1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Exception handling code 4 * 5 * Copyright (C) 2019 ARM Ltd. 6 */ 7 8 #include <linux/context_tracking.h> 9 #include <linux/kasan.h> 10 #include <linux/linkage.h> 11 #include <linux/lockdep.h> 12 #include <linux/ptrace.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/thread_info.h> 16 17 #include <asm/cpufeature.h> 18 #include <asm/daifflags.h> 19 #include <asm/esr.h> 20 #include <asm/exception.h> 21 #include <asm/irq_regs.h> 22 #include <asm/kprobes.h> 23 #include <asm/mmu.h> 24 #include <asm/processor.h> 25 #include <asm/sdei.h> 26 #include <asm/stacktrace.h> 27 #include <asm/sysreg.h> 28 #include <asm/system_misc.h> 29 30 /* 31 * Handle IRQ/context state management when entering from kernel mode. 32 * Before this function is called it is not safe to call regular kernel code, 33 * instrumentable code, or any code which may trigger an exception. 34 * 35 * This is intended to match the logic in irqentry_enter(), handling the kernel 36 * mode transitions only. 37 */ 38 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs) 39 { 40 regs->exit_rcu = false; 41 42 if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) { 43 lockdep_hardirqs_off(CALLER_ADDR0); 44 ct_irq_enter(); 45 trace_hardirqs_off_finish(); 46 47 regs->exit_rcu = true; 48 return; 49 } 50 51 lockdep_hardirqs_off(CALLER_ADDR0); 52 rcu_irq_enter_check_tick(); 53 trace_hardirqs_off_finish(); 54 } 55 56 static void noinstr enter_from_kernel_mode(struct pt_regs *regs) 57 { 58 __enter_from_kernel_mode(regs); 59 mte_check_tfsr_entry(); 60 mte_disable_tco_entry(current); 61 } 62 63 /* 64 * Handle IRQ/context state management when exiting to kernel mode. 65 * After this function returns it is not safe to call regular kernel code, 66 * instrumentable code, or any code which may trigger an exception. 67 * 68 * This is intended to match the logic in irqentry_exit(), handling the kernel 69 * mode transitions only, and with preemption handled elsewhere. 70 */ 71 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs) 72 { 73 lockdep_assert_irqs_disabled(); 74 75 if (interrupts_enabled(regs)) { 76 if (regs->exit_rcu) { 77 trace_hardirqs_on_prepare(); 78 lockdep_hardirqs_on_prepare(); 79 ct_irq_exit(); 80 lockdep_hardirqs_on(CALLER_ADDR0); 81 return; 82 } 83 84 trace_hardirqs_on(); 85 } else { 86 if (regs->exit_rcu) 87 ct_irq_exit(); 88 } 89 } 90 91 static void noinstr exit_to_kernel_mode(struct pt_regs *regs) 92 { 93 mte_check_tfsr_exit(); 94 __exit_to_kernel_mode(regs); 95 } 96 97 /* 98 * Handle IRQ/context state management when entering from user mode. 99 * Before this function is called it is not safe to call regular kernel code, 100 * instrumentable code, or any code which may trigger an exception. 101 */ 102 static __always_inline void __enter_from_user_mode(void) 103 { 104 lockdep_hardirqs_off(CALLER_ADDR0); 105 CT_WARN_ON(ct_state() != CONTEXT_USER); 106 user_exit_irqoff(); 107 trace_hardirqs_off_finish(); 108 mte_disable_tco_entry(current); 109 } 110 111 static __always_inline void enter_from_user_mode(struct pt_regs *regs) 112 { 113 __enter_from_user_mode(); 114 } 115 116 /* 117 * Handle IRQ/context state management when exiting to user mode. 118 * After this function returns it is not safe to call regular kernel code, 119 * instrumentable code, or any code which may trigger an exception. 