1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Exception handling code 4 * 5 * Copyright (C) 2019 ARM Ltd. 6 */ 7 8 #include <linux/context_tracking.h> 9 #include <linux/kasan.h> 10 #include <linux/linkage.h> 11 #include <linux/lockdep.h> 12 #include <linux/ptrace.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/thread_info.h> 16 17 #include <asm/cpufeature.h> 18 #include <asm/daifflags.h> 19 #include <asm/esr.h> 20 #include <asm/exception.h> 21 #include <asm/irq_regs.h> 22 #include <asm/kprobes.h> 23 #include <asm/mmu.h> 24 #include <asm/processor.h> 25 #include <asm/sdei.h> 26 #include <asm/stacktrace.h> 27 #include <asm/sysreg.h> 28 #include <asm/system_misc.h> 29 30 /* 31 * Handle IRQ/context state management when entering from kernel mode. 32 * Before this function is called it is not safe to call regular kernel code, 33 * instrumentable code, or any code which may trigger an exception. 34 * 35 * This is intended to match the logic in irqentry_enter(), handling the kernel 36 * mode transitions only. 37 */ 38 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs) 39 { 40 regs->exit_rcu = false; 41 42 if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) { 43 lockdep_hardirqs_off(CALLER_ADDR0); 44 ct_irq_enter(); 45 trace_hardirqs_off_finish(); 46 47 regs->exit_rcu = true; 48 return; 49 } 50 51 lockdep_hardirqs_off(CALLER_ADDR0); 52 rcu_irq_enter_check_tick(); 53 trace_hardirqs_off_finish(); 54 } 55 56 static void noinstr enter_from_kernel_mode(struct pt_regs *regs) 57 { 58 __enter_from_kernel_mode(regs); 59 mte_check_tfsr_entry(); 60 mte_disable_tco_entry(current); 61 } 62 63 /* 64 * Handle IRQ/context state management when exiting to kernel mode. 65 * After this function returns it is not safe to call regular kernel code, 66 * instrumentable code, or any code which may trigger an exception. 67 * 68 * This is intended to match the logic in irqentry_exit(), handling the kernel 69 * mode transitions only, and with preemption handled elsewhere. 70 */ 71 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs) 72 { 73 lockdep_assert_irqs_disabled(); 74 75 if (interrupts_enabled(regs)) { 76 if (regs->exit_rcu) { 77 trace_hardirqs_on_prepare(); 78 lockdep_hardirqs_on_prepare(); 79 ct_irq_exit(); 80 lockdep_hardirqs_on(CALLER_ADDR0); 81 return; 82 } 83 84 trace_hardirqs_on(); 85 } else { 86 if (regs->exit_rcu) 87 ct_irq_exit(); 88 } 89 } 90 91 static void noinstr exit_to_kernel_mode(struct pt_regs *regs) 92 { 93 mte_check_tfsr_exit(); 94 __exit_to_kernel_mode(regs); 95 } 96 97 /* 98 * Handle IRQ/context state management when entering from user mode. 99 * Before this function is called it is not safe to call regular kernel code, 100 * instrumentable code, or any code which may trigger an exception. 101 */ 102 static __always_inline void __enter_from_user_mode(void) 103 { 104 lockdep_hardirqs_off(CALLER_ADDR0); 105 CT_WARN_ON(ct_state() != CONTEXT_USER); 106 user_exit_irqoff(); 107 trace_hardirqs_off_finish(); 108 mte_disable_tco_entry(current); 109 } 110 111 static __always_inline void enter_from_user_mode(struct pt_regs *regs) 112 { 113 __enter_from_user_mode(); 114 } 115 116 /* 117 * Handle IRQ/context state management when exiting to user mode. 118 * After this function returns it is not safe to call regular kernel code, 119 * instrumentable code, or any code which may trigger an exception. 