xref: /linux/arch/arm64/kernel/efi.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Extensible Firmware Interface
4  *
5  * Based on Extensible Firmware Interface Specification version 2.4
6  *
7  * Copyright (C) 2013, 2014 Linaro Ltd.
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/init.h>
12 #include <linux/kmemleak.h>
13 #include <linux/kthread.h>
14 #include <linux/screen_info.h>
15 #include <linux/vmalloc.h>
16 
17 #include <asm/efi.h>
18 #include <asm/stacktrace.h>
19 #include <asm/vmap_stack.h>
20 
21 static bool region_is_misaligned(const efi_memory_desc_t *md)
22 {
23 	if (PAGE_SIZE == EFI_PAGE_SIZE)
24 		return false;
25 	return !PAGE_ALIGNED(md->phys_addr) ||
26 	       !PAGE_ALIGNED(md->num_pages << EFI_PAGE_SHIFT);
27 }
28 
29 /*
30  * Only regions of type EFI_RUNTIME_SERVICES_CODE need to be
31  * executable, everything else can be mapped with the XN bits
32  * set. Also take the new (optional) RO/XP bits into account.
33  */
34 static __init ptdesc_t create_mapping_protection(efi_memory_desc_t *md)
35 {
36 	u64 attr = md->attribute;
37 	u32 type = md->type;
38 
39 	if (type == EFI_MEMORY_MAPPED_IO) {
40 		pgprot_t prot = __pgprot(PROT_DEVICE_nGnRE);
41 
42 		if (arm64_is_protected_mmio(md->phys_addr,
43 					    md->num_pages << EFI_PAGE_SHIFT))
44 			prot = pgprot_encrypted(prot);
45 		else
46 			prot = pgprot_decrypted(prot);
47 		return pgprot_val(prot);
48 	}
49 
50 	if (region_is_misaligned(md)) {
51 		static bool __initdata code_is_misaligned;
52 
53 		/*
54 		 * Regions that are not aligned to the OS page size cannot be
55 		 * mapped with strict permissions, as those might interfere
56 		 * with the permissions that are needed by the adjacent
57 		 * region's mapping. However, if we haven't encountered any
58 		 * misaligned runtime code regions so far, we can safely use
59 		 * non-executable permissions for non-code regions.
60 		 */
61 		code_is_misaligned |= (type == EFI_RUNTIME_SERVICES_CODE);
62 
63 		return code_is_misaligned ? pgprot_val(PAGE_KERNEL_EXEC)
64 					  : pgprot_val(PAGE_KERNEL);
65 	}
66 
67 	/* R-- */
68 	if ((attr & (EFI_MEMORY_XP | EFI_MEMORY_RO)) ==
69 	    (EFI_MEMORY_XP | EFI_MEMORY_RO))
70 		return pgprot_val(PAGE_KERNEL_RO);
71 
72 	/* R-X */
73 	if (attr & EFI_MEMORY_RO)
74 		return pgprot_val(PAGE_KERNEL_ROX);
75 
76 	/* RW- */
77 	if (((attr & (EFI_MEMORY_RP | EFI_MEMORY_WP | EFI_MEMORY_XP)) ==
78 	     EFI_MEMORY_XP) ||
79 	    type != EFI_RUNTIME_SERVICES_CODE)
80 		return pgprot_val(PAGE_KERNEL);
81 
82 	/* RWX */
83 	return pgprot_val(PAGE_KERNEL_EXEC);
84 }
85 
86 int __init efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md)
87 {
88 	ptdesc_t prot_val = create_mapping_protection(md);
89 	bool page_mappings_only = (md->type == EFI_RUNTIME_SERVICES_CODE ||
90 				   md->type == EFI_RUNTIME_SERVICES_DATA);
91 
92 	/*
93 	 * If this region is not aligned to the page size used by the OS, the
94 	 * mapping will be rounded outwards, and may end up sharing a page
95 	 * frame with an adjacent runtime memory region. Given that the page
96 	 * table descriptor covering the shared page will be rewritten when the
97 	 * adjacent region gets mapped, we must avoid block mappings here so we
98 	 * don't have to worry about splitting them when that happens.