120 */ 121 static __always_inline void __exit_to_user_mode(void) 122 { 123 trace_hardirqs_on_prepare(); 124 lockdep_hardirqs_on_prepare(); 125 user_enter_irqoff(); 126 lockdep_hardirqs_on(CALLER_ADDR0); 127 } 128 129 static __always_inline void exit_to_user_mode_prepare(struct pt_regs *regs) 130 { 131 unsigned long flags; 132 133 local_daif_mask(); 134 135 flags = read_thread_flags(); 136 if (unlikely(flags & _TIF_WORK_MASK)) 137 do_notify_resume(regs, flags); 138 139 lockdep_sys_exit(); 140 } 141 142 static __always_inline void exit_to_user_mode(struct pt_regs *regs) 143 { 144 exit_to_user_mode_prepare(regs); 145 mte_check_tfsr_exit(); 146 __exit_to_user_mode(); 147 } 148 149 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs) 150 { 151 exit_to_user_mode(regs); 152 } 153 154 /* 155 * Handle IRQ/context state management when entering an NMI from user/kernel 156 * mode. Before this function is called it is not safe to call regular kernel 157 * code, instrumentable code, or any code which may trigger an exception. 158 */ 159 static void noinstr arm64_enter_nmi(struct pt_regs *regs) 160 { 161 regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); 162 163 __nmi_enter(); 164 lockdep_hardirqs_off(CALLER_ADDR0); 165 lockdep_hardirq_enter(); 166 ct_nmi_enter(); 167 168 trace_hardirqs_off_finish(); 169 ftrace_nmi_enter(); 170 } 171 172 /* 173 * Handle IRQ/context state management when exiting an NMI from user/kernel 174 * mode. After this function returns it is not safe to call regular kernel 175 * code, instrumentable code, or any code which may trigger an exception. 176 */ 177 static void noinstr arm64_exit_nmi(struct pt_regs *regs) 178 { 179 bool restore = regs->lockdep_hardirqs; 180 181 ftrace_nmi_exit(); 182 if (restore) { 183 trace_hardirqs_on_prepare(); 184 lockdep_hardirqs_on_prepare(); 185 } 186 187 ct_nmi_exit(); 188 lockdep_hardirq_exit(); 189 if (restore) 190 lockdep_hardirqs_on(CALLER_ADDR0); 191 __nmi_exit(); 192 } 193 194 /* 195 * Handle IRQ/context state management when entering a debug exception from 196 * kernel mode. Before this function is called it is not safe to call regular 197 * kernel code, instrumentable code, or any code which may trigger an exception. 198 */ 199 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs) 200 { 201 regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); 202 203 lockdep_hardirqs_off(CALLER_ADDR0); 204 ct_nmi_enter(); 205 206 trace_hardirqs_off_finish(); 207 } 208 209 /* 210 * Handle IRQ/context state management when exiting a debug exception from 211 * kernel mode. After this function returns it is not safe to call regular 212 * kernel code, instrumentable code, or any code which may trigger an exception. 213 */ 214 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs) 215 { 216 bool restore = regs->lockdep_hardirqs; 217 218 if (restore) { 219 trace_hardirqs_on_prepare(); 220 lockdep_hardirqs_on_prepare(); 221 } 222 223 ct_nmi_exit(); 224 if (restore) 225 lockdep_hardirqs_on(CALLER_ADDR0); 226 } 227 228 #ifdef CONFIG_PREEMPT_DYNAMIC 229 DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched); 230 #define need_irq_preemption() \ 231 (static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched)) 232 #else 233 #define need_irq_preemption() (IS_ENABLED(CONFIG_PREEMPTION)) 234 #endif 235 236 static void __sched arm64_preempt_schedule_irq(void) 237 { 238 if (!need_irq_preemption()) 239 return; 240 241 /* 242 * Note: thread_info::preempt_count includes both thread_info::count 243 * and thread_info::need_resched, and is not equivalent to 244 * preempt_count(). 