el0_undef(regs, esr);
668 	exit_to_user_mode(regs);
669 }
670 
671 static void noinstr el0_bti(struct pt_regs *regs)
672 {
673 	enter_from_user_mode(regs);
674 	local_daif_restore(DAIF_PROCCTX);
675 	do_el0_bti(regs);
676 	exit_to_user_mode(regs);
677 }
678 
679 static void noinstr el0_mops(struct pt_regs *regs, unsigned long esr)
680 {
681 	enter_from_user_mode(regs);
682 	local_daif_restore(DAIF_PROCCTX);
683 	do_el0_mops(regs, esr);
684 	exit_to_user_mode(regs);
685 }
686 
687 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
688 {
689 	enter_from_user_mode(regs);
690 	local_daif_restore(DAIF_PROCCTX);
691 	bad_el0_sync(regs, 0, esr);
692 	exit_to_user_mode(regs);
693 }
694 
695 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
696 {
697 	/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
698 	unsigned long far = read_sysreg(far_el1);
699 
700 	enter_from_user_mode(regs);
701 	do_debug_exception(far, esr, regs);
702 	local_daif_restore(DAIF_PROCCTX);
703 	exit_to_user_mode(regs);
704 }
705 
706 static void noinstr el0_svc(struct pt_regs *regs)
707 {
708 	enter_from_user_mode(regs);
709 	cortex_a76_erratum_1463225_svc_handler();
710 	fp_user_discard();
711 	local_daif_restore(DAIF_PROCCTX);
712 	do_el0_svc(regs);
713 	exit_to_user_mode(regs);
714 }
715 
716 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
717 {
718 	enter_from_user_mode(regs);
719 	local_daif_restore(DAIF_PROCCTX);
720 	do_el0_fpac(regs, esr);
721 	exit_to_user_mode(regs);
722 }
723 
724 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
725 {
726 	unsigned long esr = read_sysreg(esr_el1);
727 
728 	switch (ESR_ELx_EC(esr)) {
729 	case ESR_ELx_EC_SVC64:
730 		el0_svc(regs);
731 		break;
732 	case ESR_ELx_EC_DABT_LOW:
733 		el0_da(regs, esr);
734 		break;
735 	case ESR_ELx_EC_IABT_LOW:
736 		el0_ia(regs, esr);
737 		break;
738 	case ESR_ELx_EC_FP_ASIMD:
739 		el0_fpsimd_acc(regs, esr);
740 		break;
741 	case ESR_ELx_EC_SVE:
742 		el0_sve_acc(regs, esr);
743 		break;
744 	case ESR_ELx_EC_SME:
745 		el0_sme_acc(regs, esr);
746 		break;
747 	case ESR_ELx_EC_FP_EXC64:
748 		el0_fpsimd_exc(regs, esr);
749 		break;
750 	case ESR_ELx_EC_SYS64:
751 	case ESR_ELx_EC_WFx:
752 		el0_sys(regs, esr);
753 		break;
754 	case ESR_ELx_EC_SP_ALIGN:
755 		el0_sp(regs, esr);
756 		break;
757 	case ESR_ELx_EC_PC_ALIGN:
758 		el0_pc(regs, esr);
759 		break;
760 	case ESR_ELx_EC_UNKNOWN:
761 		el0_undef(regs, esr);
762 		break;
763 	case ESR_ELx_EC_BTI:
764 		el0_bti(regs);
765 		break;
766 	case ESR_ELx_EC_MOPS:
767 		el0_mops(regs, esr);
768 		break;
769 	case ESR_ELx_EC_BREAKPT_LOW:
770 	case ESR_ELx_EC_SOFTSTP_LOW:
771 	case ESR_ELx_EC_WATCHPT_LOW:
772 	case ESR_ELx_EC_BRK64:
773 		el0_dbg(regs, esr);
774 		break;
775 	case ESR_ELx_EC_FPAC:
776 		el0_fpac(regs, esr);
777 		break;
778 	default:
779 		el0_inv(regs, esr);
780 	}
781 }
782 
783 static void noinstr el0_interrupt(struct pt_regs *regs,
784 				  void (*handler)(struct pt_regs *))
785 {
786 	enter_from_user_mode(regs);
787 
788 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
789 
790 	if (regs->pc & BIT(55))
791 		arm64_apply_bp_hardening();
792 
793 	irq_enter_rcu();
794 	do_interrupt_handler(regs, handler);
795 	irq_exit_rcu();
796 
797 	exit_to_user_mode(regs);
798 }
799 
800 static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
801 {
802 	el0_interrupt(regs, handle_arch_irq);
803 }
804 
805 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
806 {
807 	__el0_irq_handler_common(regs);
808 }
809 
810 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
811 {
812 	el0_interrupt(regs, handle_arch_fiq);
813 }
814 
815 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
816 {
817 	__el0_fiq_handler_common(regs);
818 }
819 
820 static void noinstr __el0_error_handler_common(struct pt_regs *regs)
821 {
822 	unsigned long esr = read_sysreg(esr_el1);
823 
824 	enter_from_user_mode(regs);
825 	local_daif_restore(DAIF_ERRCTX);
