xref: /linux/arch/arm64/kernel/cpufeature.c (revision ef3be86021c3bdf384c36d9d4aa1ee9fe65b95af)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94 
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97 
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT	\
100 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103 				 COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107 
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111 
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113 
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116 
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118 
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124 
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130 
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136 
137 void dump_cpu_features(void)
138 {
139 	/* file-wide pr_fmt adds "CPU features: " prefix */
140 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142 
143 #define __ARM64_MAX_POSITIVE(reg, field)				\
144 		((reg##_##field##_SIGNED ?				\
145 		  BIT(reg##_##field##_WIDTH - 1) :			\
146 		  BIT(reg##_##field##_WIDTH)) - 1)
147 
148 #define __ARM64_MIN_NEGATIVE(reg, field)  BIT(reg##_##field##_WIDTH - 1)
149 
150 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value)		\
151 		.sys_reg = SYS_##reg,					\
152 		.field_pos = reg##_##field##_SHIFT,			\
153 		.field_width = reg##_##field##_WIDTH,			\
154 		.sign = reg##_##field##_SIGNED,				\
155 		.min_field_value = min_value,				\
156 		.max_field_value = max_value,
157 
158 /*
159  * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
160  * an implicit maximum that depends on the sign-ess of the field.
161  *
162  * An unsigned field will be capped at all ones, while a signed field
163  * will be limited to the positive half only.
164  */
165 #define ARM64_CPUID_FIELDS(reg, field, min_value)			\
166 	__ARM64_CPUID_FIELDS(reg, field,				\
167 			     SYS_FIELD_VALUE(reg, field, min_value),	\
168 			     __ARM64_MAX_POSITIVE(reg, field))
169 
170 /*
171  * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
172  * implicit minimal value to max_value. This should be used when
173  * matching a non-implemented property.
174  */
175 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value)			\
176 	__ARM64_CPUID_FIELDS(reg, field,				\
177 			     __ARM64_MIN_NEGATIVE(reg, field),		\
178 			     SYS_FIELD_VALUE(reg, field, max_value))
179 
180 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
181 	{						\
182 		.sign = SIGNED,				\
183 		.visible = VISIBLE,			\
184 		.strict = STRICT,			\
185 		.type = TYPE,				\
186 		.shift = SHIFT,				\
187 		.width = WIDTH,				\
188 		.safe_val = SAFE_VAL,			\
189 	}
190 
191 /* Define a feature with unsigned values */
192 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
193 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
194 
195 /* Define a feature with a signed value */
196 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
197 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
198 
199 #define ARM64_FTR_END					\
200 	{						\
201 		.width = 0,				\
202 	}
203 
204 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
205 
206 static bool __system_matches_cap(unsigned int n);
207 
208 /*
209  * NOTE: Any changes to the visibility of features should be kept in
210  * sync with the documentation of the CPU feature register ABI.
211  */
212 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
213 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
214 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
219 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
222 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
227 	ARM64_FTR_END,
228 };
229 
230 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
231 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
238 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
240 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
245 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
247 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
249 	ARM64_FTR_END,
250 };
251 
252 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
253 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
254 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
255 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
256 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
257 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
258 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
259 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
260 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
261 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
262 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
263 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
264 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
265 	ARM64_FTR_END,
266 };
267 
268 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
269 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
270 	ARM64_FTR_END,
271 };
272 
273 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
274 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
276 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
280 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
281 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
282 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
284 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
285 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
287 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
288 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
290 	ARM64_FTR_END,
291 };
292 
293 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
294 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
295 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
296 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
297 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
298 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
299 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
300 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
301 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
302 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
303 	ARM64_FTR_END,
304 };
305 
306 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
307 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
308 	ARM64_FTR_END,
309 };
310 
311 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
312 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
313 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
314 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
315 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
316 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
317 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
318 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
319 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
320 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
321 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
322 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
323 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
324 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
325 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
326 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
327 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
328 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
329 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
330 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
331 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
332 	ARM64_FTR_END,
333 };
334 
335 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
336 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
337 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
338 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
339 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
340 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
341 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
342 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
343 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
344 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
345 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
346 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
347 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
348 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
349 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
350 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
351 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
352 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
353 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
354 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
355 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
356 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
357 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
358 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
359 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
360 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
362 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
364 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
366 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
368 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
370 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
372 	ARM64_FTR_END,
373 };
374 
375 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
376 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
377 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
378 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
379 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
380 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
381 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
382 	ARM64_FTR_END,
383 };
384 
385 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
386 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
387 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
388 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
389 	/*
390 	 * Page size not being supported at Stage-2 is not fatal. You
391 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
392 	 * your favourite nesting hypervisor.
