xref: /linux/arch/arm64/kernel/cpufeature.c (revision fc6dfd5547794b0bf10790576a9d97443d975439)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
73 #include <linux/mm.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
76 #include <linux/percpu.h>
77 
78 #include <asm/cpu.h>
79 #include <asm/cpufeature.h>
80 #include <asm/cpu_ops.h>
81 #include <asm/fpsimd.h>
82 #include <asm/hwcap.h>
83 #include <asm/insn.h>
84 #include <asm/kvm_host.h>
85 #include <asm/mmu_context.h>
86 #include <asm/mte.h>
87 #include <asm/processor.h>
88 #include <asm/smp.h>
89 #include <asm/sysreg.h>
90 #include <asm/traps.h>
91 #include <asm/vectors.h>
92 #include <asm/virt.h>
93 
94 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
95 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
96 
97 #ifdef CONFIG_COMPAT
98 #define COMPAT_ELF_HWCAP_DEFAULT	\
99 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
100 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
101 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
102 				 COMPAT_HWCAP_LPAE)
103 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
104 unsigned int compat_elf_hwcap2 __read_mostly;
105 #endif
106 
107 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
108 EXPORT_SYMBOL(cpu_hwcaps);
109 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
110 
111 DECLARE_BITMAP(boot_capabilities, ARM64_NCAPS);
112 
113 bool arm64_use_ng_mappings = false;
114 EXPORT_SYMBOL(arm64_use_ng_mappings);
115 
116 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
117 
118 /*
119  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
120  * support it?
121  */
122 static bool __read_mostly allow_mismatched_32bit_el0;
123 
124 /*
125  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
126  * seen at least one CPU capable of 32-bit EL0.
127  */
128 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
129 
130 /*
131  * Mask of CPUs supporting 32-bit EL0.
132  * Only valid if arm64_mismatched_32bit_el0 is enabled.
133  */
134 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
135 
136 void dump_cpu_features(void)
137 {
138 	/* file-wide pr_fmt adds "CPU features: " prefix */
139 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
140 }
141 
142 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
143 	{						\
144 		.sign = SIGNED,				\
145 		.visible = VISIBLE,			\
146 		.strict = STRICT,			\
147 		.type = TYPE,				\
148 		.shift = SHIFT,				\
149 		.width = WIDTH,				\
150 		.safe_val = SAFE_VAL,			\
151 	}
152 
153 /* Define a feature with unsigned values */
154 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
155 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
156 
157 /* Define a feature with a signed value */
158 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
159 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
160 
161 #define ARM64_FTR_END					\
162 	{						\
163 		.width = 0,				\
164 	}
165 
166 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
167 
168 static bool __system_matches_cap(unsigned int n);
169 
170 /*
171  * NOTE: Any changes to the visibility of features should be kept in
172  * sync with the documentation of the CPU feature register ABI.
173  */
174 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
175 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
176 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
177 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
178 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
179 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
180 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
181 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
182 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
183 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
184 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
185 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
189 	ARM64_FTR_END,
190 };
191 
192 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
193 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
194 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
200 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
201 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
202 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
203 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
204 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
206 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
207 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
208 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
209 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
210 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
211 	ARM64_FTR_END,
212 };
213 
214 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
215 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
217 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
219 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
222 	ARM64_FTR_END,
223 };
224 
225 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
226 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
227 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
229 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
230 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
231 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
233 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
236 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
237 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
238 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
242 	ARM64_FTR_END,
243 };
244 
245 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
246 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
247 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
251 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
252 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
253 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
254 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
255 	ARM64_FTR_END,
256 };
257 
258 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
259 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
260 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
261 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
262 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
263 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
264 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
265 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
266 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
267 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
268 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
270 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
271 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
272 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
273 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
274 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
277 	ARM64_FTR_END,
278 };
279 
280 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
281 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
282 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
283 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
284 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
285 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
286 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
287 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
288 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
289 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
290 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
291 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
292 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
293 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
294 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
295 	ARM64_FTR_END,
296 };
297 
298 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
299 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
300 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
301 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
302 	/*
303 	 * Page size not being supported at Stage-2 is not fatal. You
304 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
305 	 * your favourite nesting hypervisor.
306 	 *
307 	 * There is a small corner case where the hypervisor explicitly
308 	 * advertises a given granule size at Stage-2 (value 2) on some
309 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
310 	 * vCPUs. Although this is not forbidden by the architecture, it
311 	 * indicates that the hypervisor is being silly (or buggy).
312 	 *
313 	 * We make no effort to cope with this and pretend that if these
314 	 * fields are inconsistent across vCPUs, then it isn't worth
315 	 * trying to bring KVM up.
316 	 */
317 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
318 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
320 	/*
321 	 * We already refuse to boot CPUs that don't support our configured
322 	 * page size, so we can only detect mismatches for a page size other
323 	 * than the one we're currently using. Unfortunately, SoCs like this
324 	 * exist in the wild so, even though we don't like it, we'll have to go
325 	 * along with it and treat them as non-strict.
326 	 */
327 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
328 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
329 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
330 
331 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
332 	/* Linux shouldn't care about secure memory */
333 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
334 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
335 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
336 	/*
337 	 * Differing PARange is fine as long as all peripherals and memory are mapped
338 	 * within the minimum PARange of all CPUs
339 	 */
340 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
341 	ARM64_FTR_END,
342 };
343 
344 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
345 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
346 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
347 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
348 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
349 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
350 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
351 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
352 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
353 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
354 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
355 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
356 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
357 	ARM64_FTR_END,
358 };
359 
360 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
361 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
362 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
363 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
364 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
365 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
366 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
367 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
368 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
369 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
370 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
371 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
372 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
373 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
374 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
375 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
376 	ARM64_FTR_END,
377 };
378 
379 static const struct arm64_ftr_bits ftr_ctr[] = {
380 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
381 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
382 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
383 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
384 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
385 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
386 	/*
387 	 * Linux can handle differing I-cache policies. Userspace JITs will
388 	 * make use of *minLine.
389 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
390 	 */
391 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
392 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
393 	ARM64_FTR_END,
394 };
395 
396 static struct arm64_ftr_override __ro_after_init no_override = { };
397 
398 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
399 	.name		= "SYS_CTR_EL0",
400 	.ftr_bits	= ftr_ctr,
401 	.override	= &no_override,
402 };
403 
404 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
405 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
406 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
407 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
408 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
409 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
410 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
411 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
412 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
413 	ARM64_FTR_END,
414 };
415 
416 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
417 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
418 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
419 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
420 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
421 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
422 	/*
423 	 * We can instantiate multiple PMU instances with different levels
424 	 * of support.
425 	 */
426 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
427 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
428 	ARM64_FTR_END,
429 };
430 
431 static const struct arm64_ftr_bits ftr_mvfr2[] = {
432 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
433 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
434 	ARM64_FTR_END,
435 };
436 
437 static const struct arm64_ftr_bits ftr_dczid[] = {
438 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
439 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
440 	ARM64_FTR_END,
441 };
442 
443 static const struct arm64_ftr_bits ftr_gmid[] = {
444 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
445 	ARM64_FTR_END,
446 };
447 
448 static const struct arm64_ftr_bits ftr_id_isar0[] = {
449 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
450 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
451 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
453 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
454 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
455 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
456 	ARM64_FTR_END,
457 };
458 
459 static const struct arm64_ftr_bits ftr_id_isar5[] = {
460 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
461 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
462 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
463 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
464 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
465 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
466 	ARM64_FTR_END,
467 };
468 
469 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
470 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
471 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
472 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
473 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
474 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
475 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
476 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
477 
478 	/*
479 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
480 	 * external abort on speculative read. It is safe to assume that an
481 	 * SError might be generated than it will not be. Hence it has been
482 	 * classified as FTR_HIGHER_SAFE.
483 	 */
484 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
485 	ARM64_FTR_END,
486 };
487 
488 static const struct arm64_ftr_bits ftr_id_isar4[] = {
489 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
490 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
491 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
492 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
493 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
494 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
495 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
496 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
497 	ARM64_FTR_END,
498 };
499 
500 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
501 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
502 	ARM64_FTR_END,
503 };
504 
505 static const struct arm64_ftr_bits ftr_id_isar6[] = {
506 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
507 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
508 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
509 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
510 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
511 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
512 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
513 	ARM64_FTR_END,
514 };
515 
516 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
517 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
518 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
519 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
520 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
521 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
522 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
523 	ARM64_FTR_END,
524 };
525 
526 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
527 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
528 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
529 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
530 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
531 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
532 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
533 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
534 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
535 	ARM64_FTR_END,
536 };
537 
538 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
539 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
540 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
541 	ARM64_FTR_END,
542 };
543 
544 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
545 	/* [31:28] TraceFilt */
546 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_PERFMON_SHIFT, 4, 0),
547 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
548 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
549 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
550 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
551 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
552 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
553 	ARM64_FTR_END,
554 };
555 
556 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
557 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
558 	ARM64_FTR_END,
559 };
560 
561 static const struct arm64_ftr_bits ftr_zcr[] = {
562 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
563 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0),	/* LEN */
564 	ARM64_FTR_END,
565 };
566 
567 static const struct arm64_ftr_bits ftr_smcr[] = {
568 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
569 		SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0),	/* LEN */
570 	ARM64_FTR_END,
571 };
572 
573 /*
574  * Common ftr bits for a 32bit register with all hidden, strict
575  * attributes, with 4bit feature fields and a default safe value of
576  * 0. Covers the following 32bit registers:
577  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
578  */
579 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
580 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
581 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
582 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
583 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
584 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
585 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
586 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
587 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
588 	ARM64_FTR_END,
589 };
590 
591 /* Table for a single 32bit feature value */
592 static const struct arm64_ftr_bits ftr_single32[] = {
593 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
594 	ARM64_FTR_END,
595 };
596 
597 static const struct arm64_ftr_bits ftr_raz[] = {
598 	ARM64_FTR_END,
599 };
600 
601 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
602 		.sys_id = id,					\
603 		.reg = 	&(struct arm64_ftr_reg){		\
604 			.name = id_str,				\
605 			.override = (ovr),			\
606 			.ftr_bits = &((table)[0]),		\
607 	}}
608 
609 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
610 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
611 
612 #define ARM64_FTR_REG(id, table)		\
613 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
614 
615 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
616 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
617 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
618 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
619 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
620 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
621 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
622 
623 static const struct __ftr_reg_entry {
624 	u32			sys_id;
625 	struct arm64_ftr_reg 	*reg;
626 } arm64_ftr_regs[] = {
627 
628 	/* Op1 = 0, CRn = 0, CRm = 1 */
629 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
630 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
631 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
632 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
633 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
634 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
635 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
636 
637 	/* Op1 = 0, CRn = 0, CRm = 2 */
638 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
639 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
640 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
641 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
642 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
643 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
644 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
645 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
646 
647 	/* Op1 = 0, CRn = 0, CRm = 3 */
648 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
649 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
650 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
651 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
652 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
653 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
654 
655 	/* Op1 = 0, CRn = 0, CRm = 4 */
656 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
657 			       &id_aa64pfr0_override),
658 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
659 			       &id_aa64pfr1_override),
660 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
661 			       &id_aa64zfr0_override),
662 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
663 			       &id_aa64smfr0_override),
664 
665 	/* Op1 = 0, CRn = 0, CRm = 5 */
666 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
667 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
668 
669 	/* Op1 = 0, CRn = 0, CRm = 6 */
670 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
671 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
672 			       &id_aa64isar1_override),
673 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
674 			       &id_aa64isar2_override),
675 
676 	/* Op1 = 0, CRn = 0, CRm = 7 */
677 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
678 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
679 			       &id_aa64mmfr1_override),
680 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
681 
682 	/* Op1 = 0, CRn = 1, CRm = 2 */
683 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
684 	ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
685 
686 	/* Op1 = 1, CRn = 0, CRm = 0 */
687 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
688 
689 	/* Op1 = 3, CRn = 0, CRm = 0 */
690 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
691 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
692 
693 	/* Op1 = 3, CRn = 14, CRm = 0 */
694 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
695 };
696 
697 static int search_cmp_ftr_reg(const void *id, const void *regp)
698 {
699 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
700 }
701 
702 /*
703  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
704  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
705  * ascending order of sys_id, we use binary search to find a matching
706  * entry.