99 	 */
100 	if (region_is_misaligned(md))
101 		page_mappings_only = true;
102 
103 	create_pgd_mapping(mm, md->phys_addr, md->virt_addr,
104 			   md->num_pages << EFI_PAGE_SHIFT,
105 			   __pgprot(prot_val | PTE_NG), page_mappings_only);
106 	return 0;
107 }
108 
109 struct set_perm_data {
110 	const efi_memory_desc_t	*md;
111 	bool			has_bti;
112 };
113 
114 static int __init set_permissions(pte_t *ptep, unsigned long addr, void *data)
115 {
116 	struct set_perm_data *spd = data;
117 	const efi_memory_desc_t *md = spd->md;
118 	pte_t pte = __ptep_get(ptep);
119 
120 	if (md->attribute & EFI_MEMORY_RO)
121 		pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
122 	if (md->attribute & EFI_MEMORY_XP)
123 		pte = set_pte_bit(pte, __pgprot(PTE_PXN));
124 	else if (system_supports_bti_kernel() && spd->has_bti)
125 		pte = set_pte_bit(pte, __pgprot(PTE_GP));
126 	__set_pte(ptep, pte);
127 	return 0;
128 }
129 
130 int __init efi_set_mapping_permissions(struct mm_struct *mm,
131 				       efi_memory_desc_t *md,
132 				       bool has_bti)
133 {
134 	struct set_perm_data data = { md, has_bti };
135 
136 	BUG_ON(md->type != EFI_RUNTIME_SERVICES_CODE &&
137 	       md->type != EFI_RUNTIME_SERVICES_DATA);
138 
139 	if (region_is_misaligned(md))
140 		return 0;
141 
142 	/*
143 	 * Calling apply_to_page_range() is only safe on regions that are
144 	 * guaranteed to be mapped down to pages. Since we are only called
145 	 * for regions that have been mapped using efi_create_mapping() above
146 	 * (and this is checked by the generic Memory Attributes table parsing
147 	 * routines), there is no need to check that again here.
148 	 */
149 	return apply_to_page_range(mm, md->virt_addr,
150 				   md->num_pages << EFI_PAGE_SHIFT,
151 				   set_permissions, &data);
152 }
153 
154 /*
155  * UpdateCapsule() depends on the system being shutdown via
156  * ResetSystem().
157  */
158 bool efi_poweroff_required(void)
159 {
160 	return efi_enabled(EFI_RUNTIME_SERVICES);
161 }
162 
163 asmlinkage efi_status_t efi_handle_corrupted_x18(efi_status_t s, const char *f)
164 {
165 	pr_err_ratelimited(FW_BUG "register x18 corrupted by EFI %s\n", f);
166 	return s;
167 }
168 
169 void arch_efi_call_virt_setup(void)
170 {
171 	efi_runtime_assert_lock_held();
172 
173 	if (preemptible() && (current->flags & PF_KTHREAD)) {
174 		/*
175 		 * Disable migration to ensure that a preempted EFI runtime
176 		 * service call will be resumed on the same CPU. This avoids
177 		 * potential issues with EFI runtime calls that are preempted
178 		 * while polling for an asynchronous completion of a secure
179 		 * firmware call, which may not permit the CPU to change.
180 		 */
181 		migrate_disable();
182 		kthread_use_mm(&efi_mm);
183 	} else {
184 		efi_virtmap_load();
185 	}
186 
187 	/*
188 	 * Enable access to the valid TTBR0_EL1 and invoke the errata
189 	 * workaround directly since there is no return from exception when
190 	 * invoking the EFI run-time services.
191 	 */
192 	uaccess_ttbr0_enable();
193 	post_ttbr_update_workaround();
194 
195 	__efi_fpsimd_begin();
196 }
197 
198 void arch_efi_call_virt_teardown(void)
199 {
200 	__efi_fpsimd_end();
201 
202 	/*
203 	 * Defer the switch to the current thread's TTBR0_EL1 until
204 	 * uaccess_enable(). Do so before efi_virtmap_unload() updates the
205 	 * saved TTBR0 value, so the userland page tables are not activated
206 	 * inadvertently over the back of an exception.
207 	 */
208 	uaccess_ttbr0_disable();
209 
210 	if (preemptible() && (current->flags & PF_KTHREAD)) {
211 		kthread_unuse_mm(&efi_mm);
212 		migrate_enable();
213 	} else {
214 		efi_virtmap_unload();
215 	}
216 }
217 
218 asmlinkage u64 *efi_rt_stack_top __ro_after_init;
219 
220 asmlinkage efi_status_t __efi_rt_asm_recover(void);
221 
222 bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg)
223 {
224 	 /* Check whether the exception occurred while running the firmware */
225 	if (!current_in_efi() || regs->pc >= TASK_SIZE_64)
226 		return false;
227 
228 	pr_err(FW_BUG "Unable to handle %s in EFI runtime service\n", msg);
229 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
230 	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
231 
232 	regs->regs[0]	= EFI_ABORTED;
233 	regs->regs[30]	= efi_rt_stack_top[-1];
234 	regs->pc	= (u64)__efi_rt_asm_recover;
235 
236 	if (IS_ENABLED(CONFIG_SHADOW_CALL_STACK))
237 		regs->regs[18] = efi_rt_stack_top[-2];
238 
239 	return true;
240 }
241 
242 /* EFI requires 8 KiB of stack space for runtime services */
243 static_assert(THREAD_SIZE >= SZ_8K);
244 
245 static int __init arm64_efi_rt_init(void)
246 {
247 	void *p;
248 
249 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
250 		return 0;
251 
252 	p = arch_alloc_vmap_stack(THREAD_SIZE, NUMA_NO_NODE);
253 	if (!p) {
254 		pr_warn("Failed to allocate EFI runtime stack\n");
255 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
256 		return -ENOMEM;
257 	}
258 
259 	kmemleak_not_leak(p);
260 	efi_rt_stack_top = p + THREAD_SIZE;
261 	return 0;
262 }
263 core_initcall(arm64_efi_rt_init);
264