393 	 *
394 	 * There is a small corner case where the hypervisor explicitly
395 	 * advertises a given granule size at Stage-2 (value 2) on some
396 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
397 	 * vCPUs. Although this is not forbidden by the architecture, it
398 	 * indicates that the hypervisor is being silly (or buggy).
399 	 *
400 	 * We make no effort to cope with this and pretend that if these
401 	 * fields are inconsistent across vCPUs, then it isn't worth
402 	 * trying to bring KVM up.
403 	 */
404 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
405 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
406 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
407 	/*
408 	 * We already refuse to boot CPUs that don't support our configured
409 	 * page size, so we can only detect mismatches for a page size other
410 	 * than the one we're currently using. Unfortunately, SoCs like this
411 	 * exist in the wild so, even though we don't like it, we'll have to go
412 	 * along with it and treat them as non-strict.
413 	 */
414 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
415 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
416 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
417 
418 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
419 	/* Linux shouldn't care about secure memory */
420 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
421 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
422 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
423 	/*
424 	 * Differing PARange is fine as long as all peripherals and memory are mapped
425 	 * within the minimum PARange of all CPUs
426 	 */
427 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
428 	ARM64_FTR_END,
429 };
430 
431 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
432 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
433 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
434 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
435 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
436 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
437 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
438 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
439 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
440 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
441 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
442 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
443 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
444 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
445 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
446 	ARM64_FTR_END,
447 };
448 
449 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
450 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
451 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
453 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
454 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
455 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
456 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
457 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
459 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
460 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
461 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
462 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
463 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
464 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
465 	ARM64_FTR_END,
466 };
467 
468 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
469 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
470 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
471 	ARM64_FTR_END,
472 };
473 
474 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
475 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
476 	ARM64_FTR_END,
477 };
478 
479 static const struct arm64_ftr_bits ftr_ctr[] = {
480 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
481 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
482 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
483 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
484 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
485 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
486 	/*
487 	 * Linux can handle differing I-cache policies. Userspace JITs will
488 	 * make use of *minLine.
489 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
490 	 */
491 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
492 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
493 	ARM64_FTR_END,
494 };
495 
496 static struct arm64_ftr_override __ro_after_init no_override = { };
497 
498 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
499 	.name		= "SYS_CTR_EL0",
500 	.ftr_bits	= ftr_ctr,
501 	.override	= &no_override,
502 };
503 
504 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
505 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
506 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
507 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
508 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
509 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
510 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
511 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
512 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
513 	ARM64_FTR_END,
514 };
515 
516 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
517 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
518 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
519 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
520 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
521 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
522 	/*
523 	 * We can instantiate multiple PMU instances with different levels
524 	 * of support.
525 	 */
526 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
527 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
528 	ARM64_FTR_END,
529 };
530 
531 static const struct arm64_ftr_bits ftr_mvfr0[] = {
532 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
533 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
534 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
535 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
536 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
537 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
538 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
539 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
540 	ARM64_FTR_END,
541 };
542 
543 static const struct arm64_ftr_bits ftr_mvfr1[] = {
544 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
545 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
546 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
547 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
548 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
549 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
550 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
551 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
552 	ARM64_FTR_END,
553 };
554 
555 static const struct arm64_ftr_bits ftr_mvfr2[] = {
556 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
557 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
558 	ARM64_FTR_END,
559 };
560 
561 static const struct arm64_ftr_bits ftr_dczid[] = {
562 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
563 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
564 	ARM64_FTR_END,
565 };
566 
567 static const struct arm64_ftr_bits ftr_gmid[] = {
568 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
569 	ARM64_FTR_END,
570 };
571 
572 static const struct arm64_ftr_bits ftr_id_isar0[] = {
573 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
574 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
575 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
576 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
577 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
578 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
579 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
580 	ARM64_FTR_END,
581 };
582 
583 static const struct arm64_ftr_bits ftr_id_isar5[] = {
584 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
585 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
586 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
587 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
588 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
589 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
590 	ARM64_FTR_END,
591 };
592 
593 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
594 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
595 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
596 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
597 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
598 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
599 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
600 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
601 
602 	/*
603 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
604 	 * external abort on speculative read. It is safe to assume that an
605 	 * SError might be generated than it will not be. Hence it has been
606 	 * classified as FTR_HIGHER_SAFE.