707  *
708  * returns - Upon success,  matching ftr_reg entry for id.
709  *         - NULL on failure. It is upto the caller to decide
710  *	     the impact of a failure.
711  */
712 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
713 {
714 	const struct __ftr_reg_entry *ret;
715 
716 	ret = bsearch((const void *)(unsigned long)sys_id,
717 			arm64_ftr_regs,
718 			ARRAY_SIZE(arm64_ftr_regs),
719 			sizeof(arm64_ftr_regs[0]),
720 			search_cmp_ftr_reg);
721 	if (ret)
722 		return ret->reg;
723 	return NULL;
724 }
725 
726 /*
727  * get_arm64_ftr_reg - Looks up a feature register entry using
728  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
729  *
730  * returns - Upon success,  matching ftr_reg entry for id.
731  *         - NULL on failure but with an WARN_ON().
732  */
733 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
734 {
735 	struct arm64_ftr_reg *reg;
736 
737 	reg = get_arm64_ftr_reg_nowarn(sys_id);
738 
739 	/*
740 	 * Requesting a non-existent register search is an error. Warn
741 	 * and let the caller handle it.
742 	 */
743 	WARN_ON(!reg);
744 	return reg;
745 }
746 
747 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
748 			       s64 ftr_val)
749 {
750 	u64 mask = arm64_ftr_mask(ftrp);
751 
752 	reg &= ~mask;
753 	reg |= (ftr_val << ftrp->shift) & mask;
754 	return reg;
755 }
756 
757 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
758 				s64 cur)
759 {
760 	s64 ret = 0;
761 
762 	switch (ftrp->type) {
763 	case FTR_EXACT:
764 		ret = ftrp->safe_val;
765 		break;
766 	case FTR_LOWER_SAFE:
767 		ret = min(new, cur);
768 		break;
769 	case FTR_HIGHER_OR_ZERO_SAFE:
770 		if (!cur || !new)
771 			break;
772 		fallthrough;
773 	case FTR_HIGHER_SAFE:
774 		ret = max(new, cur);
775 		break;
776 	default:
777 		BUG();
778 	}
779 
780 	return ret;
781 }
782 
783 static void __init sort_ftr_regs(void)
784 {
785 	unsigned int i;
786 
787 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
788 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
789 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
790 		unsigned int j = 0;
791 
792 		/*
793 		 * Features here must be sorted in descending order with respect
794 		 * to their shift values and should not overlap with each other.
795 		 */
796 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
797 			unsigned int width = ftr_reg->ftr_bits[j].width;
798 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
799 			unsigned int prev_shift;
800 
801 			WARN((shift  + width) > 64,
802 				"%s has invalid feature at shift %d\n",
803 				ftr_reg->name, shift);
804 
805 			/*
806 			 * Skip the first feature. There is nothing to
807 			 * compare against for now.
808 			 */
809 			if (j == 0)
810 				continue;
811 
812 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
813 			WARN((shift + width) > prev_shift,
814 				"%s has feature overlap at shift %d\n",
815 				ftr_reg->name, shift);
816 		}
817 
818 		/*
819 		 * Skip the first register. There is nothing to
820 		 * compare against for now.
821 		 */
822 		if (i == 0)
823 			continue;
824 		/*
825 		 * Registers here must be sorted in ascending order with respect
826 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
827 		 * to work correctly.
828 		 */
829 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
830 	}
831 }
832 
833 /*
834  * Initialise the CPU feature register from Boot CPU values.
835  * Also initiliases the strict_mask for the register.
836  * Any bits that are not covered by an arm64_ftr_bits entry are considered
837  * RES0 for the system-wide value, and must strictly match.
838  */
839 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
840 {
841 	u64 val = 0;
842 	u64 strict_mask = ~0x0ULL;
843 	u64 user_mask = 0;
844 	u64 valid_mask = 0;
845 
846 	const struct arm64_ftr_bits *ftrp;
847 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
848 
849 	if (!reg)
850 		return;
851 
852 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
853 		u64 ftr_mask = arm64_ftr_mask(ftrp);
854 		s64 ftr_new = arm64_ftr_value(ftrp, new);
855 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
856 
857 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
858 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
859 			char *str = NULL;
860 
861 			if (ftr_ovr != tmp) {
862 				/* Unsafe, remove the override */
863 				reg->override->mask &= ~ftr_mask;
864 				reg->override->val &= ~ftr_mask;
865 				tmp = ftr_ovr;
866 				str = "ignoring override";
867 			} else if (ftr_new != tmp) {
868 				/* Override was valid */
869 				ftr_new = tmp;
870 				str = "forced";
871 			} else if (ftr_ovr == tmp) {
872 				/* Override was the safe value */
873 				str = "already set";
874 			}
875 
876 			if (str)
877 				pr_warn("%s[%d:%d]: %s to %llx\n",
878 					reg->name,
879 					ftrp->shift + ftrp->width - 1,
880 					ftrp->shift, str, tmp);
881 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
882 			reg->override->val &= ~ftr_mask;
883 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
884 				reg->name,
885 				ftrp->shift + ftrp->width - 1,
886 				ftrp->shift);
887 		}
888 
889 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
890 
891 		valid_mask |= ftr_mask;
892 		if (!ftrp->strict)
893 			strict_mask &= ~ftr_mask;
894 		if (ftrp->visible)
895 			user_mask |= ftr_mask;
896 		else
897 			reg->user_val = arm64_ftr_set_value(ftrp,
898 							    reg->user_val,
899 							    ftrp->safe_val);
900 	}
901 
902 	val &= valid_mask;
903 
904 	reg->sys_val = val;
905 	reg->strict_mask = strict_mask;
906 	reg->user_mask = user_mask;
907 }
908 
909 extern const struct arm64_cpu_capabilities arm64_errata[];
910 static const struct arm64_cpu_capabilities arm64_features[];
911 
912 static void __init
913 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
914 {
915 	for (; caps->matches; caps++) {
916 		if (WARN(caps->capability >= ARM64_NCAPS,
917 			"Invalid capability %d\n", caps->capability))
918 			continue;
919 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
920 			"Duplicate entry for capability %d\n",
921 			caps->capability))
922 			continue;
923 		cpu_hwcaps_ptrs[caps->capability] = caps;
924 	}
925 }
926 
927 static void __init init_cpu_hwcaps_indirect_list(void)
928 {
929 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
930 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
931 }
932 
933 static void __init setup_boot_cpu_capabilities(void);
934 
935 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
936 {
937 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
938 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
939 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
940 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
941 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
942 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
943 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
944 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
945 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
946 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
947 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
948 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
949 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
950 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
951 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
952 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
953 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
954 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
955 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
956 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
957 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
958 }
959 
960 void __init init_cpu_features(struct cpuinfo_arm64 *info)
961 {
962 	/* Before we start using the tables, make sure it is sorted */
963 	sort_ftr_regs();
964 
965 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
966 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
967 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
968 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
969 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
970 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
971 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
972 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
973 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
974 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
975 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
976 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
977 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
978 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
979 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
980 
981 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
982 		init_32bit_cpu_features(&info->aarch32);
983 
984 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
985 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
986 		info->reg_zcr = read_zcr_features();
987 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
988 		vec_init_vq_map(ARM64_VEC_SVE);
989 	}
990 
991 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
992 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
993 		info->reg_smcr = read_smcr_features();
994 		/*
995 		 * We mask out SMPS since even if the hardware
996 		 * supports priorities the kernel does not at present
997 		 * and we block access to them.
998 		 */
999 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1000 		init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1001 		vec_init_vq_map(ARM64_VEC_SME);
1002 	}
1003 
1004 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1005 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1006 
1007 	/*
1008 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
1009 	 * before we handle the boot CPU below.
1010 	 */
1011 	init_cpu_hwcaps_indirect_list();
1012 
1013 	/*
1014 	 * Detect and enable early CPU capabilities based on the boot CPU,
1015 	 * after we have initialised the CPU feature infrastructure.
1016 	 */
1017 	setup_boot_cpu_capabilities();
1018 }
1019 
1020 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1021 {
1022 	const struct arm64_ftr_bits *ftrp;
1023 
1024 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1025 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1026 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1027 
1028 		if (ftr_cur == ftr_new)
1029 			continue;
1030 		/* Find a safe value */
1031 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1032 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1033 	}
1034 
1035 }
1036 
1037 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1038 {
1039 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1040 
1041 	if (!regp)
1042 		return 0;
1043 
1044 	update_cpu_ftr_reg(regp, val);
1045 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1046 		return 0;
1047 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1048 			regp->name, boot, cpu, val);
1049 	return 1;
1050 }
1051 
1052 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1053 {
1054 	const struct arm64_ftr_bits *ftrp;
1055 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1056 
1057 	if (!regp)
1058 		return;
1059 
1060 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1061 		if (ftrp->shift == field) {
1062 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1063 			break;
1064 		}
1065 	}
1066 
1067 	/* Bogus field? */
1068 	WARN_ON(!ftrp->width);
1069 }
1070 
1071 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1072 					 struct cpuinfo_arm64 *boot)
1073 {
1074 	static bool boot_cpu_32bit_regs_overridden = false;
1075 
1076 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1077 		return;
1078 
1079 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1080 		return;
1081 
1082 	boot->aarch32 = info->aarch32;
1083 	init_32bit_cpu_features(&boot->aarch32);
1084 	boot_cpu_32bit_regs_overridden = true;
1085 }
1086 
1087 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1088 				     struct cpuinfo_32bit *boot)
1089 {
1090 	int taint = 0;
1091 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1092 
1093 	/*
1094 	 * If we don't have AArch32 at EL1, then relax the strictness of
1095 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1096 	 */
1097 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1098 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1099 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1100 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1101 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1102 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1103 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1104 	}
1105 
1106 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1107 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1108 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1109 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1110 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1111 				      info->reg_id_isar0, boot->reg_id_isar0);
1112 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1113 				      info->reg_id_isar1, boot->reg_id_isar1);
1114 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1115 				      info->reg_id_isar2, boot->reg_id_isar2);
1116 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1117 				      info->reg_id_isar3, boot->reg_id_isar3);
1118 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1119 				      info->reg_id_isar4, boot->reg_id_isar4);
1120 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1121 				      info->reg_id_isar5, boot->reg_id_isar5);
1122 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1123 				      info->reg_id_isar6, boot->reg_id_isar6);
1124 
1125 	/*
1126 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1127 	 * ACTLR formats could differ across CPUs and therefore would have to
1128 	 * be trapped for virtualization anyway.