120 */ 121 static __always_inline void __exit_to_user_mode(void) 122 { 123 trace_hardirqs_on_prepare(); 124 lockdep_hardirqs_on_prepare(); 125 user_enter_irqoff(); 126 lockdep_hardirqs_on(CALLER_ADDR0); 127 } 128 129 static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs) 130 { 131 unsigned long flags; 132 133 local_daif_mask(); 134 135 flags = read_thread_flags(); 136 if (unlikely(flags & _TIF_WORK_MASK)) 137 do_notify_resume(regs, flags); 138 } 139 140 static __always_inline void exit_to_user_mode(struct pt_regs *regs) 141 { 142 prepare_exit_to_user_mode(regs); 143 mte_check_tfsr_exit(); 144 __exit_to_user_mode(); 145 } 146 147 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs) 148 { 149 exit_to_user_mode(regs); 150 } 151 152 /* 153 * Handle IRQ/context state management when entering an NMI from user/kernel 154 * mode. Before this function is called it is not safe to call regular kernel 155 * code, instrumentable code, or any code which may trigger an exception. 156 */ 157 static void noinstr arm64_enter_nmi(struct pt_regs *regs) 158 { 159 regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); 160 161 __nmi_enter(); 162 lockdep_hardirqs_off(CALLER_ADDR0); 163 lockdep_hardirq_enter(); 164 ct_nmi_enter(); 165 166 trace_hardirqs_off_finish(); 167 ftrace_nmi_enter(); 168 } 169 170 /* 171 * Handle IRQ/context state management when exiting an NMI from user/kernel 172 * mode. After this function returns it is not safe to call regular kernel 173 * code, instrumentable code, or any code which may trigger an exception. 174 */ 175 static void noinstr arm64_exit_nmi(struct pt_regs *regs) 176 { 177 bool restore = regs->lockdep_hardirqs; 178 179 ftrace_nmi_exit(); 180 if (restore) { 181 trace_hardirqs_on_prepare(); 182 lockdep_hardirqs_on_prepare(); 183 } 184 185 ct_nmi_exit(); 186 lockdep_hardirq_exit(); 187 if (restore) 188 lockdep_hardirqs_on(CALLER_ADDR0); 189 __nmi_exit(); 190 } 191 192 /* 193 * Handle IRQ/context state management when entering a debug exception from 194 * kernel mode. Before this function is called it is not safe to call regular 195 * kernel code, instrumentable code, or any code which may trigger an exception. 196 */ 197 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs) 198 { 199 regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); 200 201 lockdep_hardirqs_off(CALLER_ADDR0); 202 ct_nmi_enter(); 203 204 trace_hardirqs_off_finish(); 205 } 206 207 /* 208 * Handle IRQ/context state management when exiting a debug exception from 209 * kernel mode. After this function returns it is not safe to call regular 210 * kernel code, instrumentable code, or any code which may trigger an exception. 211 */ 212 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs) 213 { 214 bool restore = regs->lockdep_hardirqs; 215 216 if (restore) { 217 trace_hardirqs_on_prepare(); 218 lockdep_hardirqs_on_prepare(); 219 } 220 221 ct_nmi_exit(); 222 if (restore) 223 lockdep_hardirqs_on(CALLER_ADDR0); 224 } 225 226 #ifdef CONFIG_PREEMPT_DYNAMIC 227 DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched); 228 #define need_irq_preemption() \ 229 (static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched)) 230 #else 231 #define need_irq_preemption() (IS_ENABLED(CONFIG_PREEMPTION)) 232 #endif 233 234 static void __sched arm64_preempt_schedule_irq(void) 235 { 236 if (!need_irq_preemption()) 237 return; 238 239 /* 240 * Note: thread_info::preempt_count includes both thread_info::count 241 * and thread_info::need_resched, and is not equivalent to 242 * preempt_count(). 