607 	 */
608 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
609 	ARM64_FTR_END,
610 };
611 
612 static const struct arm64_ftr_bits ftr_id_isar4[] = {
613 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
614 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
615 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
616 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
617 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
618 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
619 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
620 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
621 	ARM64_FTR_END,
622 };
623 
624 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
625 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
626 	ARM64_FTR_END,
627 };
628 
629 static const struct arm64_ftr_bits ftr_id_isar6[] = {
630 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
631 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
632 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
633 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
634 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
635 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
636 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
637 	ARM64_FTR_END,
638 };
639 
640 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
641 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
642 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
643 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
644 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
645 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
646 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
647 	ARM64_FTR_END,
648 };
649 
650 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
651 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
652 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
653 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
654 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
655 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
656 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
657 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
658 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
659 	ARM64_FTR_END,
660 };
661 
662 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
663 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
664 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
665 	ARM64_FTR_END,
666 };
667 
668 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
669 	/* [31:28] TraceFilt */
670 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
671 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
672 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
673 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
674 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
675 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
676 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
677 	ARM64_FTR_END,
678 };
679 
680 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
681 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
682 	ARM64_FTR_END,
683 };
684 
685 /*
686  * Common ftr bits for a 32bit register with all hidden, strict
687  * attributes, with 4bit feature fields and a default safe value of
688  * 0. Covers the following 32bit registers:
689  * id_isar[1-3], id_mmfr[1-3]
690  */
691 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
692 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
693 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
694 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
695 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
696 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
697 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
698 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
699 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
700 	ARM64_FTR_END,
701 };
702 
703 /* Table for a single 32bit feature value */
704 static const struct arm64_ftr_bits ftr_single32[] = {
705 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
706 	ARM64_FTR_END,
707 };
708 
709 static const struct arm64_ftr_bits ftr_raz[] = {
710 	ARM64_FTR_END,
711 };
712 
713 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
714 		.sys_id = id,					\
715 		.reg = 	&(struct arm64_ftr_reg){		\
716 			.name = id_str,				\
717 			.override = (ovr),			\
718 			.ftr_bits = &((table)[0]),		\
719 	}}
720 
721 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
722 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
723 
724 #define ARM64_FTR_REG(id, table)		\
725 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
726 
727 struct arm64_ftr_override id_aa64mmfr0_override;
728 struct arm64_ftr_override id_aa64mmfr1_override;
729 struct arm64_ftr_override id_aa64mmfr2_override;
730 struct arm64_ftr_override id_aa64pfr0_override;
731 struct arm64_ftr_override id_aa64pfr1_override;
732 struct arm64_ftr_override id_aa64zfr0_override;
733 struct arm64_ftr_override id_aa64smfr0_override;
734 struct arm64_ftr_override id_aa64isar1_override;
735 struct arm64_ftr_override id_aa64isar2_override;
736 
737 struct arm64_ftr_override arm64_sw_feature_override;
738 
739 static const struct __ftr_reg_entry {
740 	u32			sys_id;
741 	struct arm64_ftr_reg 	*reg;
742 } arm64_ftr_regs[] = {
743 
744 	/* Op1 = 0, CRn = 0, CRm = 1 */
745 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
746 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
747 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
748 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
749 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
750 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
751 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
752 
753 	/* Op1 = 0, CRn = 0, CRm = 2 */
754 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
755 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
756 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
757 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
758 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
759 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
760 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
761 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
762 
763 	/* Op1 = 0, CRn = 0, CRm = 3 */
764 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
765 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
766 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
767 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
768 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
769 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
770 
771 	/* Op1 = 0, CRn = 0, CRm = 4 */
772 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
773 			       &id_aa64pfr0_override),
774 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
775 			       &id_aa64pfr1_override),
776 	ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
777 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
778 			       &id_aa64zfr0_override),
779 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
780 			       &id_aa64smfr0_override),
781 	ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
782 
783 	/* Op1 = 0, CRn = 0, CRm = 5 */
784 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
785 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
786 
787 	/* Op1 = 0, CRn = 0, CRm = 6 */
788 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
789 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
790 			       &id_aa64isar1_override),
791 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
792 			       &id_aa64isar2_override),
793 	ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
794 
795 	/* Op1 = 0, CRn = 0, CRm = 7 */
796 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
797 			       &id_aa64mmfr0_override),
798 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
799 			       &id_aa64mmfr1_override),
800 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
801 			       &id_aa64mmfr2_override),
802 	ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
803 	ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
804 
805 	/* Op1 = 1, CRn = 0, CRm = 0 */
806 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
807 
808 	/* Op1 = 3, CRn = 0, CRm = 0 */
809 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
810 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
811 
812 	/* Op1 = 3, CRn = 14, CRm = 0 */
813 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
814 };
815 
816 static int search_cmp_ftr_reg(const void *id, const void *regp)
817 {
818 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
819 }
820 
821 /*
822  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
823  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
824  * ascending order of sys_id, we use binary search to find a matching
825  * entry.