1129 	 */
1130 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1131 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1132 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1133 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1134 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1135 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1136 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1137 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1138 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1139 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1140 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1141 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1142 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1143 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1144 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1145 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1146 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1147 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1148 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1149 				      info->reg_mvfr0, boot->reg_mvfr0);
1150 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1151 				      info->reg_mvfr1, boot->reg_mvfr1);
1152 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1153 				      info->reg_mvfr2, boot->reg_mvfr2);
1154 
1155 	return taint;
1156 }
1157 
1158 /*
1159  * Update system wide CPU feature registers with the values from a
1160  * non-boot CPU. Also performs SANITY checks to make sure that there
1161  * aren't any insane variations from that of the boot CPU.
1162  */
1163 void update_cpu_features(int cpu,
1164 			 struct cpuinfo_arm64 *info,
1165 			 struct cpuinfo_arm64 *boot)
1166 {
1167 	int taint = 0;
1168 
1169 	/*
1170 	 * The kernel can handle differing I-cache policies, but otherwise
1171 	 * caches should look identical. Userspace JITs will make use of
1172 	 * *minLine.
1173 	 */
1174 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1175 				      info->reg_ctr, boot->reg_ctr);
1176 
1177 	/*
1178 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1179 	 * could result in too much or too little memory being zeroed if a
1180 	 * process is preempted and migrated between CPUs.
1181 	 */
1182 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1183 				      info->reg_dczid, boot->reg_dczid);
1184 
1185 	/* If different, timekeeping will be broken (especially with KVM) */
1186 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1187 				      info->reg_cntfrq, boot->reg_cntfrq);
1188 
1189 	/*
1190 	 * The kernel uses self-hosted debug features and expects CPUs to
1191 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1192 	 * and BRPs to be identical.
1193 	 * ID_AA64DFR1 is currently RES0.
1194 	 */
1195 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1196 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1197 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1198 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1199 	/*
1200 	 * Even in big.LITTLE, processors should be identical instruction-set
1201 	 * wise.
1202 	 */
1203 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1204 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1205 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1206 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1207 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1208 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1209 
1210 	/*
1211 	 * Differing PARange support is fine as long as all peripherals and
1212 	 * memory are mapped within the minimum PARange of all CPUs.
1213 	 * Linux should not care about secure memory.
1214 	 */
1215 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1216 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1217 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1218 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1219 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1220 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1221 
1222 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1223 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1224 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1225 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1226 
1227 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1228 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1229 
1230 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1231 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1232 
1233 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1234 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1235 		info->reg_zcr = read_zcr_features();
1236 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1237 					info->reg_zcr, boot->reg_zcr);
1238 
1239 		/* Probe vector lengths */
1240 		if (!system_capabilities_finalized())
1241 			vec_update_vq_map(ARM64_VEC_SVE);
1242 	}
1243 
1244 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1245 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1246 		info->reg_smcr = read_smcr_features();
1247 		/*
1248 		 * We mask out SMPS since even if the hardware
1249 		 * supports priorities the kernel does not at present
1250 		 * and we block access to them.
1251 		 */
1252 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1253 		taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1254 					info->reg_smcr, boot->reg_smcr);
1255 
1256 		/* Probe vector lengths */
1257 		if (!system_capabilities_finalized())
1258 			vec_update_vq_map(ARM64_VEC_SME);
1259 	}
1260 
1261 	/*
1262 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1263 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1264 	 * value is the same on all CPUs.
1265 	 */
1266 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1267 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1268 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1269 					      info->reg_gmid, boot->reg_gmid);
1270 	}
1271 
1272 	/*
1273 	 * If we don't have AArch32 at all then skip the checks entirely
1274 	 * as the register values may be UNKNOWN and we're not going to be
1275 	 * using them for anything.
1276 	 *
1277 	 * This relies on a sanitised view of the AArch64 ID registers
1278 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1279 	 */
1280 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1281 		lazy_init_32bit_cpu_features(info, boot);
1282 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1283 						   &boot->aarch32);
1284 	}
1285 
1286 	/*
1287 	 * Mismatched CPU features are a recipe for disaster. Don't even
1288 	 * pretend to support them.
1289 	 */
1290 	if (taint) {
1291 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1292 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1293 	}
1294 }
1295 
1296 u64 read_sanitised_ftr_reg(u32 id)
1297 {
1298 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1299 
1300 	if (!regp)
1301 		return 0;
1302 	return regp->sys_val;
1303 }
1304 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1305 
1306 #define read_sysreg_case(r)	\
1307 	case r:		val = read_sysreg_s(r); break;
1308 
1309 /*
1310  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1311  * Read the system register on the current CPU
1312  */
1313 u64 __read_sysreg_by_encoding(u32 sys_id)
1314 {
1315 	struct arm64_ftr_reg *regp;
1316 	u64 val;
1317 
1318 	switch (sys_id) {
1319 	read_sysreg_case(SYS_ID_PFR0_EL1);
1320 	read_sysreg_case(SYS_ID_PFR1_EL1);
1321 	read_sysreg_case(SYS_ID_PFR2_EL1);
1322 	read_sysreg_case(SYS_ID_DFR0_EL1);
1323 	read_sysreg_case(SYS_ID_DFR1_EL1);
1324 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1325 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1326 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1327 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1328 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1329 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1330 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1331 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1332 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1333 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1334 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1335 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1336 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1337 	read_sysreg_case(SYS_MVFR0_EL1);
1338 	read_sysreg_case(SYS_MVFR1_EL1);
1339 	read_sysreg_case(SYS_MVFR2_EL1);
1340 
1341 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1342 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1343 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1344 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1345 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1346 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1347 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1348 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1349 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1350 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1351 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1352 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1353 
1354 	read_sysreg_case(SYS_CNTFRQ_EL0);
1355 	read_sysreg_case(SYS_CTR_EL0);
1356 	read_sysreg_case(SYS_DCZID_EL0);
1357 
1358 	default:
1359 		BUG();
1360 		return 0;
1361 	}
1362 
1363 	regp  = get_arm64_ftr_reg(sys_id);
1364 	if (regp) {
1365 		val &= ~regp->override->mask;
1366 		val |= (regp->override->val & regp->override->mask);
1367 	}
1368 
1369 	return val;
1370 }
1371 
1372 #include <linux/irqchip/arm-gic-v3.h>
1373 
1374 static bool
1375 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1376 {
1377 	return true;
1378 }
1379 
1380 static bool
1381 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1382 {
1383 	int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1384 						    entry->field_width,
1385 						    entry->sign);
1386 
1387 	return val >= entry->min_field_value;
1388 }
1389 
1390 static u64
1391 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1392 {
1393 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1394 	if (scope == SCOPE_SYSTEM)
1395 		return read_sanitised_ftr_reg(entry->sys_reg);
1396 	else
1397 		return __read_sysreg_by_encoding(entry->sys_reg);
1398 }
1399 
1400 static bool
1401 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1402 {
1403 	int mask;
1404 	struct arm64_ftr_reg *regp;
1405 	u64 val = read_scoped_sysreg(entry, scope);
1406 
1407 	regp = get_arm64_ftr_reg(entry->sys_reg);
1408 	if (!regp)
1409 		return false;
1410 
1411 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1412 							  entry->field_pos,
1413 							  entry->field_width);
1414 	if (!mask)
1415 		return false;
1416 
1417 	return feature_matches(val, entry);
1418 }
1419 
1420 static bool
1421 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1422 {
1423 	u64 val = read_scoped_sysreg(entry, scope);
1424 	return feature_matches(val, entry);
1425 }
1426 
1427 const struct cpumask *system_32bit_el0_cpumask(void)
1428 {
1429 	if (!system_supports_32bit_el0())
1430 		return cpu_none_mask;
1431 
1432 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1433 		return cpu_32bit_el0_mask;
1434 
1435 	return cpu_possible_mask;
1436 }
1437 
1438 static int __init parse_32bit_el0_param(char *str)
1439 {
1440 	allow_mismatched_32bit_el0 = true;
1441 	return 0;
1442 }
1443 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1444 
1445 static ssize_t aarch32_el0_show(struct device *dev,
1446 				struct device_attribute *attr, char *buf)
1447 {
1448 	const struct cpumask *mask = system_32bit_el0_cpumask();
1449 
1450 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1451 }
1452 static const DEVICE_ATTR_RO(aarch32_el0);
1453 
1454 static int __init aarch32_el0_sysfs_init(void)
1455 {
1456 	if (!allow_mismatched_32bit_el0)
1457 		return 0;
1458 
1459 	return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1460 }
1461 device_initcall(aarch32_el0_sysfs_init);
1462 
1463 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1464 {
1465 	if (!has_cpuid_feature(entry, scope))
1466 		return allow_mismatched_32bit_el0;
1467 
1468 	if (scope == SCOPE_SYSTEM)
1469 		pr_info("detected: 32-bit EL0 Support\n");
1470 
1471 	return true;
1472 }
1473 
1474 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1475 {
1476 	bool has_sre;
1477 
1478 	if (!has_cpuid_feature(entry, scope))
1479 		return false;
1480 
1481 	has_sre = gic_enable_sre();
1482 	if (!has_sre)
1483 		pr_warn_once("%s present but disabled by higher exception level\n",
1484 			     entry->desc);
1485 
1486 	return has_sre;
1487 }
1488 
1489 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1490 {
1491 	u32 midr = read_cpuid_id();
1492 
1493 	/* Cavium ThunderX pass 1.x and 2.x */
1494 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1495 		MIDR_CPU_VAR_REV(0, 0),
1496 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1497 }
1498 
1499 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1500 {
1501 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1502 
1503 	return cpuid_feature_extract_signed_field(pfr0,
1504 					ID_AA64PFR0_EL1_FP_SHIFT) < 0;
1505 }
1506 
1507 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1508 			  int scope)
1509 {
1510 	u64 ctr;
1511 
1512 	if (scope == SCOPE_SYSTEM)
1513 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1514 	else
1515 		ctr = read_cpuid_effective_cachetype();
1516 
1517 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1518 }
1519 
1520 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1521 {
1522 	/*
1523 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1524 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1525 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1526 	 * value.
1527 	 */
1528 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1529 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1530 }
1531 
1532 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1533 			  int scope)
1534 {
1535 	u64 ctr;
1536 
1537 	if (scope == SCOPE_SYSTEM)
1538 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1539 	else
1540 		ctr = read_cpuid_cachetype();
1541 
1542 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1543 }
1544 
1545 static bool __maybe_unused
1546 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1547 {
1548 	/*
1549 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1550 	 * may share TLB entries with a CPU stuck in the crashed
1551 	 * kernel.
1552 	 */
1553 	if (is_kdump_kernel())
1554 		return false;
1555 
1556 	if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1557 		return false;
1558 
1559 	return has_cpuid_feature(entry, scope);
1560 }
1561 
1562 /*
1563  * This check is triggered during the early boot before the cpufeature
1564  * is initialised. Checking the status on the local CPU allows the boot
1565  * CPU to detect the need for non-global mappings and thus avoiding a
1566  * pagetable re-write after all the CPUs are booted. This check will be
1567  * anyway run on individual CPUs, allowing us to get the consistent
1568  * state once the SMP CPUs are up and thus make the switch to non-global
1569  * mappings if required.
1570  */
1571 bool kaslr_requires_kpti(void)
1572 {
1573 	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1574 		return false;
1575 
1576 	/*
1577 	 * E0PD does a similar job to KPTI so can be used instead
1578 	 * where available.
1579 	 */
1580 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1581 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1582 		if (cpuid_feature_extract_unsigned_field(mmfr2,
1583 						ID_AA64MMFR2_EL1_E0PD_SHIFT))
1584 			return false;
1585 	}
1586 
1587 	/*
1588 	 * Systems affected by Cavium erratum 24756 are incompatible
1589 	 * with KPTI.