826 	arm64_enter_nmi(regs);
827 	do_serror(regs, esr);
828 	arm64_exit_nmi(regs);
829 	local_daif_restore(DAIF_PROCCTX);
830 	exit_to_user_mode(regs);
831 }
832 
833 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
834 {
835 	__el0_error_handler_common(regs);
836 }
837 
838 #ifdef CONFIG_COMPAT
839 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
840 {
841 	enter_from_user_mode(regs);
842 	local_daif_restore(DAIF_PROCCTX);
843 	do_el0_cp15(esr, regs);
844 	exit_to_user_mode(regs);
845 }
846 
847 static void noinstr el0_svc_compat(struct pt_regs *regs)
848 {
849 	enter_from_user_mode(regs);
850 	cortex_a76_erratum_1463225_svc_handler();
851 	local_daif_restore(DAIF_PROCCTX);
852 	do_el0_svc_compat(regs);
853 	exit_to_user_mode(regs);
854 }
855 
856 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
857 {
858 	unsigned long esr = read_sysreg(esr_el1);
859 
860 	switch (ESR_ELx_EC(esr)) {
861 	case ESR_ELx_EC_SVC32:
862 		el0_svc_compat(regs);
863 		break;
864 	case ESR_ELx_EC_DABT_LOW:
865 		el0_da(regs, esr);
866 		break;
867 	case ESR_ELx_EC_IABT_LOW:
868 		el0_ia(regs, esr);
869 		break;
870 	case ESR_ELx_EC_FP_ASIMD:
871 		el0_fpsimd_acc(regs, esr);
872 		break;
873 	case ESR_ELx_EC_FP_EXC32:
874 		el0_fpsimd_exc(regs, esr);
875 		break;
876 	case ESR_ELx_EC_PC_ALIGN:
877 		el0_pc(regs, esr);
878 		break;
879 	case ESR_ELx_EC_UNKNOWN:
880 	case ESR_ELx_EC_CP14_MR:
881 	case ESR_ELx_EC_CP14_LS:
882 	case ESR_ELx_EC_CP14_64:
883 		el0_undef(regs, esr);
884 		break;
885 	case ESR_ELx_EC_CP15_32:
886 	case ESR_ELx_EC_CP15_64:
887 		el0_cp15(regs, esr);
888 		break;
889 	case ESR_ELx_EC_BREAKPT_LOW:
890 	case ESR_ELx_EC_SOFTSTP_LOW:
891 	case ESR_ELx_EC_WATCHPT_LOW:
892 	case ESR_ELx_EC_BKPT32:
893 		el0_dbg(regs, esr);
894 		break;
895 	default:
896 		el0_inv(regs, esr);
897 	}
898 }
899 
900 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
901 {
902 	__el0_irq_handler_common(regs);
903 }
904 
905 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
906 {
907 	__el0_fiq_handler_common(regs);
908 }
909 
910 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
911 {
912 	__el0_error_handler_common(regs);
913 }
914 #else /* CONFIG_COMPAT */
915 UNHANDLED(el0t, 32, sync)
916 UNHANDLED(el0t, 32, irq)
917 UNHANDLED(el0t, 32, fiq)
918 UNHANDLED(el0t, 32, error)
919 #endif /* CONFIG_COMPAT */
920 
921 #ifdef CONFIG_VMAP_STACK
922 asmlinkage void noinstr __noreturn handle_bad_stack(struct pt_regs *regs)
923 {
924 	unsigned long esr = read_sysreg(esr_el1);
925 	unsigned long far = read_sysreg(far_el1);
926 
927 	arm64_enter_nmi(regs);
928 	panic_bad_stack(regs, esr, far);
929 }
930 #endif /* CONFIG_VMAP_STACK */
931 
932 #ifdef CONFIG_ARM_SDE_INTERFACE
933 asmlinkage noinstr unsigned long
934 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
935 {
936 	unsigned long ret;
937 
938 	/*
939 	 * We didn't take an exception to get here, so the HW hasn't
940 	 * set/cleared bits in PSTATE that we may rely on.
941 	 *
942 	 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
943 	 * whether PSTATE bits are inherited unchanged or generated from
944 	 * scratch, and the TF-A implementation always clears PAN and always
945 	 * clears UAO. There are no other known implementations.
946 	 *
947 	 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
948 	 * PSTATE is modified upon architectural exceptions, and so PAN is
949 	 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
950 	 * cleared.
951 	 *
952 	 * We must explicitly reset PAN to the expected state, including
953 	 * clearing it when the host isn't using it, in case a VM had it set.
954 	 */
955 	if (system_uses_hw_pan())
956 		set_pstate_pan(1);
957 	else if (cpu_has_pan())
958 		set_pstate_pan(0);
959 
960 	arm64_enter_nmi(regs);
961 	ret = do_sdei_event(regs, arg);
962 	arm64_exit_nmi(regs);
963 
964 	return ret;
965 }
966 #endif /* CONFIG_ARM_SDE_INTERFACE */
967