826  *
827  * returns - Upon success,  matching ftr_reg entry for id.
828  *         - NULL on failure. It is upto the caller to decide
829  *	     the impact of a failure.
830  */
831 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
832 {
833 	const struct __ftr_reg_entry *ret;
834 
835 	ret = bsearch((const void *)(unsigned long)sys_id,
836 			arm64_ftr_regs,
837 			ARRAY_SIZE(arm64_ftr_regs),
838 			sizeof(arm64_ftr_regs[0]),
839 			search_cmp_ftr_reg);
840 	if (ret)
841 		return ret->reg;
842 	return NULL;
843 }
844 
845 /*
846  * get_arm64_ftr_reg - Looks up a feature register entry using
847  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
848  *
849  * returns - Upon success,  matching ftr_reg entry for id.
850  *         - NULL on failure but with an WARN_ON().
851  */
852 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
853 {
854 	struct arm64_ftr_reg *reg;
855 
856 	reg = get_arm64_ftr_reg_nowarn(sys_id);
857 
858 	/*
859 	 * Requesting a non-existent register search is an error. Warn
860 	 * and let the caller handle it.
861 	 */
862 	WARN_ON(!reg);
863 	return reg;
864 }
865 
866 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
867 			       s64 ftr_val)
868 {
869 	u64 mask = arm64_ftr_mask(ftrp);
870 
871 	reg &= ~mask;
872 	reg |= (ftr_val << ftrp->shift) & mask;
873 	return reg;
874 }
875 
876 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
877 				s64 cur)
878 {
879 	s64 ret = 0;
880 
881 	switch (ftrp->type) {
882 	case FTR_EXACT:
883 		ret = ftrp->safe_val;
884 		break;
885 	case FTR_LOWER_SAFE:
886 		ret = min(new, cur);
887 		break;
888 	case FTR_HIGHER_OR_ZERO_SAFE:
889 		if (!cur || !new)
890 			break;
891 		fallthrough;
892 	case FTR_HIGHER_SAFE:
893 		ret = max(new, cur);
894 		break;
895 	default:
896 		BUG();
897 	}
898 
899 	return ret;
900 }
901 
902 static void __init sort_ftr_regs(void)
903 {
904 	unsigned int i;
905 
906 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
907 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
908 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
909 		unsigned int j = 0;
910 
911 		/*
912 		 * Features here must be sorted in descending order with respect
913 		 * to their shift values and should not overlap with each other.
914 		 */
915 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
916 			unsigned int width = ftr_reg->ftr_bits[j].width;
917 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
918 			unsigned int prev_shift;
919 
920 			WARN((shift  + width) > 64,
921 				"%s has invalid feature at shift %d\n",
922 				ftr_reg->name, shift);
923 
924 			/*
925 			 * Skip the first feature. There is nothing to
926 			 * compare against for now.
927 			 */
928 			if (j == 0)
929 				continue;
930 
931 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
932 			WARN((shift + width) > prev_shift,
933 				"%s has feature overlap at shift %d\n",
934 				ftr_reg->name, shift);
935 		}
936 
937 		/*
938 		 * Skip the first register. There is nothing to
939 		 * compare against for now.
940 		 */
941 		if (i == 0)
942 			continue;
943 		/*
944 		 * Registers here must be sorted in ascending order with respect
945 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
946 		 * to work correctly.
947 		 */
948 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
949 	}
950 }
951 
952 /*
953  * Initialise the CPU feature register from Boot CPU values.
954  * Also initiliases the strict_mask for the register.
955  * Any bits that are not covered by an arm64_ftr_bits entry are considered
956  * RES0 for the system-wide value, and must strictly match.