1590 	 */
1591 	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1592 		extern const struct midr_range cavium_erratum_27456_cpus[];
1593 
1594 		if (is_midr_in_range_list(read_cpuid_id(),
1595 					  cavium_erratum_27456_cpus))
1596 			return false;
1597 	}
1598 
1599 	return kaslr_offset() > 0;
1600 }
1601 
1602 static bool __meltdown_safe = true;
1603 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1604 
1605 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1606 				int scope)
1607 {
1608 	/* List of CPUs that are not vulnerable and don't need KPTI */
1609 	static const struct midr_range kpti_safe_list[] = {
1610 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1611 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1612 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1613 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1614 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1615 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1616 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1617 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1618 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1619 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1620 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1621 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1622 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1623 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1624 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1625 		{ /* sentinel */ }
1626 	};
1627 	char const *str = "kpti command line option";
1628 	bool meltdown_safe;
1629 
1630 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1631 
1632 	/* Defer to CPU feature registers */
1633 	if (has_cpuid_feature(entry, scope))
1634 		meltdown_safe = true;
1635 
1636 	if (!meltdown_safe)
1637 		__meltdown_safe = false;
1638 
1639 	/*
1640 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1641 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1642 	 * ends as well as you might imagine. Don't even try. We cannot rely
1643 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1644 	 * because cpucap detection order may change. However, since we know
1645 	 * affected CPUs are always in a homogeneous configuration, it is
1646 	 * safe to rely on this_cpu_has_cap() here.
1647 	 */
1648 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1649 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1650 		__kpti_forced = -1;
1651 	}
1652 
1653 	/* Useful for KASLR robustness */
1654 	if (kaslr_requires_kpti()) {
1655 		if (!__kpti_forced) {
1656 			str = "KASLR";
1657 			__kpti_forced = 1;
1658 		}
1659 	}
1660 
1661 	if (cpu_mitigations_off() && !__kpti_forced) {
1662 		str = "mitigations=off";
1663 		__kpti_forced = -1;
1664 	}
1665 
1666 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1667 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1668 		return false;
1669 	}
1670 
1671 	/* Forced? */
1672 	if (__kpti_forced) {
1673 		pr_info_once("kernel page table isolation forced %s by %s\n",
1674 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1675 		return __kpti_forced > 0;
1676 	}
1677 
1678 	return !meltdown_safe;
1679 }
1680 
1681 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1682 #define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1683 
1684 extern
1685 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1686 			     phys_addr_t size, pgprot_t prot,
1687 			     phys_addr_t (*pgtable_alloc)(int), int flags);
1688 
1689 static phys_addr_t kpti_ng_temp_alloc;
1690 
1691 static phys_addr_t kpti_ng_pgd_alloc(int shift)
1692 {
1693 	kpti_ng_temp_alloc -= PAGE_SIZE;
1694 	return kpti_ng_temp_alloc;
1695 }
1696 
1697 static void
1698 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1699 {
1700 	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1701 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1702 	kpti_remap_fn *remap_fn;
1703 
1704 	int cpu = smp_processor_id();
1705 	int levels = CONFIG_PGTABLE_LEVELS;
1706 	int order = order_base_2(levels);
1707 	u64 kpti_ng_temp_pgd_pa = 0;
1708 	pgd_t *kpti_ng_temp_pgd;
1709 	u64 alloc = 0;
1710 
1711 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1712 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1713 
1714 		__this_cpu_write(this_cpu_vector, v);
1715 	}
1716 
1717 	/*
1718 	 * We don't need to rewrite the page-tables if either we've done
1719 	 * it already or we have KASLR enabled and therefore have not
1720 	 * created any global mappings at all.
1721 	 */
1722 	if (arm64_use_ng_mappings)
1723 		return;
1724 
1725 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1726 
1727 	if (!cpu) {
1728 		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1729 		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1730 		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1731 
1732 		//
1733 		// Create a minimal page table hierarchy that permits us to map
1734 		// the swapper page tables temporarily as we traverse them.
1735 		//
1736 		// The physical pages are laid out as follows:
1737 		//
1738 		// +--------+-/-------+-/------ +-\\--------+
1739 		// :  PTE[] : | PMD[] : | PUD[] : || PGD[]  :
1740 		// +--------+-\-------+-\------ +-//--------+
1741 		//      ^
1742 		// The first page is mapped into this hierarchy at a PMD_SHIFT
1743 		// aligned virtual address, so that we can manipulate the PTE
1744 		// level entries while the mapping is active. The first entry
1745 		// covers the PTE[] page itself, the remaining entries are free
1746 		// to be used as a ad-hoc fixmap.
1747 		//
1748 		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1749 					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1750 					kpti_ng_pgd_alloc, 0);
1751 	}
1752 
1753 	cpu_install_idmap();
1754 	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1755 	cpu_uninstall_idmap();
1756 
1757 	if (!cpu) {
1758 		free_pages(alloc, order);
1759 		arm64_use_ng_mappings = true;
1760 	}
1761 }
1762 #else
1763 static void
1764 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1765 {
1766 }
1767 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1768 
1769 static int __init parse_kpti(char *str)
1770 {
1771 	bool enabled;
1772 	int ret = strtobool(str, &enabled);
1773 
1774 	if (ret)
1775 		return ret;
1776 
1777 	__kpti_forced = enabled ? 1 : -1;
1778 	return 0;
1779 }
1780 early_param("kpti", parse_kpti);
1781 
1782 #ifdef CONFIG_ARM64_HW_AFDBM
1783 static inline void __cpu_enable_hw_dbm(void)
1784 {
1785 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1786 
1787 	write_sysreg(tcr, tcr_el1);
1788 	isb();
1789 	local_flush_tlb_all();
1790 }
1791 
1792 static bool cpu_has_broken_dbm(void)
1793 {
1794 	/* List of CPUs which have broken DBM support. */
1795 	static const struct midr_range cpus[] = {
1796 #ifdef CONFIG_ARM64_ERRATUM_1024718
1797 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1798 		/* Kryo4xx Silver (rdpe => r1p0) */
1799 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1800 #endif
1801 #ifdef CONFIG_ARM64_ERRATUM_2051678
1802 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1803 #endif
1804 		{},
1805 	};
1806 
1807 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1808 }
1809 
1810 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1811 {
1812 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1813 	       !cpu_has_broken_dbm();
1814 }
1815 
1816 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1817 {
1818 	if (cpu_can_use_dbm(cap))
1819 		__cpu_enable_hw_dbm();
1820 }
1821 
1822 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1823 		       int __unused)
1824 {
1825 	static bool detected = false;
1826 	/*
1827 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1828 	 * run a mix of CPUs with and without the feature. So, we
1829 	 * unconditionally enable the capability to allow any late CPU
1830 	 * to use the feature. We only enable the control bits on the
1831 	 * CPU, if it actually supports.
1832 	 *
1833 	 * We have to make sure we print the "feature" detection only
1834 	 * when at least one CPU actually uses it. So check if this CPU
1835 	 * can actually use it and print the message exactly once.
1836 	 *
1837 	 * This is safe as all CPUs (including secondary CPUs - due to the
1838 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1839 	 * goes through the "matches" check exactly once. Also if a CPU
1840 	 * matches the criteria, it is guaranteed that the CPU will turn
1841 	 * the DBM on, as the capability is unconditionally enabled.
1842 	 */
1843 	if (!detected && cpu_can_use_dbm(cap)) {
1844 		detected = true;
1845 		pr_info("detected: Hardware dirty bit management\n");
1846 	}
1847 
1848 	return true;
1849 }
1850 
1851 #endif
1852 
1853 #ifdef CONFIG_ARM64_AMU_EXTN
1854 
1855 /*
1856  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1857  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1858  * information regarding all the events that it supports. When a CPU bit is
1859  * set in the cpumask, the user of this feature can only rely on the presence
1860  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1861  * counters are enabled or access to these counters is enabled by code
1862  * executed at higher exception levels (firmware).
1863  */
1864 static struct cpumask amu_cpus __read_mostly;
1865 
1866 bool cpu_has_amu_feat(int cpu)
1867 {
1868 	return cpumask_test_cpu(cpu, &amu_cpus);
1869 }
1870 
1871 int get_cpu_with_amu_feat(void)
1872 {
1873 	return cpumask_any(&amu_cpus);
1874 }
1875 
1876 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1877 {
1878 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1879 		pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1880 			smp_processor_id());
1881 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1882 
1883 		/* 0 reference values signal broken/disabled counters */
1884 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1885 			update_freq_counters_refs();
1886 	}
1887 }
1888 
1889 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1890 		    int __unused)
1891 {
1892 	/*
1893 	 * The AMU extension is a non-conflicting feature: the kernel can
1894 	 * safely run a mix of CPUs with and without support for the
1895 	 * activity monitors extension. Therefore, unconditionally enable
1896 	 * the capability to allow any late CPU to use the feature.
1897 	 *
1898 	 * With this feature unconditionally enabled, the cpu_enable
1899 	 * function will be called for all CPUs that match the criteria,
1900 	 * including secondary and hotplugged, marking this feature as
1901 	 * present on that respective CPU. The enable function will also
1902 	 * print a detection message.
1903 	 */
1904 
1905 	return true;
1906 }
1907 #else
1908 int get_cpu_with_amu_feat(void)
1909 {
1910 	return nr_cpu_ids;
1911 }
1912 #endif
1913 
1914 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1915 {
1916 	return is_kernel_in_hyp_mode();
1917 }
1918 
1919 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1920 {
1921 	/*
1922 	 * Copy register values that aren't redirected by hardware.
1923 	 *
1924 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1925 	 * this value to tpidr_el2 before we patch the code. Once we've done
1926 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1927 	 * do anything here.
1928 	 */
1929 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1930 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1931 }
1932 
1933 #ifdef CONFIG_ARM64_PAN
1934 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1935 {
1936 	/*
1937 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1938 	 * is discarded once we return from the exception.
1939 	 */
1940 	WARN_ON_ONCE(in_interrupt());
1941 
1942 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1943 	set_pstate_pan(1);
1944 }
1945 #endif /* CONFIG_ARM64_PAN */
1946 
1947 #ifdef CONFIG_ARM64_RAS_EXTN
1948 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1949 {
1950 	/* Firmware may have left a deferred SError in this register. */
1951 	write_sysreg_s(0, SYS_DISR_EL1);
1952 }
1953 #endif /* CONFIG_ARM64_RAS_EXTN */
1954 
1955 #ifdef CONFIG_ARM64_PTR_AUTH
1956 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1957 {
1958 	int boot_val, sec_val;
1959 
1960 	/* We don't expect to be called with SCOPE_SYSTEM */
1961 	WARN_ON(scope == SCOPE_SYSTEM);
1962 	/*
1963 	 * The ptr-auth feature levels are not intercompatible with lower
1964 	 * levels. Hence we must match ptr-auth feature level of the secondary
1965 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1966 	 * from the sanitised register whereas direct register read is done for
1967 	 * the secondary CPUs.
1968 	 * The sanitised feature state is guaranteed to match that of the
1969 	 * boot CPU as a mismatched secondary CPU is parked before it gets
1970 	 * a chance to update the state, with the capability.