243 */ 244 if (READ_ONCE(current_thread_info()->preempt_count) != 0) 245 return; 246 247 /* 248 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC 249 * priority masking is used the GIC irqchip driver will clear DAIF.IF 250 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in 251 * DAIF we must have handled an NMI, so skip preemption. 252 */ 253 if (system_uses_irq_prio_masking() && read_sysreg(daif)) 254 return; 255 256 /* 257 * Preempting a task from an IRQ means we leave copies of PSTATE 258 * on the stack. cpufeature's enable calls may modify PSTATE, but 259 * resuming one of these preempted tasks would undo those changes. 260 * 261 * Only allow a task to be preempted once cpufeatures have been 262 * enabled. 263 */ 264 if (system_capabilities_finalized()) 265 preempt_schedule_irq(); 266 } 267 268 static void do_interrupt_handler(struct pt_regs *regs, 269 void (*handler)(struct pt_regs *)) 270 { 271 struct pt_regs *old_regs = set_irq_regs(regs); 272 273 if (on_thread_stack()) 274 call_on_irq_stack(regs, handler); 275 else 276 handler(regs); 277 278 set_irq_regs(old_regs); 279 } 280 281 extern void (*handle_arch_irq)(struct pt_regs *); 282 extern void (*handle_arch_fiq)(struct pt_regs *); 283 284 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector, 285 unsigned long esr) 286 { 287 arm64_enter_nmi(regs); 288 289 console_verbose(); 290 291 pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n", 292 vector, smp_processor_id(), esr, 293 esr_get_class_string(esr)); 294 295 __show_regs(regs); 296 panic("Unhandled exception"); 297 } 298 299 #define UNHANDLED(el, regsize, vector) \ 300 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \ 301 { \ 302 const char *desc = #regsize "-bit " #el " " #vector; \ 303 __panic_unhandled(regs, desc, read_sysreg(esr_el1)); \ 304 } 305 306 #ifdef CONFIG_ARM64_ERRATUM_1463225 307 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); 308 309 static void cortex_a76_erratum_1463225_svc_handler(void) 310 { 311 u32 reg, val; 312 313 if (!unlikely(test_thread_flag(TIF_SINGLESTEP))) 314 return; 315 316 if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225))) 317 return; 318 319 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1); 320 reg = read_sysreg(mdscr_el1); 321 val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE; 322 write_sysreg(val, mdscr_el1); 323 asm volatile("msr daifclr, #8"); 324 isb(); 325 326 /* We will have taken a single-step exception by this point */ 327 328 write_sysreg(reg, mdscr_el1); 329 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0); 330 } 331 332 static __always_inline bool 333 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 334 { 335 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa)) 336 return false; 337 338 /* 339 * We've taken a dummy step exception from the kernel to ensure 340 * that interrupts are re-enabled on the syscall path. Return back 341 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions 342 * masked so that we can safely restore the mdscr and get on with 343 * handling the syscall. 