957  */
958 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
959 {
960 	u64 val = 0;
961 	u64 strict_mask = ~0x0ULL;
962 	u64 user_mask = 0;
963 	u64 valid_mask = 0;
964 
965 	const struct arm64_ftr_bits *ftrp;
966 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
967 
968 	if (!reg)
969 		return;
970 
971 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
972 		u64 ftr_mask = arm64_ftr_mask(ftrp);
973 		s64 ftr_new = arm64_ftr_value(ftrp, new);
974 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
975 
976 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
977 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
978 			char *str = NULL;
979 
980 			if (ftr_ovr != tmp) {
981 				/* Unsafe, remove the override */
982 				reg->override->mask &= ~ftr_mask;
983 				reg->override->val &= ~ftr_mask;
984 				tmp = ftr_ovr;
985 				str = "ignoring override";
986 			} else if (ftr_new != tmp) {
987 				/* Override was valid */
988 				ftr_new = tmp;
989 				str = "forced";
990 			} else if (ftr_ovr == tmp) {
991 				/* Override was the safe value */
992 				str = "already set";
993 			}
994 
995 			if (str)
996 				pr_warn("%s[%d:%d]: %s to %llx\n",
997 					reg->name,
998 					ftrp->shift + ftrp->width - 1,
999 					ftrp->shift, str,
1000 					tmp & (BIT(ftrp->width) - 1));
1001 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1002 			reg->override->val &= ~ftr_mask;
1003 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
1004 				reg->name,
1005 				ftrp->shift + ftrp->width - 1,
1006 				ftrp->shift);
1007 		}
1008 
1009 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
1010 
1011 		valid_mask |= ftr_mask;
1012 		if (!ftrp->strict)
1013 			strict_mask &= ~ftr_mask;
1014 		if (ftrp->visible)
1015 			user_mask |= ftr_mask;
1016 		else
1017 			reg->user_val = arm64_ftr_set_value(ftrp,
1018 							    reg->user_val,
1019 							    ftrp->safe_val);
1020 	}
1021 
1022 	val &= valid_mask;
1023 
1024 	reg->sys_val = val;
1025 	reg->strict_mask = strict_mask;
1026 	reg->user_mask = user_mask;
1027 }
1028 
1029 extern const struct arm64_cpu_capabilities arm64_errata[];
1030 static const struct arm64_cpu_capabilities arm64_features[];
1031 
1032 static void __init
1033 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1034 {
1035 	for (; caps->matches; caps++) {
1036 		if (WARN(caps->capability >= ARM64_NCAPS,
1037 			"Invalid capability %d\n", caps->capability))
1038 			continue;
1039 		if (WARN(cpucap_ptrs[caps->capability],
1040 			"Duplicate entry for capability %d\n",
1041 			caps->capability))
1042 			continue;
1043 		cpucap_ptrs[caps->capability] = caps;
1044 	}
1045 }
1046 
1047 static void __init init_cpucap_indirect_list(void)
1048 {
1049 	init_cpucap_indirect_list_from_array(arm64_features);
1050 	init_cpucap_indirect_list_from_array(arm64_errata);
1051 }
1052 
1053 static void __init setup_boot_cpu_capabilities(void);
1054 
1055 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1056 {
1057 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1058 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1059 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1060 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1061 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1062 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1063 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1064 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1065 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1066 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1067 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1068 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1069 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1070 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1071 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1072 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1073 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1074 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1075 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1076 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1077 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1078 }
1079 
1080 #ifdef CONFIG_ARM64_PSEUDO_NMI
1081 static bool enable_pseudo_nmi;
1082 
1083 static int __init early_enable_pseudo_nmi(char *p)
1084 {
1085 	return kstrtobool(p, &enable_pseudo_nmi);
1086 }
1087 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1088 
1089 static __init void detect_system_supports_pseudo_nmi(void)
1090 {
1091 	struct device_node *np;
1092 
1093 	if (!enable_pseudo_nmi)
1094 		return;
1095 
1096 	/*
1097 	 * Detect broken MediaTek firmware that doesn't properly save and
1098 	 * restore GIC priorities.