1971 	 */
1972 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1973 					       entry->field_pos, entry->sign);
1974 	if (scope & SCOPE_BOOT_CPU)
1975 		return boot_val >= entry->min_field_value;
1976 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1977 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1978 					      entry->field_pos, entry->sign);
1979 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
1980 }
1981 
1982 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1983 				     int scope)
1984 {
1985 	bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1986 	bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
1987 	bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
1988 
1989 	return apa || apa3 || api;
1990 }
1991 
1992 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1993 			     int __unused)
1994 {
1995 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1996 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
1997 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
1998 
1999 	return gpa || gpa3 || gpi;
2000 }
2001 #endif /* CONFIG_ARM64_PTR_AUTH */
2002 
2003 #ifdef CONFIG_ARM64_E0PD
2004 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2005 {
2006 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2007 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2008 }
2009 #endif /* CONFIG_ARM64_E0PD */
2010 
2011 #ifdef CONFIG_ARM64_PSEUDO_NMI
2012 static bool enable_pseudo_nmi;
2013 
2014 static int __init early_enable_pseudo_nmi(char *p)
2015 {
2016 	return strtobool(p, &enable_pseudo_nmi);
2017 }
2018 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
2019 
2020 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2021 				   int scope)
2022 {
2023 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
2024 }
2025 #endif
2026 
2027 #ifdef CONFIG_ARM64_BTI
2028 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2029 {
2030 	/*
2031 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2032 	 * function entry points using BR is a requirement for
2033 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2034 	 * So, be strict and forbid other BRs using other registers to
2035 	 * jump onto a PACIxSP instruction:
2036 	 */
2037 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2038 	isb();
2039 }
2040 #endif /* CONFIG_ARM64_BTI */
2041 
2042 #ifdef CONFIG_ARM64_MTE
2043 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2044 {
2045 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2046 
2047 	mte_cpu_setup();
2048 
2049 	/*
2050 	 * Clear the tags in the zero page. This needs to be done via the
2051 	 * linear map which has the Tagged attribute.
2052 	 */
2053 	if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
2054 		mte_clear_page_tags(lm_alias(empty_zero_page));
2055 
2056 	kasan_init_hw_tags_cpu();
2057 }
2058 #endif /* CONFIG_ARM64_MTE */
2059 
2060 static void elf_hwcap_fixup(void)
2061 {
2062 #ifdef CONFIG_ARM64_ERRATUM_1742098
2063 	if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
2064 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2065 #endif /* ARM64_ERRATUM_1742098 */
2066 }
2067 
2068 #ifdef CONFIG_KVM
2069 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2070 {
2071 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2072 }
2073 #endif /* CONFIG_KVM */
2074 
2075 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2076 {
2077 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2078 }
2079 
2080 /* Internal helper functions to match cpu capability type */
2081 static bool
2082 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2083 {
2084 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2085 }
2086 
2087 static bool
2088 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2089 {
2090 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2091 }
2092 
2093 static bool
2094 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2095 {
2096 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2097 }
2098 
2099 static const struct arm64_cpu_capabilities arm64_features[] = {
2100 	{
2101 		.capability = ARM64_ALWAYS_BOOT,
2102 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2103 		.matches = has_always,
2104 	},
2105 	{
2106 		.capability = ARM64_ALWAYS_SYSTEM,
2107 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2108 		.matches = has_always,
2109 	},
2110 	{
2111 		.desc = "GIC system register CPU interface",
2112 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
2113 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2114 		.matches = has_useable_gicv3_cpuif,
2115 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2116 		.field_pos = ID_AA64PFR0_EL1_GIC_SHIFT,
2117 		.field_width = 4,
2118 		.sign = FTR_UNSIGNED,
2119 		.min_field_value = 1,
2120 	},
2121 	{
2122 		.desc = "Enhanced Counter Virtualization",
2123 		.capability = ARM64_HAS_ECV,
2124 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2125 		.matches = has_cpuid_feature,
2126 		.sys_reg = SYS_ID_AA64MMFR0_EL1,
2127 		.field_pos = ID_AA64MMFR0_EL1_ECV_SHIFT,
2128 		.field_width = 4,
2129 		.sign = FTR_UNSIGNED,
2130 		.min_field_value = 1,
2131 	},
2132 #ifdef CONFIG_ARM64_PAN
2133 	{
2134 		.desc = "Privileged Access Never",
2135 		.capability = ARM64_HAS_PAN,
2136 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2137 		.matches = has_cpuid_feature,
2138 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2139 		.field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT,
2140 		.field_width = 4,
2141 		.sign = FTR_UNSIGNED,
2142 		.min_field_value = 1,
2143 		.cpu_enable = cpu_enable_pan,
2144 	},
2145 #endif /* CONFIG_ARM64_PAN */
2146 #ifdef CONFIG_ARM64_EPAN
2147 	{
2148 		.desc = "Enhanced Privileged Access Never",
2149 		.capability = ARM64_HAS_EPAN,
2150 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2151 		.matches = has_cpuid_feature,
2152 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2153 		.field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT,
2154 		.field_width = 4,
2155 		.sign = FTR_UNSIGNED,
2156 		.min_field_value = 3,
2157 	},
2158 #endif /* CONFIG_ARM64_EPAN */
2159 #ifdef CONFIG_ARM64_LSE_ATOMICS
2160 	{
2161 		.desc = "LSE atomic instructions",
2162 		.capability = ARM64_HAS_LSE_ATOMICS,
2163 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2164 		.matches = has_cpuid_feature,
2165 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2166 		.field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT,
2167 		.field_width = 4,
2168 		.sign = FTR_UNSIGNED,
2169 		.min_field_value = 2,
2170 	},
2171 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2172 	{
2173 		.desc = "Software prefetching using PRFM",
2174 		.capability = ARM64_HAS_NO_HW_PREFETCH,
2175 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2176 		.matches = has_no_hw_prefetch,
2177 	},
2178 	{
2179 		.desc = "Virtualization Host Extensions",
2180 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2181 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2182 		.matches = runs_at_el2,
2183 		.cpu_enable = cpu_copy_el2regs,
2184 	},
2185 	{
2186 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2187 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2188 		.matches = has_32bit_el0,
2189 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2190 		.sign = FTR_UNSIGNED,
2191 		.field_pos = ID_AA64PFR0_EL1_EL0_SHIFT,
2192 		.field_width = 4,
2193 		.min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT,
2194 	},
2195 #ifdef CONFIG_KVM
2196 	{
2197 		.desc = "32-bit EL1 Support",
2198 		.capability = ARM64_HAS_32BIT_EL1,
2199 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2200 		.matches = has_cpuid_feature,
2201 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2202 		.sign = FTR_UNSIGNED,
2203 		.field_pos = ID_AA64PFR0_EL1_EL1_SHIFT,
2204 		.field_width = 4,
2205 		.min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT,
2206 	},
2207 	{
2208 		.desc = "Protected KVM",
2209 		.capability = ARM64_KVM_PROTECTED_MODE,
2210 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2211 		.matches = is_kvm_protected_mode,
2212 	},
2213 #endif
2214 	{
2215 		.desc = "Kernel page table isolation (KPTI)",
2216 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2217 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2218 		/*
2219 		 * The ID feature fields below are used to indicate that
2220 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2221 		 * more details.
2222 		 */
2223 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2224 		.field_pos = ID_AA64PFR0_EL1_CSV3_SHIFT,
2225 		.field_width = 4,
2226 		.min_field_value = 1,
2227 		.matches = unmap_kernel_at_el0,
2228 		.cpu_enable = kpti_install_ng_mappings,
2229 	},
2230 	{
2231 		/* FP/SIMD is not implemented */
2232 		.capability = ARM64_HAS_NO_FPSIMD,
2233 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2234 		.min_field_value = 0,
2235 		.matches = has_no_fpsimd,
2236 	},
2237 #ifdef CONFIG_ARM64_PMEM
2238 	{
2239 		.desc = "Data cache clean to Point of Persistence",
2240 		.capability = ARM64_HAS_DCPOP,
2241 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2242 		.matches = has_cpuid_feature,
2243 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2244 		.field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2245 		.field_width = 4,
2246 		.min_field_value = 1,
2247 	},
2248 	{
2249 		.desc = "Data cache clean to Point of Deep Persistence",
2250 		.capability = ARM64_HAS_DCPODP,
2251 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2252 		.matches = has_cpuid_feature,
2253 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2254 		.sign = FTR_UNSIGNED,
2255 		.field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2256 		.field_width = 4,
2257 		.min_field_value = 2,
2258 	},
2259 #endif
2260 #ifdef CONFIG_ARM64_SVE
2261 	{
2262 		.desc = "Scalable Vector Extension",
2263 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2264 		.capability = ARM64_SVE,
2265 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2266 		.sign = FTR_UNSIGNED,
2267 		.field_pos = ID_AA64PFR0_EL1_SVE_SHIFT,
2268 		.field_width = 4,
2269 		.min_field_value = ID_AA64PFR0_EL1_SVE_IMP,
2270 		.matches = has_cpuid_feature,
2271 		.cpu_enable = sve_kernel_enable,
2272 	},
2273 #endif /* CONFIG_ARM64_SVE */
2274 #ifdef CONFIG_ARM64_RAS_EXTN
2275 	{
2276 		.desc = "RAS Extension Support",
2277 		.capability = ARM64_HAS_RAS_EXTN,
2278 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2279 		.matches = has_cpuid_feature,
2280 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2281 		.sign = FTR_UNSIGNED,
2282 		.field_pos = ID_AA64PFR0_EL1_RAS_SHIFT,
2283 		.field_width = 4,
2284 		.min_field_value = ID_AA64PFR0_EL1_RAS_IMP,
2285 		.cpu_enable = cpu_clear_disr,
2286 	},
2287 #endif /* CONFIG_ARM64_RAS_EXTN */
2288 #ifdef CONFIG_ARM64_AMU_EXTN
2289 	{
2290 		/*
2291 		 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2292 		 * Therefore, don't provide .desc as we don't want the detection
2293 		 * message to be shown until at least one CPU is detected to
2294 		 * support the feature.
2295 		 */
2296 		.capability = ARM64_HAS_AMU_EXTN,
2297 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2298 		.matches = has_amu,
2299 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2300 		.sign = FTR_UNSIGNED,
2301 		.field_pos = ID_AA64PFR0_EL1_AMU_SHIFT,
2302 		.field_width = 4,
2303 		.min_field_value = ID_AA64PFR0_EL1_AMU_IMP,
2304 		.cpu_enable = cpu_amu_enable,
2305 	},
2306 #endif /* CONFIG_ARM64_AMU_EXTN */
2307 	{
2308 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2309 		.capability = ARM64_HAS_CACHE_IDC,
2310 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2311 		.matches = has_cache_idc,
2312 		.cpu_enable = cpu_emulate_effective_ctr,
2313 	},
2314 	{
2315 		.desc = "Instruction cache invalidation not required for I/D coherence",
2316 		.capability = ARM64_HAS_CACHE_DIC,
2317 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2318 		.matches = has_cache_dic,
2319 	},
2320 	{
2321 		.desc = "Stage-2 Force Write-Back",
2322 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2323 		.capability = ARM64_HAS_STAGE2_FWB,
2324 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2325 		.sign = FTR_UNSIGNED,
2326 		.field_pos = ID_AA64MMFR2_EL1_FWB_SHIFT,
2327 		.field_width = 4,
2328 		.min_field_value = 1,
2329 		.matches = has_cpuid_feature,
2330 	},
2331 	{
2332 		.desc = "ARMv8.4 Translation Table Level",
2333 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2334 		.capability = ARM64_HAS_ARMv8_4_TTL,
2335 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2336 		.sign = FTR_UNSIGNED,
2337 		.field_pos = ID_AA64MMFR2_EL1_TTL_SHIFT,
2338 		.field_width = 4,
2339 		.min_field_value = 1,
2340 		.matches = has_cpuid_feature,
2341 	},
2342 	{
2343 		.desc = "TLB range maintenance instructions",
2344 		.capability = ARM64_HAS_TLB_RANGE,
2345 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2346 		.matches = has_cpuid_feature,
2347 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2348 		.field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT,
2349 		.field_width = 4,
2350 		.sign = FTR_UNSIGNED,
2351 		.min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE,
2352 	},
2353 #ifdef CONFIG_ARM64_HW_AFDBM
2354 	{
2355 		/*
2356 		 * Since we turn this on always, we don't want the user to
2357 		 * think that the feature is available when it may not be.