245 */ 246 if (READ_ONCE(current_thread_info()->preempt_count) != 0) 247 return; 248 249 /* 250 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC 251 * priority masking is used the GIC irqchip driver will clear DAIF.IF 252 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in 253 * DAIF we must have handled an NMI, so skip preemption. 254 */ 255 if (system_uses_irq_prio_masking() && read_sysreg(daif)) 256 return; 257 258 /* 259 * Preempting a task from an IRQ means we leave copies of PSTATE 260 * on the stack. cpufeature's enable calls may modify PSTATE, but 261 * resuming one of these preempted tasks would undo those changes. 262 * 263 * Only allow a task to be preempted once cpufeatures have been 264 * enabled. 265 */ 266 if (system_capabilities_finalized()) 267 preempt_schedule_irq(); 268 } 269 270 static void do_interrupt_handler(struct pt_regs *regs, 271 void (*handler)(struct pt_regs *)) 272 { 273 struct pt_regs *old_regs = set_irq_regs(regs); 274 275 if (on_thread_stack()) 276 call_on_irq_stack(regs, handler); 277 else 278 handler(regs); 279 280 set_irq_regs(old_regs); 281 } 282 283 extern void (*handle_arch_irq)(struct pt_regs *); 284 extern void (*handle_arch_fiq)(struct pt_regs *); 285 286 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector, 287 unsigned long esr) 288 { 289 arm64_enter_nmi(regs); 290 291 console_verbose(); 292 293 pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n", 294 vector, smp_processor_id(), esr, 295 esr_get_class_string(esr)); 296 297 __show_regs(regs); 298 panic("Unhandled exception"); 299 } 300 301 #define UNHANDLED(el, regsize, vector) \ 302 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \ 303 { \ 304 const char *desc = #regsize "-bit " #el " " #vector; \ 305 __panic_unhandled(regs, desc, read_sysreg(esr_el1)); \ 306 } 307 308 #ifdef CONFIG_ARM64_ERRATUM_1463225 309 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); 310 311 static void cortex_a76_erratum_1463225_svc_handler(void) 312 { 313 u32 reg, val; 314 315 if (!unlikely(test_thread_flag(TIF_SINGLESTEP))) 316 return; 317 318 if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225))) 319 return; 320 321 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1); 322 reg = read_sysreg(mdscr_el1); 323 val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE; 324 write_sysreg(val, mdscr_el1); 325 asm volatile("msr daifclr, #8"); 326 isb(); 327 328 /* We will have taken a single-step exception by this point */ 329 330 write_sysreg(reg, mdscr_el1); 331 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0); 332 } 333 334 static __always_inline bool 335 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 336 { 337 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa)) 338 return false; 339 340 /* 341 * We've taken a dummy step exception from the kernel to ensure 342 * that interrupts are re-enabled on the syscall path. Return back 343 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions 344 * masked so that we can safely restore the mdscr and get on with 345 * handling the syscall. 