1099 	 */
1100 	np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1101 	if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1102 		pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1103 		enable_pseudo_nmi = false;
1104 	}
1105 	of_node_put(np);
1106 }
1107 #else /* CONFIG_ARM64_PSEUDO_NMI */
1108 static inline void detect_system_supports_pseudo_nmi(void) { }
1109 #endif
1110 
1111 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1112 {
1113 	/* Before we start using the tables, make sure it is sorted */
1114 	sort_ftr_regs();
1115 
1116 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1117 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1118 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1119 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1120 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1121 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1122 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1123 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1124 	init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1125 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1126 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1127 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1128 	init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1129 	init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1130 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1131 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1132 	init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1133 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1134 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1135 	init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1136 
1137 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1138 		init_32bit_cpu_features(&info->aarch32);
1139 
1140 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1141 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1142 		unsigned long cpacr = cpacr_save_enable_kernel_sve();
1143 
1144 		vec_init_vq_map(ARM64_VEC_SVE);
1145 
1146 		cpacr_restore(cpacr);
1147 	}
1148 
1149 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1150 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1151 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1152 
1153 		/*
1154 		 * We mask out SMPS since even if the hardware
1155 		 * supports priorities the kernel does not at present
1156 		 * and we block access to them.
1157 		 */
1158 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1159 		vec_init_vq_map(ARM64_VEC_SME);
1160 
1161 		cpacr_restore(cpacr);
1162 	}
1163 
1164 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1165 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1166 }
1167 
1168 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1169 {
1170 	const struct arm64_ftr_bits *ftrp;
1171 
1172 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1173 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1174 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1175 
1176 		if (ftr_cur == ftr_new)
1177 			continue;
1178 		/* Find a safe value */
1179 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1180 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1181 	}
1182 
1183 }
1184 
1185 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1186 {
1187 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1188 
1189 	if (!regp)
1190 		return 0;
1191 
1192 	update_cpu_ftr_reg(regp, val);
1193 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1194 		return 0;
1195 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1196 			regp->name, boot, cpu, val);
1197 	return 1;
1198 }
1199 
1200 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1201 {
1202 	const struct arm64_ftr_bits *ftrp;
1203 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1204 
1205 	if (!regp)
1206 		return;
1207 
1208 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1209 		if (ftrp->shift == field) {
1210 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1211 			break;
1212 		}
1213 	}
1214 
1215 	/* Bogus field? */
1216 	WARN_ON(!ftrp->width);
1217 }
1218 
1219 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1220 					 struct cpuinfo_arm64 *boot)
1221 {
1222 	static bool boot_cpu_32bit_regs_overridden = false;
1223 
1224 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1225 		return;
1226 
1227 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1228 		return;
1229 
1230 	boot->aarch32 = info->aarch32;
1231 	init_32bit_cpu_features(&boot->aarch32);
1232 	boot_cpu_32bit_regs_overridden = true;
1233 }
1234 
1235 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1236 				     struct cpuinfo_32bit *boot)
1237 {
1238 	int taint = 0;
1239 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1240 
1241 	/*
1242 	 * If we don't have AArch32 at EL1, then relax the strictness of
1243 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1244 	 */
1245 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1246 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1247 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1248 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1249 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1250 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1251 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1252 	}
1253 
1254 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1255 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1256 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1257 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1258 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1259 				      info->reg_id_isar0, boot->reg_id_isar0);
1260 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1261 				      info->reg_id_isar1, boot->reg_id_isar1);
1262 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1263 				      info->reg_id_isar2, boot->reg_id_isar2);
1264 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1265 				      info->reg_id_isar3, boot->reg_id_isar3);
1266 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1267 				      info->reg_id_isar4, boot->reg_id_isar4);
1268 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1269 				      info->reg_id_isar5, boot->reg_id_isar5);
1270 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1271 				      info->reg_id_isar6, boot->reg_id_isar6);
1272 
1273 	/*
1274 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1275 	 * ACTLR formats could differ across CPUs and therefore would have to
1276 	 * be trapped for virtualization anyway.
1277 	 */
1278 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1279 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1280 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1281 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1282 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1283 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1284 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1285 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1286 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1287 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1288 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1289 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1290 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1291 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1292 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1293 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1294 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1295 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1296 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1297 				      info->reg_mvfr0, boot->reg_mvfr0);
1298 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1299 				      info->reg_mvfr1, boot->reg_mvfr1);
1300 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1301 				      info->reg_mvfr2, boot->reg_mvfr2);
1302 
1303 	return taint;
1304 }
1305 
1306 /*
1307  * Update system wide CPU feature registers with the values from a
1308  * non-boot CPU. Also performs SANITY checks to make sure that there
1309  * aren't any insane variations from that of the boot CPU.