344 */ 345 regs->pstate |= PSR_D_BIT; 346 return true; 347 } 348 #else /* CONFIG_ARM64_ERRATUM_1463225 */ 349 static void cortex_a76_erratum_1463225_svc_handler(void) { } 350 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 351 { 352 return false; 353 } 354 #endif /* CONFIG_ARM64_ERRATUM_1463225 */ 355 356 UNHANDLED(el1t, 64, sync) 357 UNHANDLED(el1t, 64, irq) 358 UNHANDLED(el1t, 64, fiq) 359 UNHANDLED(el1t, 64, error) 360 361 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr) 362 { 363 unsigned long far = read_sysreg(far_el1); 364 365 enter_from_kernel_mode(regs); 366 local_daif_inherit(regs); 367 do_mem_abort(far, esr, regs); 368 local_daif_mask(); 369 exit_to_kernel_mode(regs); 370 } 371 372 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr) 373 { 374 unsigned long far = read_sysreg(far_el1); 375 376 enter_from_kernel_mode(regs); 377 local_daif_inherit(regs); 378 do_sp_pc_abort(far, esr, regs); 379 local_daif_mask(); 380 exit_to_kernel_mode(regs); 381 } 382 383 static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr) 384 { 385 enter_from_kernel_mode(regs); 386 local_daif_inherit(regs); 387 do_el1_undef(regs, esr); 388 local_daif_mask(); 389 exit_to_kernel_mode(regs); 390 } 391 392 static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr) 393 { 394 enter_from_kernel_mode(regs); 395 local_daif_inherit(regs); 396 do_el1_bti(regs, esr); 397 local_daif_mask(); 398 exit_to_kernel_mode(regs); 399 } 400 401 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr) 402 { 403 unsigned long far = read_sysreg(far_el1); 404 405 arm64_enter_el1_dbg(regs); 406 if (!cortex_a76_erratum_1463225_debug_handler(regs)) 407 do_debug_exception(far, esr, regs); 408 arm64_exit_el1_dbg(regs); 409 } 410 411 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr) 412 { 413 enter_from_kernel_mode(regs); 414 local_daif_inherit(regs); 415 do_el1_fpac(regs, esr); 416 local_daif_mask(); 417 exit_to_kernel_mode(regs); 418 } 419 420 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs) 421 { 422 unsigned long esr = read_sysreg(esr_el1); 423 424 switch (ESR_ELx_EC(esr)) { 425 case ESR_ELx_EC_DABT_CUR: 426 case ESR_ELx_EC_IABT_CUR: 427 el1_abort(regs, esr); 428 break; 429 /* 430 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a 431 * recursive exception when trying to push the initial pt_regs. 432 */ 433 case ESR_ELx_EC_PC_ALIGN: 434 el1_pc(regs, esr); 435 break; 436 case ESR_ELx_EC_SYS64: 437 case ESR_ELx_EC_UNKNOWN: 438 el1_undef(regs, esr); 439 break; 440 case ESR_ELx_EC_BTI: 441 el1_bti(regs, esr); 442 break; 443 case ESR_ELx_EC_BREAKPT_CUR: 444 case ESR_ELx_EC_SOFTSTP_CUR: 445 case ESR_ELx_EC_WATCHPT_CUR: 446 case ESR_ELx_EC_BRK64: 447 el1_dbg(regs, esr); 448 break; 449 case ESR_ELx_EC_FPAC: 450 el1_fpac(regs, esr); 451 break; 452 default: 453 __panic_unhandled(regs, "64-bit el1h sync", esr); 454 } 455 } 456 457 static __always_inline void __el1_pnmi(struct pt_regs *regs, 458 void (*handler)(struct pt_regs *)) 459 { 460 arm64_enter_nmi(regs); 461 do_interrupt_handler(regs, handler); 462 arm64_exit_nmi(regs); 463 } 464 465 static __always_inline void __el1_irq(struct pt_regs *regs, 466 void (*handler)(struct pt_regs *)) 467 { 468 enter_from_kernel_mode(regs); 469 470 irq_enter_rcu(); 471 do_interrupt_handler(regs, handler); 472 irq_exit_rcu(); 473 474 arm64_preempt_schedule_irq(); 475 476 exit_to_kernel_mode(regs); 477 } 478 static void noinstr el1_interrupt(struct pt_regs *regs, 479 void (*handler)(struct pt_regs *)) 480 { 481 write_sysreg(DAIF_PROCCTX_NOIRQ, daif); 482 483 if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs)) 484 __el1_pnmi(regs, handler); 485 else 486 __el1_irq(regs, handler); 487 } 488 489 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs) 490 { 491 el1_interrupt(regs, handle_arch_irq); 492 } 493 494 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs) 495 { 496 el1_interrupt(regs, handle_arch_fiq); 497 } 498 499 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs) 500 { 501 unsigned long esr = read_sysreg(esr_el1); 502 503 local_daif_restore(DAIF_ERRCTX); 504 arm64_enter_nmi(regs); 505 do_serror(regs, esr); 506 arm64_exit_nmi(regs); 507 } 508 509 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr) 510 { 511 unsigned long far = read_sysreg(far_el1); 512 513 enter_from_user_mode(regs); 514 local_daif_restore(DAIF_PROCCTX); 515 do_mem_abort(far, esr, regs); 516 exit_to_user_mode(regs); 517 } 518 519 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr) 520 { 521 unsigned long far = read_sysreg(far_el1); 522 523 /* 524 * We've taken an instruction abort from userspace and not yet 525 * re-enabled IRQs. If the address is a kernel address, apply 526 * BP hardening prior to enabling IRQs and pre-emption. 527 */ 528 if (!is_ttbr0_addr(far)) 529 arm64_apply_bp_hardening(); 530 531 enter_from_user_mode(regs); 532 local_daif_restore(DAIF_PROCCTX); 533 do_mem_abort(far, esr, regs); 534 exit_to_user_mode(regs); 535 } 536 537 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr) 538 { 539 enter_from_user_mode(regs); 540 local_daif_restore(DAIF_PROCCTX); 541 do_fpsimd_acc(esr, regs); 542 exit_to_user_mode(regs); 543 } 544 545 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr) 546 { 547 enter_from_user_mode(regs); 548 local_daif_restore(DAIF_PROCCTX); 549 do_sve_acc(esr, regs); 550 exit_to_user_mode(regs); 551 } 552 553 static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr) 554 { 555 enter_from_user_mode(regs); 556 local_daif_restore(DAIF_PROCCTX); 557 do_sme_acc(esr, regs); 558 exit_to_user_mode(regs); 559 } 560 561 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr) 562 { 563 enter_from_user_mode(regs); 564 local_daif_restore(DAIF_PROCCTX); 565 do_fpsimd_exc(esr, regs); 566 exit_to_user_mode(regs); 567 } 568 569 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr) 570 { 571 enter_from_user_mode(regs); 572 local_daif_restore(DAIF_PROCCTX); 573 do_el0_sys(esr, regs); 574 exit_to_user_mode(regs); 575 } 576 577 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr) 578 { 579 unsigned long far = read_sysreg(far_el1); 580 581 if (!is_ttbr0_addr(instruction_pointer(regs))) 582 arm64_apply_bp_hardening(); 583 584 enter_from_user_mode(regs); 585 local_daif_restore(DAIF_PROCCTX); 586 do_sp_pc_abort(far, esr, regs); 587 exit_to_user_mode(regs); 588 } 589 590 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr) 591 { 592 enter_from_user_mode(regs); 593 local_daif_restore(DAIF_PROCCTX); 594 do_sp_pc_abort(regs->sp, esr, regs); 595 exit_to_user_mode(regs); 596 } 597 598 static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr) 599 { 600 enter_from_user_mode(regs); 601 local_daif_restore(DAIF_PROCCTX); 602 do_el0_undef(regs, esr); 603 exit_to_user_mode(regs); 604 } 605 606 static void noinstr el0_bti(struct pt_regs *regs) 607 { 608 enter_from_user_mode(regs); 609 local_daif_restore(DAIF_PROCCTX); 610 do_el0_bti(regs); 611 exit_to_user_mode(regs); 612 } 613 614 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr) 615 { 616 enter_from_user_mode(regs); 617 local_daif_restore(DAIF_PROCCTX); 