2358 		 * So hide the description.
2359 		 *
2360 		 * .desc = "Hardware pagetable Dirty Bit Management",
2361 		 *
2362 		 */
2363 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2364 		.capability = ARM64_HW_DBM,
2365 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2366 		.sign = FTR_UNSIGNED,
2367 		.field_pos = ID_AA64MMFR1_EL1_HAFDBS_SHIFT,
2368 		.field_width = 4,
2369 		.min_field_value = 2,
2370 		.matches = has_hw_dbm,
2371 		.cpu_enable = cpu_enable_hw_dbm,
2372 	},
2373 #endif
2374 	{
2375 		.desc = "CRC32 instructions",
2376 		.capability = ARM64_HAS_CRC32,
2377 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2378 		.matches = has_cpuid_feature,
2379 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2380 		.field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT,
2381 		.field_width = 4,
2382 		.min_field_value = 1,
2383 	},
2384 	{
2385 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2386 		.capability = ARM64_SSBS,
2387 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2388 		.matches = has_cpuid_feature,
2389 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2390 		.field_pos = ID_AA64PFR1_EL1_SSBS_SHIFT,
2391 		.field_width = 4,
2392 		.sign = FTR_UNSIGNED,
2393 		.min_field_value = ID_AA64PFR1_EL1_SSBS_IMP,
2394 	},
2395 #ifdef CONFIG_ARM64_CNP
2396 	{
2397 		.desc = "Common not Private translations",
2398 		.capability = ARM64_HAS_CNP,
2399 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2400 		.matches = has_useable_cnp,
2401 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2402 		.sign = FTR_UNSIGNED,
2403 		.field_pos = ID_AA64MMFR2_EL1_CnP_SHIFT,
2404 		.field_width = 4,
2405 		.min_field_value = 1,
2406 		.cpu_enable = cpu_enable_cnp,
2407 	},
2408 #endif
2409 	{
2410 		.desc = "Speculation barrier (SB)",
2411 		.capability = ARM64_HAS_SB,
2412 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2413 		.matches = has_cpuid_feature,
2414 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2415 		.field_pos = ID_AA64ISAR1_EL1_SB_SHIFT,
2416 		.field_width = 4,
2417 		.sign = FTR_UNSIGNED,
2418 		.min_field_value = 1,
2419 	},
2420 #ifdef CONFIG_ARM64_PTR_AUTH
2421 	{
2422 		.desc = "Address authentication (architected QARMA5 algorithm)",
2423 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2424 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2425 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2426 		.sign = FTR_UNSIGNED,
2427 		.field_pos = ID_AA64ISAR1_EL1_APA_SHIFT,
2428 		.field_width = 4,
2429 		.min_field_value = ID_AA64ISAR1_EL1_APA_PAuth,
2430 		.matches = has_address_auth_cpucap,
2431 	},
2432 	{
2433 		.desc = "Address authentication (architected QARMA3 algorithm)",
2434 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2435 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2436 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2437 		.sign = FTR_UNSIGNED,
2438 		.field_pos = ID_AA64ISAR2_EL1_APA3_SHIFT,
2439 		.field_width = 4,
2440 		.min_field_value = ID_AA64ISAR2_EL1_APA3_PAuth,
2441 		.matches = has_address_auth_cpucap,
2442 	},
2443 	{
2444 		.desc = "Address authentication (IMP DEF algorithm)",
2445 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2446 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2447 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2448 		.sign = FTR_UNSIGNED,
2449 		.field_pos = ID_AA64ISAR1_EL1_API_SHIFT,
2450 		.field_width = 4,
2451 		.min_field_value = ID_AA64ISAR1_EL1_API_PAuth,
2452 		.matches = has_address_auth_cpucap,
2453 	},
2454 	{
2455 		.capability = ARM64_HAS_ADDRESS_AUTH,
2456 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2457 		.matches = has_address_auth_metacap,
2458 	},
2459 	{
2460 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2461 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2462 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2463 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2464 		.sign = FTR_UNSIGNED,
2465 		.field_pos = ID_AA64ISAR1_EL1_GPA_SHIFT,
2466 		.field_width = 4,
2467 		.min_field_value = ID_AA64ISAR1_EL1_GPA_IMP,
2468 		.matches = has_cpuid_feature,
2469 	},
2470 	{
2471 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2472 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2473 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2474 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2475 		.sign = FTR_UNSIGNED,
2476 		.field_pos = ID_AA64ISAR2_EL1_GPA3_SHIFT,
2477 		.field_width = 4,
2478 		.min_field_value = ID_AA64ISAR2_EL1_GPA3_IMP,
2479 		.matches = has_cpuid_feature,
2480 	},
2481 	{
2482 		.desc = "Generic authentication (IMP DEF algorithm)",
2483 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2484 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2485 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2486 		.sign = FTR_UNSIGNED,
2487 		.field_pos = ID_AA64ISAR1_EL1_GPI_SHIFT,
2488 		.field_width = 4,
2489 		.min_field_value = ID_AA64ISAR1_EL1_GPI_IMP,
2490 		.matches = has_cpuid_feature,
2491 	},
2492 	{
2493 		.capability = ARM64_HAS_GENERIC_AUTH,
2494 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2495 		.matches = has_generic_auth,
2496 	},
2497 #endif /* CONFIG_ARM64_PTR_AUTH */
2498 #ifdef CONFIG_ARM64_PSEUDO_NMI
2499 	{
2500 		/*
2501 		 * Depends on having GICv3
2502 		 */
2503 		.desc = "IRQ priority masking",
2504 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
2505 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2506 		.matches = can_use_gic_priorities,
2507 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2508 		.field_pos = ID_AA64PFR0_EL1_GIC_SHIFT,
2509 		.field_width = 4,
2510 		.sign = FTR_UNSIGNED,
2511 		.min_field_value = 1,
2512 	},
2513 #endif
2514 #ifdef CONFIG_ARM64_E0PD
2515 	{
2516 		.desc = "E0PD",
2517 		.capability = ARM64_HAS_E0PD,
2518 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2519 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2520 		.sign = FTR_UNSIGNED,
2521 		.field_width = 4,
2522 		.field_pos = ID_AA64MMFR2_EL1_E0PD_SHIFT,
2523 		.matches = has_cpuid_feature,
2524 		.min_field_value = 1,
2525 		.cpu_enable = cpu_enable_e0pd,
2526 	},
2527 #endif
2528 	{
2529 		.desc = "Random Number Generator",
2530 		.capability = ARM64_HAS_RNG,
2531 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2532 		.matches = has_cpuid_feature,
2533 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2534 		.field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT,
2535 		.field_width = 4,
2536 		.sign = FTR_UNSIGNED,
2537 		.min_field_value = 1,
2538 	},
2539 #ifdef CONFIG_ARM64_BTI
2540 	{
2541 		.desc = "Branch Target Identification",
2542 		.capability = ARM64_BTI,
2543 #ifdef CONFIG_ARM64_BTI_KERNEL
2544 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2545 #else
2546 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2547 #endif
2548 		.matches = has_cpuid_feature,
2549 		.cpu_enable = bti_enable,
2550 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2551 		.field_pos = ID_AA64PFR1_EL1_BT_SHIFT,
2552 		.field_width = 4,
2553 		.min_field_value = ID_AA64PFR1_EL1_BT_IMP,
2554 		.sign = FTR_UNSIGNED,
2555 	},
2556 #endif
2557 #ifdef CONFIG_ARM64_MTE
2558 	{
2559 		.desc = "Memory Tagging Extension",
2560 		.capability = ARM64_MTE,
2561 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2562 		.matches = has_cpuid_feature,
2563 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2564 		.field_pos = ID_AA64PFR1_EL1_MTE_SHIFT,
2565 		.field_width = 4,
2566 		.min_field_value = ID_AA64PFR1_EL1_MTE_MTE2,
2567 		.sign = FTR_UNSIGNED,
2568 		.cpu_enable = cpu_enable_mte,
2569 	},
2570 	{
2571 		.desc = "Asymmetric MTE Tag Check Fault",
2572 		.capability = ARM64_MTE_ASYMM,
2573 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2574 		.matches = has_cpuid_feature,
2575 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2576 		.field_pos = ID_AA64PFR1_EL1_MTE_SHIFT,
2577 		.field_width = 4,
2578 		.min_field_value = ID_AA64PFR1_EL1_MTE_MTE3,
2579 		.sign = FTR_UNSIGNED,
2580 	},
2581 #endif /* CONFIG_ARM64_MTE */
2582 	{
2583 		.desc = "RCpc load-acquire (LDAPR)",
2584 		.capability = ARM64_HAS_LDAPR,
2585 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2586 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2587 		.sign = FTR_UNSIGNED,
2588 		.field_pos = ID_AA64ISAR1_EL1_LRCPC_SHIFT,
2589 		.field_width = 4,
2590 		.matches = has_cpuid_feature,
2591 		.min_field_value = 1,
2592 	},
2593 #ifdef CONFIG_ARM64_SME
2594 	{
2595 		.desc = "Scalable Matrix Extension",
2596 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2597 		.capability = ARM64_SME,
2598 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2599 		.sign = FTR_UNSIGNED,
2600 		.field_pos = ID_AA64PFR1_EL1_SME_SHIFT,
2601 		.field_width = 4,
2602 		.min_field_value = ID_AA64PFR1_EL1_SME_IMP,
2603 		.matches = has_cpuid_feature,
2604 		.cpu_enable = sme_kernel_enable,
2605 	},
2606 	/* FA64 should be sorted after the base SME capability */
2607 	{
2608 		.desc = "FA64",
2609 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2610 		.capability = ARM64_SME_FA64,
2611 		.sys_reg = SYS_ID_AA64SMFR0_EL1,
2612 		.sign = FTR_UNSIGNED,
2613 		.field_pos = ID_AA64SMFR0_EL1_FA64_SHIFT,
2614 		.field_width = 1,
2615 		.min_field_value = ID_AA64SMFR0_EL1_FA64_IMP,
2616 		.matches = has_cpuid_feature,
2617 		.cpu_enable = fa64_kernel_enable,
2618 	},
2619 #endif /* CONFIG_ARM64_SME */
2620 	{
2621 		.desc = "WFx with timeout",
2622 		.capability = ARM64_HAS_WFXT,
2623 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2624 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2625 		.sign = FTR_UNSIGNED,
2626 		.field_pos = ID_AA64ISAR2_EL1_WFxT_SHIFT,
2627 		.field_width = 4,
2628 		.matches = has_cpuid_feature,
2629 		.min_field_value = ID_AA64ISAR2_EL1_WFxT_IMP,
2630 	},
2631 	{
2632 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2633 		.capability = ARM64_HAS_TIDCP1,
2634 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2635 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2636 		.sign = FTR_UNSIGNED,
2637 		.field_pos = ID_AA64MMFR1_EL1_TIDCP1_SHIFT,
2638 		.field_width = 4,
2639 		.min_field_value = ID_AA64MMFR1_EL1_TIDCP1_IMP,
2640 		.matches = has_cpuid_feature,
2641 		.cpu_enable = cpu_trap_el0_impdef,
2642 	},
2643 	{},
2644 };
2645 
2646 #define HWCAP_CPUID_MATCH(reg, field, width, s, min_value)			\
2647 		.matches = has_user_cpuid_feature,					\
2648 		.sys_reg = reg,							\
2649 		.field_pos = field,						\
2650 		.field_width = width,						\
2651 		.sign = s,							\
2652 		.min_field_value = min_value,
2653 
2654 #define __HWCAP_CAP(name, cap_type, cap)					\
2655 		.desc = name,							\
2656 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2657 		.hwcap_type = cap_type,						\
2658 		.hwcap = cap,							\
2659 
2660 #define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap)		\
2661 	{									\
2662 		__HWCAP_CAP(#cap, cap_type, cap)				\
2663 		HWCAP_CPUID_MATCH(reg, field, width, s, min_value) 		\
2664 	}
2665 
2666 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2667 	{									\
2668 		__HWCAP_CAP(#cap, cap_type, cap)				\
2669 		.matches = cpucap_multi_entry_cap_matches,			\
2670 		.match_list = list,						\
2671 	}
2672 
2673 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2674 	{									\
2675 		__HWCAP_CAP(#cap, cap_type, cap)				\
2676 		.matches = match,						\
2677 	}
2678 
2679 #ifdef CONFIG_ARM64_PTR_AUTH
2680 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2681 	{
2682 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_APA_SHIFT,
2683 				  4, FTR_UNSIGNED,
2684 				  ID_AA64ISAR1_EL1_APA_PAuth)
2685 	},
2686 	{
2687 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_APA3_SHIFT,
2688 				  4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_APA3_PAuth)
2689 	},
2690 	{
2691 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_API_SHIFT,
2692 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_API_PAuth)
2693 	},
2694 	{},
2695 };
2696 
2697 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2698 	{
2699 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPA_SHIFT,
2700 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPA_IMP)
2701 	},
2702 	{
2703 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_GPA3_SHIFT,
2704 				  4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_GPA3_IMP)
2705 	},
2706 	{
2707 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPI_SHIFT,
2708 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPI_IMP)
2709 	},
2710 	{},
2711 };
2712 #endif
2713 