1310  */
1311 void update_cpu_features(int cpu,
1312 			 struct cpuinfo_arm64 *info,
1313 			 struct cpuinfo_arm64 *boot)
1314 {
1315 	int taint = 0;
1316 
1317 	/*
1318 	 * The kernel can handle differing I-cache policies, but otherwise
1319 	 * caches should look identical. Userspace JITs will make use of
1320 	 * *minLine.
1321 	 */
1322 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1323 				      info->reg_ctr, boot->reg_ctr);
1324 
1325 	/*
1326 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1327 	 * could result in too much or too little memory being zeroed if a
1328 	 * process is preempted and migrated between CPUs.
1329 	 */
1330 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1331 				      info->reg_dczid, boot->reg_dczid);
1332 
1333 	/* If different, timekeeping will be broken (especially with KVM) */
1334 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1335 				      info->reg_cntfrq, boot->reg_cntfrq);
1336 
1337 	/*
1338 	 * The kernel uses self-hosted debug features and expects CPUs to
1339 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1340 	 * and BRPs to be identical.
1341 	 * ID_AA64DFR1 is currently RES0.
1342 	 */
1343 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1344 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1345 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1346 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1347 	/*
1348 	 * Even in big.LITTLE, processors should be identical instruction-set
1349 	 * wise.
1350 	 */
1351 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1352 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1353 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1354 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1355 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1356 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1357 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1358 				      info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1359 
1360 	/*
1361 	 * Differing PARange support is fine as long as all peripherals and
1362 	 * memory are mapped within the minimum PARange of all CPUs.
1363 	 * Linux should not care about secure memory.
1364 	 */
1365 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1366 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1367 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1368 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1369 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1370 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1371 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1372 				      info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1373 
1374 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1375 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1376 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1377 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1378 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1379 				      info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1380 
1381 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1382 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1383 
1384 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1385 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1386 
1387 	taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1388 				      info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1389 
1390 	/* Probe vector lengths */
1391 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1392 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1393 		if (!system_capabilities_finalized()) {
1394 			unsigned long cpacr = cpacr_save_enable_kernel_sve();
1395 
1396 			vec_update_vq_map(ARM64_VEC_SVE);
1397 
1398 			cpacr_restore(cpacr);
1399 		}
1400 	}
1401 
1402 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1403 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1404 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1405 
1406 		/*
1407 		 * We mask out SMPS since even if the hardware
1408 		 * supports priorities the kernel does not at present
1409 		 * and we block access to them.
1410 		 */
1411 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1412 
1413 		/* Probe vector lengths */
1414 		if (!system_capabilities_finalized())
1415 			vec_update_vq_map(ARM64_VEC_SME);
1416 
1417 		cpacr_restore(cpacr);
1418 	}
1419 
1420 	/*
1421 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1422 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1423 	 * value is the same on all CPUs.
1424 	 */
1425 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1426 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1427 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1428 					      info->reg_gmid, boot->reg_gmid);
1429 	}
1430 
1431 	/*
1432 	 * If we don't have AArch32 at all then skip the checks entirely
1433 	 * as the register values may be UNKNOWN and we're not going to be
1434 	 * using them for anything.
1435 	 *
1436 	 * This relies on a sanitised view of the AArch64 ID registers
1437 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1438 	 */
1439 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1440 		lazy_init_32bit_cpu_features(info, boot);
1441 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1442 						   &boot->aarch32);
1443 	}
1444 
1445 	/*
1446 	 * Mismatched CPU features are a recipe for disaster. Don't even
1447 	 * pretend to support them.