618 bad_el0_sync(regs, 0, esr); 619 exit_to_user_mode(regs); 620 } 621 622 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr) 623 { 624 /* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */ 625 unsigned long far = read_sysreg(far_el1); 626 627 enter_from_user_mode(regs); 628 do_debug_exception(far, esr, regs); 629 local_daif_restore(DAIF_PROCCTX); 630 exit_to_user_mode(regs); 631 } 632 633 static void noinstr el0_svc(struct pt_regs *regs) 634 { 635 enter_from_user_mode(regs); 636 cortex_a76_erratum_1463225_svc_handler(); 637 do_el0_svc(regs); 638 exit_to_user_mode(regs); 639 } 640 641 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr) 642 { 643 enter_from_user_mode(regs); 644 local_daif_restore(DAIF_PROCCTX); 645 do_el0_fpac(regs, esr); 646 exit_to_user_mode(regs); 647 } 648 649 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs) 650 { 651 unsigned long esr = read_sysreg(esr_el1); 652 653 switch (ESR_ELx_EC(esr)) { 654 case ESR_ELx_EC_SVC64: 655 el0_svc(regs); 656 break; 657 case ESR_ELx_EC_DABT_LOW: 658 el0_da(regs, esr); 659 break; 660 case ESR_ELx_EC_IABT_LOW: 661 el0_ia(regs, esr); 662 break; 663 case ESR_ELx_EC_FP_ASIMD: 664 el0_fpsimd_acc(regs, esr); 665 break; 666 case ESR_ELx_EC_SVE: 667 el0_sve_acc(regs, esr); 668 break; 669 case ESR_ELx_EC_SME: 670 el0_sme_acc(regs, esr); 671 break; 672 case ESR_ELx_EC_FP_EXC64: 673 el0_fpsimd_exc(regs, esr); 674 break; 675 case ESR_ELx_EC_SYS64: 676 case ESR_ELx_EC_WFx: 677 el0_sys(regs, esr); 678 break; 679 case ESR_ELx_EC_SP_ALIGN: 680 el0_sp(regs, esr); 681 break; 682 case ESR_ELx_EC_PC_ALIGN: 683 el0_pc(regs, esr); 684 break; 685 case ESR_ELx_EC_UNKNOWN: 686 el0_undef(regs, esr); 687 break; 688 case ESR_ELx_EC_BTI: 689 el0_bti(regs); 690 break; 691 case ESR_ELx_EC_BREAKPT_LOW: 692 case ESR_ELx_EC_SOFTSTP_LOW: 693 case ESR_ELx_EC_WATCHPT_LOW: 694 case ESR_ELx_EC_BRK64: 695 el0_dbg(regs, esr); 696 break; 697 case ESR_ELx_EC_FPAC: 698 el0_fpac(regs, esr); 699 break; 700 default: 701 el0_inv(regs, esr); 702 } 703 } 704 705 static void noinstr el0_interrupt(struct pt_regs *regs, 706 void (*handler)(struct pt_regs *)) 707 { 708 enter_from_user_mode(regs); 709 710 write_sysreg(DAIF_PROCCTX_NOIRQ, daif); 711 712 if (regs->pc & BIT(55)) 713 arm64_apply_bp_hardening(); 714 715 irq_enter_rcu(); 716 do_interrupt_handler(regs, handler); 717 irq_exit_rcu(); 718 719 exit_to_user_mode(regs); 720 } 721 722 static void noinstr __el0_irq_handler_common(struct pt_regs *regs) 723 { 724 el0_interrupt(regs, handle_arch_irq); 725 } 726 727 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs) 728 { 729 __el0_irq_handler_common(regs); 730 } 731 732 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs) 733 { 734 el0_interrupt(regs, handle_arch_fiq); 735 } 736 737 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs) 738 { 739 __el0_fiq_handler_common(regs); 740 } 741 742 static void noinstr __el0_error_handler_common(struct pt_regs *regs) 743 { 744 unsigned long esr = read_sysreg(esr_el1); 745 746 enter_from_user_mode(regs); 747 local_daif_restore(DAIF_ERRCTX); 748 arm64_enter_nmi(regs); 749 do_serror(regs, esr); 750 arm64_exit_nmi(regs); 751 local_daif_restore(DAIF_PROCCTX); 752 exit_to_user_mode(regs); 753 } 754 755 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs) 756 { 757 __el0_error_handler_common(regs); 758 } 759 760 #ifdef CONFIG_COMPAT 761 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr) 