346 */ 347 regs->pstate |= PSR_D_BIT; 348 return true; 349 } 350 #else /* CONFIG_ARM64_ERRATUM_1463225 */ 351 static void cortex_a76_erratum_1463225_svc_handler(void) { } 352 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 353 { 354 return false; 355 } 356 #endif /* CONFIG_ARM64_ERRATUM_1463225 */ 357 358 UNHANDLED(el1t, 64, sync) 359 UNHANDLED(el1t, 64, irq) 360 UNHANDLED(el1t, 64, fiq) 361 UNHANDLED(el1t, 64, error) 362 363 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr) 364 { 365 unsigned long far = read_sysreg(far_el1); 366 367 enter_from_kernel_mode(regs); 368 local_daif_inherit(regs); 369 do_mem_abort(far, esr, regs); 370 local_daif_mask(); 371 exit_to_kernel_mode(regs); 372 } 373 374 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr) 375 { 376 unsigned long far = read_sysreg(far_el1); 377 378 enter_from_kernel_mode(regs); 379 local_daif_inherit(regs); 380 do_sp_pc_abort(far, esr, regs); 381 local_daif_mask(); 382 exit_to_kernel_mode(regs); 383 } 384 385 static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr) 386 { 387 enter_from_kernel_mode(regs); 388 local_daif_inherit(regs); 389 do_el1_undef(regs, esr); 390 local_daif_mask(); 391 exit_to_kernel_mode(regs); 392 } 393 394 static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr) 395 { 396 enter_from_kernel_mode(regs); 397 local_daif_inherit(regs); 398 do_el1_bti(regs, esr); 399 local_daif_mask(); 400 exit_to_kernel_mode(regs); 401 } 402 403 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr) 404 { 405 unsigned long far = read_sysreg(far_el1); 406 407 arm64_enter_el1_dbg(regs); 408 if (!cortex_a76_erratum_1463225_debug_handler(regs)) 409 do_debug_exception(far, esr, regs); 410 arm64_exit_el1_dbg(regs); 411 } 412 413 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr) 414 { 415 enter_from_kernel_mode(regs); 416 local_daif_inherit(regs); 417 do_el1_fpac(regs, esr); 418 local_daif_mask(); 419 exit_to_kernel_mode(regs); 420 } 421 422 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs) 423 { 424 unsigned long esr = read_sysreg(esr_el1); 425 426 switch (ESR_ELx_EC(esr)) { 427 case ESR_ELx_EC_DABT_CUR: 428 case ESR_ELx_EC_IABT_CUR: 429 el1_abort(regs, esr); 430 break; 431 /* 432 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a 433 * recursive exception when trying to push the initial pt_regs. 434 */ 435 case ESR_ELx_EC_PC_ALIGN: 436 el1_pc(regs, esr); 437 break; 438 case ESR_ELx_EC_SYS64: 439 case ESR_ELx_EC_UNKNOWN: 440 el1_undef(regs, esr); 441 break; 442 case ESR_ELx_EC_BTI: 443 el1_bti(regs, esr); 444 break; 445 case ESR_ELx_EC_BREAKPT_CUR: 446 case ESR_ELx_EC_SOFTSTP_CUR: 447 case ESR_ELx_EC_WATCHPT_CUR: 448 case ESR_ELx_EC_BRK64: 449 el1_dbg(regs, esr); 450 break; 451 case ESR_ELx_EC_FPAC: 452 el1_fpac(regs, esr); 453 break; 454 default: 455 __panic_unhandled(regs, "64-bit el1h sync", esr); 456 } 457 } 458 459 static __always_inline void __el1_pnmi(struct pt_regs *regs, 460 void (*handler)(struct pt_regs *)) 461 { 462 arm64_enter_nmi(regs); 463 do_interrupt_handler(regs, handler); 464 arm64_exit_nmi(regs); 465 } 466 467 static __always_inline void __el1_irq(struct pt_regs *regs, 468 void (*handler)(struct pt_regs *)) 469 { 470 enter_from_kernel_mode(regs); 471 472 irq_enter_rcu(); 473 do_interrupt_handler(regs, handler); 474 irq_exit_rcu(); 475 476 arm64_preempt_schedule_irq(); 477 478 exit_to_kernel_mode(regs); 479 } 480 static void noinstr el1_interrupt(struct pt_regs *regs, 481 void (*handler)(struct pt_regs *)) 482 { 483 write_sysreg(DAIF_PROCCTX_NOIRQ, daif); 484 485 if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs)) 486 __el1_pnmi(regs, handler); 487 else 488 __el1_irq(regs, handler); 489 } 490 491 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs) 492 { 493 el1_interrupt(regs, handle_arch_irq); 494 } 495 496 