2714 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2715 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2716 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2717 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2718 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2719 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2720 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2721 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2722 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2723 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2724 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2725 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2726 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2727 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2728 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2729 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2730 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2731 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2732 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2733 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2734 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2735 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_DIT_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2736 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2737 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2738 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2739 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2740 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2741 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2742 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2743 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2744 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2745 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2746 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2747 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2748 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_EL1_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2749 #ifdef CONFIG_ARM64_SVE
2750 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_EL1_SVE_IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2751 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SVEver_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2752 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2753 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2754 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BitPerm_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2755 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BF16_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2756 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BF16_EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2757 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SHA3_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2758 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SM4_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2759 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_I8MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2760 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F32MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2761 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F64MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2762 #endif
2763 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SSBS_SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2764 #ifdef CONFIG_ARM64_BTI
2765 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_BT_IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2766 #endif
2767 #ifdef CONFIG_ARM64_PTR_AUTH
2768 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2769 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2770 #endif
2771 #ifdef CONFIG_ARM64_MTE
2772 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2773 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2774 #endif /* CONFIG_ARM64_MTE */
2775 	HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
2776 	HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
2777 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2778 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_WFxT_IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2779 #ifdef CONFIG_ARM64_SME
2780 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SME_IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2781 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_FA64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2782 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I16I64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2783 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F64F64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2784 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I8I32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2785 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2786 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_B16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2787 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F32F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2788 #endif /* CONFIG_ARM64_SME */
2789 	{},
2790 };
2791 
2792 #ifdef CONFIG_COMPAT
2793 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2794 {
2795 	/*
2796 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2797 	 * in line with that of arm32 as in vfp_init(). We make sure that the
2798 	 * check is future proof, by making sure value is non-zero.
2799 	 */
2800 	u32 mvfr1;
2801 
2802 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2803 	if (scope == SCOPE_SYSTEM)
2804 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2805 	else
2806 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2807 
2808 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2809 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2810 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2811 }
2812 #endif
2813 
2814 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2815 #ifdef CONFIG_COMPAT
2816 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2817 	HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2818 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2819 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2820 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2821 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2822 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2823 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2824 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2825 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2826 #endif
2827 	{},
2828 };
2829 
2830 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2831 {
2832 	switch (cap->hwcap_type) {
2833 	case CAP_HWCAP:
2834 		cpu_set_feature(cap->hwcap);
2835 		break;
2836 #ifdef CONFIG_COMPAT
2837 	case CAP_COMPAT_HWCAP:
2838 		compat_elf_hwcap |= (u32)cap->hwcap;
2839 		break;
2840 	case CAP_COMPAT_HWCAP2:
2841 		compat_elf_hwcap2 |= (u32)cap->hwcap;
2842 		break;
2843 #endif
2844 	default:
2845 		WARN_ON(1);
2846 		break;
2847 	}
2848 }
2849 
2850 /* Check if we have a particular HWCAP enabled */
2851 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2852 {
2853 	bool rc;
2854 
2855 	switch (cap->hwcap_type) {
2856 	case CAP_HWCAP:
2857 		rc = cpu_have_feature(cap->hwcap);
2858 		break;
2859 #ifdef CONFIG_COMPAT
2860 	case CAP_COMPAT_HWCAP:
2861 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2862 		break;
2863 	case CAP_COMPAT_HWCAP2:
2864 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2865 		break;
2866 #endif
2867 	default:
2868 		WARN_ON(1);
2869 		rc = false;
2870 	}
2871 
2872 	return rc;
2873 }
2874 
2875 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2876 {
2877 	/* We support emulation of accesses to CPU ID feature registers */
2878 	cpu_set_named_feature(CPUID);
2879 	for (; hwcaps->matches; hwcaps++)
2880 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2881 			cap_set_elf_hwcap(hwcaps);
2882 }
2883 
2884 static void update_cpu_capabilities(u16 scope_mask)
2885 {
2886 	int i;
2887 	const struct arm64_cpu_capabilities *caps;
2888 
2889 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2890 	for (i = 0; i < ARM64_NCAPS; i++) {
2891 		caps = cpu_hwcaps_ptrs[i];
2892 		if (!caps || !(caps->type & scope_mask) ||
2893 		    cpus_have_cap(caps->capability) ||
2894 		    !caps->matches(caps, cpucap_default_scope(caps)))
2895 			continue;
2896 
2897 		if (caps->desc)
2898 			pr_info("detected: %s\n", caps->desc);
2899 		cpus_set_cap(caps->capability);
2900 
2901 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2902 			set_bit(caps->capability, boot_capabilities);
2903 	}
2904 }
2905 
2906 /*
2907  * Enable all the available capabilities on this CPU. The capabilities
2908  * with BOOT_CPU scope are handled separately and hence skipped here.
2909  */
2910 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2911 {
2912 	int i;
2913 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2914 
2915 	for_each_available_cap(i) {
2916 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2917 
2918 		if (WARN_ON(!cap))
2919 			continue;
2920 
2921 		if (!(cap->type & non_boot_scope))
2922 			continue;
2923 
2924 		if (cap->cpu_enable)
2925 			cap->cpu_enable(cap);
2926 	}
2927 	return 0;
2928 }
2929 
2930 /*
2931  * Run through the enabled capabilities and enable() it on all active
2932  * CPUs
2933  */
2934 static void __init enable_cpu_capabilities(u16 scope_mask)
2935 {
2936 	int i;
2937 	const struct arm64_cpu_capabilities *caps;
2938 	bool boot_scope;
2939 
2940 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2941 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2942 
2943 	for (i = 0; i < ARM64_NCAPS; i++) {
2944 		unsigned int num;
2945 
2946 		caps = cpu_hwcaps_ptrs[i];
2947 		if (!caps || !(caps->type & scope_mask))
2948 			continue;
2949 		num = caps->capability;
2950 		if (!cpus_have_cap(num))
2951 			continue;
2952 
2953 		if (boot_scope && caps->cpu_enable)
2954 			/*
2955 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2956 			 * before any secondary CPU boots. Thus, each secondary
2957 			 * will enable the capability as appropriate via
2958 			 * check_local_cpu_capabilities(). The only exception is
2959 			 * the boot CPU, for which the capability must be
2960 			 * enabled here. This approach avoids costly
2961 			 * stop_machine() calls for this case.
2962 			 */
2963 			caps->cpu_enable(caps);
2964 	}
2965 
2966 	/*
2967 	 * For all non-boot scope capabilities, use stop_machine()
2968 	 * as it schedules the work allowing us to modify PSTATE,
2969 	 * instead of on_each_cpu() which uses an IPI, giving us a
2970 	 * PSTATE that disappears when we return.
2971 	 */
2972 	if (!boot_scope)
2973 		stop_machine(cpu_enable_non_boot_scope_capabilities,
2974 			     NULL, cpu_online_mask);
2975 }
2976 
2977 /*
2978  * Run through the list of capabilities to check for conflicts.
2979  * If the system has already detected a capability, take necessary
2980  * action on this CPU.
2981  */
2982 static void verify_local_cpu_caps(u16 scope_mask)
2983 {
2984 	int i;
2985 	bool cpu_has_cap, system_has_cap;
2986 	const struct arm64_cpu_capabilities *caps;
2987 
2988 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2989 
2990 	for (i = 0; i < ARM64_NCAPS; i++) {
2991 		caps = cpu_hwcaps_ptrs[i];
2992 		if (!caps || !(caps->type & scope_mask))
2993 			continue;
2994 
2995 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2996 		system_has_cap = cpus_have_cap(caps->capability);
2997 
2998 		if (system_has_cap) {
2999 			/*
3000 			 * Check if the new CPU misses an advertised feature,
3001 			 * which is not safe to miss.
3002 			 */
3003 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3004 				break;
3005 			/*
3006 			 * We have to issue cpu_enable() irrespective of
3007 			 * whether the CPU has it or not, as it is enabeld
3008 			 * system wide. It is upto the call back to take
3009 			 * appropriate action on this CPU.
3010 			 */
3011 			if (caps->cpu_enable)
3012 				caps->cpu_enable(caps);
3013 		} else {
3014 			/*
3015 			 * Check if the CPU has this capability if it isn't
3016 			 * safe to have when the system doesn't.
3017 			 */
3018 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3019 				break;
3020 		}
3021 	}
3022 
3023 	if (i < ARM64_NCAPS) {
3024 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3025 			smp_processor_id(), caps->capability,
3026 			caps->desc, system_has_cap, cpu_has_cap);
3027 
3028 		if (cpucap_panic_on_conflict(caps))
3029 			cpu_panic_kernel();
3030 		else
3031 			cpu_die_early();
3032 	}
3033 }
3034 
3035 /*
3036  * Check for CPU features that are used in early boot
3037  * based on the Boot CPU value.