762 { 763 enter_from_user_mode(regs); 764 local_daif_restore(DAIF_PROCCTX); 765 do_el0_cp15(esr, regs); 766 exit_to_user_mode(regs); 767 } 768 769 static void noinstr el0_svc_compat(struct pt_regs *regs) 770 { 771 enter_from_user_mode(regs); 772 cortex_a76_erratum_1463225_svc_handler(); 773 do_el0_svc_compat(regs); 774 exit_to_user_mode(regs); 775 } 776 777 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs) 778 { 779 unsigned long esr = read_sysreg(esr_el1); 780 781 switch (ESR_ELx_EC(esr)) { 782 case ESR_ELx_EC_SVC32: 783 el0_svc_compat(regs); 784 break; 785 case ESR_ELx_EC_DABT_LOW: 786 el0_da(regs, esr); 787 break; 788 case ESR_ELx_EC_IABT_LOW: 789 el0_ia(regs, esr); 790 break; 791 case ESR_ELx_EC_FP_ASIMD: 792 el0_fpsimd_acc(regs, esr); 793 break; 794 case ESR_ELx_EC_FP_EXC32: 795 el0_fpsimd_exc(regs, esr); 796 break; 797 case ESR_ELx_EC_PC_ALIGN: 798 el0_pc(regs, esr); 799 break; 800 case ESR_ELx_EC_UNKNOWN: 801 case ESR_ELx_EC_CP14_MR: 802 case ESR_ELx_EC_CP14_LS: 803 case ESR_ELx_EC_CP14_64: 804 el0_undef(regs, esr); 805 break; 806 case ESR_ELx_EC_CP15_32: 807 case ESR_ELx_EC_CP15_64: 808 el0_cp15(regs, esr); 809 break; 810 case ESR_ELx_EC_BREAKPT_LOW: 811 case ESR_ELx_EC_SOFTSTP_LOW: 812 case ESR_ELx_EC_WATCHPT_LOW: 813 case ESR_ELx_EC_BKPT32: 814 el0_dbg(regs, esr); 815 break; 816 default: 817 el0_inv(regs, esr); 818 } 819 } 820 821 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs) 822 { 823 __el0_irq_handler_common(regs); 824 } 825 826 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs) 827 { 828 __el0_fiq_handler_common(regs); 829 } 830 831 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs) 832 { 833 __el0_error_handler_common(regs); 834 } 835 #else /* CONFIG_COMPAT */ 836 UNHANDLED(el0t, 32, sync) 837 UNHANDLED(el0t, 32, irq) 838 UNHANDLED(el0t, 32, fiq) 839 UNHANDLED(el0t, 32, error) 840 #endif /* CONFIG_COMPAT */ 841 842 #ifdef CONFIG_VMAP_STACK 843 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs) 844 { 845 unsigned long esr = read_sysreg(esr_el1); 846 unsigned long far = read_sysreg(far_el1); 847 848 arm64_enter_nmi(regs); 849 panic_bad_stack(regs, esr, far); 850 } 851 #endif /* CONFIG_VMAP_STACK */ 852 853 #ifdef CONFIG_ARM_SDE_INTERFACE 854 asmlinkage noinstr unsigned long 855 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg) 856 { 857 unsigned long ret; 858 859 /* 860 * We didn't take an exception to get here, so the HW hasn't 861 * set/cleared bits in PSTATE that we may rely on. 862 * 863 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to 864 * whether PSTATE bits are inherited unchanged or generated from 865 * scratch, and the TF-A implementation always clears PAN and always 866 * clears UAO. There are no other known implementations. 867 * 868 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how 869 * PSTATE is modified upon architectural exceptions, and so PAN is 870 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always 871 * cleared. 872 * 873 * We must explicitly reset PAN to the expected state, including 874 * clearing it when the host isn't using it, in case a VM had it set. 875 */ 876 if (system_uses_hw_pan()) 877 set_pstate_pan(1); 878 else if (cpu_has_pan()) 879 set_pstate_pan(0); 880 881 arm64_enter_nmi(regs); 882 ret = do_sdei_event(regs, arg); 883 arm64_exit_nmi(regs); 884 885 return ret; 886 } 887 #endif /* CONFIG_ARM_SDE_INTERFACE */ 888