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs) 497 { 498 el1_interrupt(regs, handle_arch_fiq); 499 } 500 501 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs) 502 { 503 unsigned long esr = read_sysreg(esr_el1); 504 505 local_daif_restore(DAIF_ERRCTX); 506 arm64_enter_nmi(regs); 507 do_serror(regs, esr); 508 arm64_exit_nmi(regs); 509 } 510 511 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr) 512 { 513 unsigned long far = read_sysreg(far_el1); 514 515 enter_from_user_mode(regs); 516 local_daif_restore(DAIF_PROCCTX); 517 do_mem_abort(far, esr, regs); 518 exit_to_user_mode(regs); 519 } 520 521 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr) 522 { 523 unsigned long far = read_sysreg(far_el1); 524 525 /* 526 * We've taken an instruction abort from userspace and not yet 527 * re-enabled IRQs. If the address is a kernel address, apply 528 * BP hardening prior to enabling IRQs and pre-emption. 529 */ 530 if (!is_ttbr0_addr(far)) 531 arm64_apply_bp_hardening(); 532 533 enter_from_user_mode(regs); 534 local_daif_restore(DAIF_PROCCTX); 535 do_mem_abort(far, esr, regs); 536 exit_to_user_mode(regs); 537 } 538 539 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr) 540 { 541 enter_from_user_mode(regs); 542 local_daif_restore(DAIF_PROCCTX); 543 do_fpsimd_acc(esr, regs); 544 exit_to_user_mode(regs); 545 } 546 547 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr) 548 { 549 enter_from_user_mode(regs); 550 local_daif_restore(DAIF_PROCCTX); 551 do_sve_acc(esr, regs); 552 exit_to_user_mode(regs); 553 } 554 555 static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr) 556 { 557 enter_from_user_mode(regs); 558 local_daif_restore(DAIF_PROCCTX); 559 do_sme_acc(esr, regs); 560 exit_to_user_mode(regs); 561 } 562 563 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr) 564 { 565 enter_from_user_mode(regs); 566 local_daif_restore(DAIF_PROCCTX); 567 do_fpsimd_exc(esr, regs); 568 exit_to_user_mode(regs); 569 } 570 571 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr) 572 { 573 enter_from_user_mode(regs); 574 local_daif_restore(DAIF_PROCCTX); 575 do_el0_sys(esr, regs); 576 exit_to_user_mode(regs); 577 } 578 579 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr) 580 { 581 unsigned long far = read_sysreg(far_el1); 582 583 if (!is_ttbr0_addr(instruction_pointer(regs))) 584 arm64_apply_bp_hardening(); 585 586 enter_from_user_mode(regs); 587 local_daif_restore(DAIF_PROCCTX); 588 do_sp_pc_abort(far, esr, regs); 589 exit_to_user_mode(regs); 590 } 591 592 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr) 593 { 594 enter_from_user_mode(regs); 595 local_daif_restore(DAIF_PROCCTX); 596 do_sp_pc_abort(regs->sp, esr, regs); 597 exit_to_user_mode(regs); 598 } 599 600 static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr) 601 { 602 enter_from_user_mode(regs); 603 local_daif_restore(DAIF_PROCCTX); 604 do_el0_undef(regs, esr); 605 exit_to_user_mode(regs); 606 } 607 608 static void noinstr el0_bti(struct pt_regs *regs) 609 { 610 enter_from_user_mode(regs); 611 local_daif_restore(DAIF_PROCCTX); 612 do_el0_bti(regs); 613 exit_to_user_mode(regs); 614 } 615 616 static void noinstr el0_mops(struct pt_regs *regs, unsigned long esr) 617 { 618 enter_from_user_mode(regs); 619 local_daif_restore(DAIF_PROCCTX); 620 do_el0_mops(regs, esr); 621 exit_to_user_mode(regs); 622 } 623 624 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr) 625 { 626 enter_from_user_mode(regs); 627 