3038  */
3039 static void check_early_cpu_features(void)
3040 {
3041 	verify_cpu_asid_bits();
3042 
3043 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3044 }
3045 
3046 static void
3047 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3048 {
3049 
3050 	for (; caps->matches; caps++)
3051 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3052 			pr_crit("CPU%d: missing HWCAP: %s\n",
3053 					smp_processor_id(), caps->desc);
3054 			cpu_die_early();
3055 		}
3056 }
3057 
3058 static void verify_local_elf_hwcaps(void)
3059 {
3060 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3061 
3062 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3063 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3064 }
3065 
3066 static void verify_sve_features(void)
3067 {
3068 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
3069 	u64 zcr = read_zcr_features();
3070 
3071 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
3072 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
3073 
3074 	if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
3075 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3076 			smp_processor_id());
3077 		cpu_die_early();
3078 	}
3079 
3080 	/* Add checks on other ZCR bits here if necessary */
3081 }
3082 
3083 static void verify_sme_features(void)
3084 {
3085 	u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
3086 	u64 smcr = read_smcr_features();
3087 
3088 	unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
3089 	unsigned int len = smcr & SMCR_ELx_LEN_MASK;
3090 
3091 	if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
3092 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3093 			smp_processor_id());
3094 		cpu_die_early();
3095 	}
3096 
3097 	/* Add checks on other SMCR bits here if necessary */
3098 }
3099 
3100 static void verify_hyp_capabilities(void)
3101 {
3102 	u64 safe_mmfr1, mmfr0, mmfr1;
3103 	int parange, ipa_max;
3104 	unsigned int safe_vmid_bits, vmid_bits;
3105 
3106 	if (!IS_ENABLED(CONFIG_KVM))
3107 		return;
3108 
3109 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3110 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3111 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3112 
3113 	/* Verify VMID bits */
3114 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3115 	vmid_bits = get_vmid_bits(mmfr1);
3116 	if (vmid_bits < safe_vmid_bits) {
3117 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3118 		cpu_die_early();
3119 	}
3120 
3121 	/* Verify IPA range */
3122 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3123 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3124 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3125 	if (ipa_max < get_kvm_ipa_limit()) {
3126 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3127 		cpu_die_early();
3128 	}
3129 }
3130 
3131 /*
3132  * Run through the enabled system capabilities and enable() it on this CPU.
3133  * The capabilities were decided based on the available CPUs at the boot time.
3134  * Any new CPU should match the system wide status of the capability. If the
3135  * new CPU doesn't have a capability which the system now has enabled, we
3136  * cannot do anything to fix it up and could cause unexpected failures. So
3137  * we park the CPU.
3138  */
3139 static void verify_local_cpu_capabilities(void)
3140 {
3141 	/*
3142 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3143 	 * check_early_cpu_features(), as they need to be verified
3144 	 * on all secondary CPUs.
3145 	 */
3146 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3147 	verify_local_elf_hwcaps();
3148 
3149 	if (system_supports_sve())
3150 		verify_sve_features();
3151 
3152 	if (system_supports_sme())
3153 		verify_sme_features();
3154 
3155 	if (is_hyp_mode_available())
3156 		verify_hyp_capabilities();
3157 }
3158 
3159 void check_local_cpu_capabilities(void)
3160 {
3161 	/*
3162 	 * All secondary CPUs should conform to the early CPU features
3163 	 * in use by the kernel based on boot CPU.
3164 	 */
3165 	check_early_cpu_features();
3166 
3167 	/*
3168 	 * If we haven't finalised the system capabilities, this CPU gets
3169 	 * a chance to update the errata work arounds and local features.
3170 	 * Otherwise, this CPU should verify that it has all the system
3171 	 * advertised capabilities.
3172 	 */
3173 	if (!system_capabilities_finalized())
3174 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3175 	else
3176 		verify_local_cpu_capabilities();
3177 }
3178 
3179 static void __init setup_boot_cpu_capabilities(void)
3180 {
3181 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3182 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3183 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3184 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3185 }
3186 
3187 bool this_cpu_has_cap(unsigned int n)
3188 {
3189 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3190 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3191 
3192 		if (cap)
3193 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3194 	}
3195 
3196 	return false;
3197 }
3198 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3199 
3200 /*
3201  * This helper function is used in a narrow window when,
3202  * - The system wide safe registers are set with all the SMP CPUs and,
3203  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
3204  * In all other cases cpus_have_{const_}cap() should be used.
3205  */
3206 static bool __maybe_unused __system_matches_cap(unsigned int n)
3207 {
3208 	if (n < ARM64_NCAPS) {
3209 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3210 
3211 		if (cap)
3212 			return cap->matches(cap, SCOPE_SYSTEM);
3213 	}
3214 	return false;
3215 }
3216 
3217 void cpu_set_feature(unsigned int num)
3218 {
3219 	set_bit(num, elf_hwcap);
3220 }
3221 
3222 bool cpu_have_feature(unsigned int num)
3223 {
3224 	return test_bit(num, elf_hwcap);
3225 }
3226 EXPORT_SYMBOL_GPL(cpu_have_feature);
3227 
3228 unsigned long cpu_get_elf_hwcap(void)
3229 {
3230 	/*
3231 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3232 	 * note that for userspace compatibility we guarantee that bits 62
3233 	 * and 63 will always be returned as 0.
3234 	 */
3235 	return elf_hwcap[0];
3236 }
3237 
3238 unsigned long cpu_get_elf_hwcap2(void)
3239 {
3240 	return elf_hwcap[1];
3241 }
3242 
3243 static void __init setup_system_capabilities(void)
3244 {
3245 	/*
3246 	 * We have finalised the system-wide safe feature
3247 	 * registers, finalise the capabilities that depend
3248 	 * on it. Also enable all the available capabilities,
3249 	 * that are not enabled already.
3250 	 */
3251 	update_cpu_capabilities(SCOPE_SYSTEM);
3252 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3253 }
3254 
3255 void __init setup_cpu_features(void)
3256 {
3257 	u32 cwg;
3258 
3259 	setup_system_capabilities();
3260 	setup_elf_hwcaps(arm64_elf_hwcaps);
3261 
3262 	if (system_supports_32bit_el0()) {
3263 		setup_elf_hwcaps(compat_elf_hwcaps);
3264 		elf_hwcap_fixup();
3265 	}
3266 
3267 	if (system_uses_ttbr0_pan())
3268 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3269 
3270 	sve_setup();
3271 	sme_setup();
3272 	minsigstksz_setup();
3273 
3274 	/*
3275 	 * Check for sane CTR_EL0.CWG value.
3276 	 */
3277 	cwg = cache_type_cwg();
3278 	if (!cwg)
3279 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3280 			ARCH_DMA_MINALIGN);
3281 }
3282 
3283 static int enable_mismatched_32bit_el0(unsigned int cpu)
3284 {
3285 	/*
3286 	 * The first 32-bit-capable CPU we detected and so can no longer
3287 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3288 	 * a 32-bit-capable CPU.
3289 	 */
3290 	static int lucky_winner = -1;
3291 
3292 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3293 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3294 
3295 	if (cpu_32bit) {
3296 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3297 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3298 	}
3299 
3300 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3301 		return 0;
3302 
3303 	if (lucky_winner >= 0)
3304 		return 0;
3305 
3306 	/*
3307 	 * We've detected a mismatch. We need to keep one of our CPUs with
3308 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3309 	 * every CPU in the system for a 32-bit task.
3310 	 */
3311 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3312 							 cpu_active_mask);
3313 	get_cpu_device(lucky_winner)->offline_disabled = true;
3314 	setup_elf_hwcaps(compat_elf_hwcaps);
3315 	elf_hwcap_fixup();
3316 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3317 		cpu, lucky_winner);
3318 	return 0;
3319 }
3320 
3321 static int __init init_32bit_el0_mask(void)
3322 {
3323 	if (!allow_mismatched_32bit_el0)
3324 		return 0;
3325 
3326 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3327 		return -ENOMEM;
3328 
3329 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3330 				 "arm64/mismatched_32bit_el0:online",
3331 				 enable_mismatched_32bit_el0, NULL);
3332 }
3333 subsys_initcall_sync(init_32bit_el0_mask);
3334 
3335 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3336 {
3337 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir);
3338 }
3339 
3340 /*
3341  * We emulate only the following system register space.
3342  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
3343  * See Table C5-6 System instruction encodings for System register accesses,
3344  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3345  */
3346 static inline bool __attribute_const__ is_emulated(u32 id)
3347 {
3348 	return (sys_reg_Op0(id) == 0x3 &&
3349 		sys_reg_CRn(id) == 0x0 &&
3350 		sys_reg_Op1(id) == 0x0 &&
3351 		(sys_reg_CRm(id) == 0 ||
3352 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
3353 }
3354 
3355 /*
3356  * With CRm == 0, reg should be one of :
3357  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3358  */
3359 static inline int emulate_id_reg(u32 id, u64 *valp)
3360 {
3361 	switch (id) {
3362 	case SYS_MIDR_EL1:
3363 		*valp = read_cpuid_id();
3364 		break;
3365 	case SYS_MPIDR_EL1:
3366 		*valp = SYS_MPIDR_SAFE_VAL;
3367 		break;
3368 	case SYS_REVIDR_EL1:
3369 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3370 		*valp = 0;
3371 		break;
3372 	default:
3373 		return -EINVAL;
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 static int emulate_sys_reg(u32 id, u64 *valp)
3380 {
3381 	struct arm64_ftr_reg *regp;
3382 
3383 	if (!is_emulated(id))
3384 		return -EINVAL;
3385 
3386 	if (sys_reg_CRm(id) == 0)
3387 		return emulate_id_reg(id, valp);
3388 
3389 	regp = get_arm64_ftr_reg_nowarn(id);
3390 	if (regp)
3391 		*valp = arm64_ftr_reg_user_value(regp);
3392 	else
3393 		/*
3394 		 * The untracked registers are either IMPLEMENTATION DEFINED
3395 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3396 		 */
3397 		*valp = 0;
3398 	return 0;
3399 }
3400 
3401 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3402 {
3403 	int rc;
3404 	u64 val;
3405 
3406 	rc = emulate_sys_reg(sys_reg, &val);
3407 	if (!rc) {
3408 		pt_regs_write_reg(regs, rt, val);
3409 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3410 	}
3411 	return rc;
3412 }
3413 
3414 static int emulate_mrs(struct pt_regs *regs, u32 insn)
3415 {
3416 	u32 sys_reg, rt;
3417 
3418 	/*
3419 	 * sys_reg values are defined as used in mrs/msr instruction.
3420 	 * shift the imm value to get the encoding.
3421 	 */
3422 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3423 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3424 	return do_emulate_mrs(regs, sys_reg, rt);
3425 }
3426 
3427 static struct undef_hook mrs_hook = {
3428 	.instr_mask = 0xffff0000,
3429 	.instr_val  = 0xd5380000,
3430 	.pstate_mask = PSR_AA32_MODE_MASK,
3431 	.pstate_val = PSR_MODE_EL0t,
3432 	.fn = emulate_mrs,
3433 };
3434 
3435 static int __init enable_mrs_emulation(void)
3436 {
3437 	register_undef_hook(&mrs_hook);
3438 	return 0;
3439 }
3440 
3441 core_initcall(enable_mrs_emulation);
3442 
3443 enum mitigation_state arm64_get_meltdown_state(void)
3444 {
3445 	if (__meltdown_safe)
3446 		return SPECTRE_UNAFFECTED;
3447 
3448 	if (arm64_kernel_unmapped_at_el0())
3449 		return SPECTRE_MITIGATED;
3450 
3451 	return SPECTRE_VULNERABLE;
3452 }
3453 
3454 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3455 			  char *buf)
3456 {
3457 	switch (arm64_get_meltdown_state()) {
3458 	case SPECTRE_UNAFFECTED:
3459 		return sprintf(buf, "Not affected\n");
3460 
3461 	case SPECTRE_MITIGATED:
3462 		return sprintf(buf, "Mitigation: PTI\n");
3463 
3464 	default:
3465 		return sprintf(buf, "Vulnerable\n");
3466 	}
3467 }
3468