local_daif_restore(DAIF_PROCCTX); 628 bad_el0_sync(regs, 0, esr); 629 exit_to_user_mode(regs); 630 } 631 632 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr) 633 { 634 /* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */ 635 unsigned long far = read_sysreg(far_el1); 636 637 enter_from_user_mode(regs); 638 do_debug_exception(far, esr, regs); 639 local_daif_restore(DAIF_PROCCTX); 640 exit_to_user_mode(regs); 641 } 642 643 static void noinstr el0_svc(struct pt_regs *regs) 644 { 645 enter_from_user_mode(regs); 646 cortex_a76_erratum_1463225_svc_handler(); 647 do_el0_svc(regs); 648 exit_to_user_mode(regs); 649 } 650 651 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr) 652 { 653 enter_from_user_mode(regs); 654 local_daif_restore(DAIF_PROCCTX); 655 do_el0_fpac(regs, esr); 656 exit_to_user_mode(regs); 657 } 658 659 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs) 660 { 661 unsigned long esr = read_sysreg(esr_el1); 662 663 switch (ESR_ELx_EC(esr)) { 664 case ESR_ELx_EC_SVC64: 665 el0_svc(regs); 666 break; 667 case ESR_ELx_EC_DABT_LOW: 668 el0_da(regs, esr); 669 break; 670 case ESR_ELx_EC_IABT_LOW: 671 el0_ia(regs, esr); 672 break; 673 case ESR_ELx_EC_FP_ASIMD: 674 el0_fpsimd_acc(regs, esr); 675 break; 676 case ESR_ELx_EC_SVE: 677 el0_sve_acc(regs, esr); 678 break; 679 case ESR_ELx_EC_SME: 680 el0_sme_acc(regs, esr); 681 break; 682 case ESR_ELx_EC_FP_EXC64: 683 el0_fpsimd_exc(regs, esr); 684 break; 685 case ESR_ELx_EC_SYS64: 686 case ESR_ELx_EC_WFx: 687 el0_sys(regs, esr); 688 break; 689 case ESR_ELx_EC_SP_ALIGN: 690 el0_sp(regs, esr); 691 break; 692 case ESR_ELx_EC_PC_ALIGN: 693 el0_pc(regs, esr); 694 break; 695 case ESR_ELx_EC_UNKNOWN: 696 el0_undef(regs, esr); 697 break; 698 case ESR_ELx_EC_BTI: 699 el0_bti(regs); 700 break; 701 case ESR_ELx_EC_MOPS: 702 el0_mops(regs, esr); 703 break; 704 case ESR_ELx_EC_BREAKPT_LOW: 705 case ESR_ELx_EC_SOFTSTP_LOW: 706 case ESR_ELx_EC_WATCHPT_LOW: 707 case ESR_ELx_EC_BRK64: 708 el0_dbg(regs, esr); 709 break; 710 case ESR_ELx_EC_FPAC: 711 el0_fpac(regs, esr); 712 break; 713 default: 714 el0_inv(regs, esr); 715 } 716 } 717 718 static void noinstr el0_interrupt(struct pt_regs *regs, 719 void (*handler)(struct pt_regs *)) 720 { 721 enter_from_user_mode(regs); 722 723 write_sysreg(DAIF_PROCCTX_NOIRQ, daif); 724 725 if (regs->pc & BIT(55)) 726 arm64_apply_bp_hardening(); 727 728 irq_enter_rcu(); 729 do_interrupt_handler(regs, handler); 730 irq_exit_rcu(); 731 732 exit_to_user_mode(regs); 733 } 734 735 static void noinstr __el0_irq_handler_common(struct pt_regs *regs) 736 { 737 el0_interrupt(regs, handle_arch_irq); 738 } 739 740 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs) 741 { 742 __el0_irq_handler_common(regs); 743 } 744 745 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs) 746 { 747 el0_interrupt(regs, handle_arch_fiq); 748 } 749 750 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs) 751 { 752 __el0_fiq_handler_common(regs); 753 } 754 755 static void noinstr __el0_error_handler_common(struct pt_regs *regs) 756 { 757 unsigned long esr = read_sysreg(esr_el1); 758 759 enter_from_user_mode(regs); 760 local_daif_restore(DAIF_ERRCTX); 761 arm64_enter_nmi(regs); 762 do_serror(regs, esr); 763 arm64_exit_nmi(regs); 764 local_daif_restore(DAIF_PROCCTX); 765 exit_to_user_mode(regs); 766 } 767 768 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs) 769 { 770 __el0_error_handler_common(regs); 771 } 772 773 #ifdef CONFIG_COMPAT 774 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr) 775 { 776 enter_from_user_mode(regs); 777 local_daif_restore(DAIF_PROCCTX); 778 do_el0_cp15(esr, regs); 779 exit_to_user_mode(regs); 780 } 781 782 static void noinstr el0_svc_compat(struct pt_regs *regs) 783 { 784 enter_from_user_mode(regs); 785 cortex_a76_erratum_1463225_svc_handler(); 786 do_el0_svc_compat(regs); 787 exit_to_user_mode(regs); 788 } 789 790 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs) 791 { 792 unsigned long esr = read_sysreg(esr_el1); 793 794 switch (ESR_ELx_EC(esr)) { 795 case ESR_ELx_EC_SVC32: 796 el0_svc_compat(regs); 797 break; 798 case ESR_ELx_EC_DABT_LOW: 799 el0_da(regs, esr); 800 break; 801 case ESR_ELx_EC_IABT_LOW: 802 el0_ia(regs, esr); 803 break; 804 case ESR_ELx_EC_FP_ASIMD: 805 el0_fpsimd_acc(regs, esr); 806 break; 807 case ESR_ELx_EC_FP_EXC32: 808 el0_fpsimd_exc(regs, esr); 809 break; 810 case ESR_ELx_EC_PC_ALIGN: 811 el0_pc(regs, esr); 812 break; 813 case ESR_ELx_EC_UNKNOWN: 814 case ESR_ELx_EC_CP14_MR: 815 case ESR_ELx_EC_CP14_LS: 816 case ESR_ELx_EC_CP14_64: 817 el0_undef(regs, esr); 818 break; 819 case ESR_ELx_EC_CP15_32: 820 case ESR_ELx_EC_CP15_64: 821 el0_cp15(regs, esr); 822 break; 823 case ESR_ELx_EC_BREAKPT_LOW: 824 case ESR_ELx_EC_SOFTSTP_LOW: 825 case ESR_ELx_EC_WATCHPT_LOW: 826 case ESR_ELx_EC_BKPT32: 827 el0_dbg(regs, esr); 828 break; 829 default: 830 el0_inv(regs, esr); 831 } 832 } 833 834 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs) 835 { 836 __el0_irq_handler_common(regs); 837 } 838 839 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs) 840 { 841 __el0_fiq_handler_common(regs); 842 } 843 844 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs) 845 { 846 __el0_error_handler_common(regs); 847 } 848 #else /* CONFIG_COMPAT */ 849 UNHANDLED(el0t, 32, sync) 850 UNHANDLED(el0t, 32, irq) 851 UNHANDLED(el0t, 32, fiq) 852 UNHANDLED(el0t, 32, error) 853 #endif /* CONFIG_COMPAT */ 854 855 #ifdef CONFIG_VMAP_STACK 856 asmlinkage void noinstr __noreturn handle_bad_stack(struct pt_regs *regs) 857 { 858 unsigned long esr = read_sysreg(esr_el1); 859 unsigned long far = read_sysreg(far_el1); 860 861 arm64_enter_nmi(regs); 862 panic_bad_stack(regs, esr, far); 863 } 864 #endif /* CONFIG_VMAP_STACK */ 865 866 #ifdef CONFIG_ARM_SDE_INTERFACE 867 asmlinkage noinstr unsigned long 868 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg) 869 { 870 unsigned long ret; 871 872 /* 873 * We didn't take an exception to get here, so the HW hasn't 874 * set/cleared bits in PSTATE that we may rely on. 875 * 876 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to 877 * whether PSTATE bits are inherited unchanged or generated from 878 * scratch, and the TF-A implementation always clears PAN and always 879 * clears UAO. There are no other known implementations. 880 * 881 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how 882 * PSTATE is modified upon architectural exceptions, and so PAN is 883 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always 884 * cleared. 885 * 886 * We must explicitly reset PAN to the expected state, including 887 * clearing it when the host isn't using it, in case a VM had it set. 888 */ 889 if (system_uses_hw_pan()) 890 set_pstate_pan(1); 891 else if (cpu_has_pan()) 892 set_pstate_pan(0); 893 894 arm64_enter_nmi(regs); 895 ret = do_sdei_event(regs, arg); 896 arm64_exit_nmi(regs); 897 898 return ret; 899 } 900 #endif /* CONFIG_ARM_SDE_INTERFACE */ 901