1448 	 */
1449 	if (taint) {
1450 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1451 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1452 	}
1453 }
1454 
1455 u64 read_sanitised_ftr_reg(u32 id)
1456 {
1457 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1458 
1459 	if (!regp)
1460 		return 0;
1461 	return regp->sys_val;
1462 }
1463 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1464 
1465 #define read_sysreg_case(r)	\
1466 	case r:		val = read_sysreg_s(r); break;
1467 
1468 /*
1469  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1470  * Read the system register on the current CPU
1471  */
1472 u64 __read_sysreg_by_encoding(u32 sys_id)
1473 {
1474 	struct arm64_ftr_reg *regp;
1475 	u64 val;
1476 
1477 	switch (sys_id) {
1478 	read_sysreg_case(SYS_ID_PFR0_EL1);
1479 	read_sysreg_case(SYS_ID_PFR1_EL1);
1480 	read_sysreg_case(SYS_ID_PFR2_EL1);
1481 	read_sysreg_case(SYS_ID_DFR0_EL1);
1482 	read_sysreg_case(SYS_ID_DFR1_EL1);
1483 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1484 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1485 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1486 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1487 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1488 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1489 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1490 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1491 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1492 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1493 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1494 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1495 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1496 	read_sysreg_case(SYS_MVFR0_EL1);
1497 	read_sysreg_case(SYS_MVFR1_EL1);
1498 	read_sysreg_case(SYS_MVFR2_EL1);
1499 
1500 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1501 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1502 	read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1503 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1504 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1505 	read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1506 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1507 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1508 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1509 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1510 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1511 	read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1512 	read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1513 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1514 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1515 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1516 	read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1517 
1518 	read_sysreg_case(SYS_CNTFRQ_EL0);
1519 	read_sysreg_case(SYS_CTR_EL0);
1520 	read_sysreg_case(SYS_DCZID_EL0);
1521 
1522 	default:
1523 		BUG();
1524 		return 0;
1525 	}
1526 
1527 	regp  = get_arm64_ftr_reg(sys_id);
1528 	if (regp) {
1529 		val &= ~regp->override->mask;
1530 		val |= (regp->override->val & regp->override->mask);
1531 	}
1532 
1533 	return val;
1534 }
1535 
1536 #include <linux/irqchip/arm-gic-v3.h>
1537 
1538 static bool
1539 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1540 {
1541 	return true;
1542 }
1543 
1544 static bool
1545 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1546 {
1547 	int val, min, max;
1548 	u64 tmp;
1549 
1550 	val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1551 						entry->field_width,
1552 						entry->sign);
1553 
1554 	tmp = entry->min_field_value;
1555 	tmp <<= entry->field_pos;
1556 
1557 	min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1558 						entry->field_width,
1559 						entry->sign);
1560 
1561 	tmp = entry->max_field_value;
1562 	tmp <<= entry->field_pos;
1563 
1564 	max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1565 						entry->field_width,
1566 						entry->sign);
1567 
1568 	return val >= min && val <= max;
1569 }
1570 
1571 static u64
1572 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1573 {
1574 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1575 	if (scope == SCOPE_SYSTEM)
1576 		return read_sanitised_ftr_reg(entry->sys_reg);
1577 	else
1578 		return __read_sysreg_by_encoding(entry->sys_reg);
1579 }
1580 
1581 static bool
1582 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1583 {
1584 	int mask;
1585 	struct arm64_ftr_reg *regp;
1586 	u64 val = read_scoped_sysreg(entry, scope);
1587 
1588 	regp = get_arm64_ftr_reg(entry->sys_reg);
1589 	if (!regp)
1590 		return false;
1591 
1592 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1593 							  entry->field_pos,
1594 							  entry->field_width);
1595 	if (!mask)
1596 		return false;
1597 
1598 	return feature_matches(val, entry);
1599 }
1600 
1601 static bool
1602 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1603 {
1604 	u64 val = read_scoped_sysreg(entry, scope);
1605 	return feature_matches(val, entry);
1606 }
1607 
1608 const struct cpumask *system_32bit_el0_cpumask(void)
1609 {
1610 	if (!system_supports_32bit_el0())
1611 		return cpu_none_mask;
1612 
1613 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1614 		return cpu_32bit_el0_mask;
1615 
1616 	return cpu_possible_mask;
1617 }
1618 
1619 static int __init parse_32bit_el0_param(char *str)
1620 {
1621 	allow_mismatched_32bit_el0 = true;
1622 	return 0;
1623 }
1624 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1625 
1626 static ssize_t aarch32_el0_show(struct device *dev,
1627 				struct device_attribute *attr, char *buf)
1628 {
1629 	const struct cpumask *mask = system_32bit_el0_cpumask();
1630 
1631 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1632 }
1633 static const DEVICE_ATTR_RO(aarch32_el0);
1634 
1635 static int __init aarch32_el0_sysfs_init(void)
1636 {
1637 	struct device *dev_root;
1638 	int ret = 0;
1639 
1640 	if (!allow_mismatched_32bit_el0)
1641 		return 0;
1642 
1643 	dev_root = bus_get_dev_root(&cpu_subsys);
1644 	if (dev_root) {
1645 		ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1646 		put_device(dev_root);
1647 	}
1648 	return ret;
1649 }
1650 device_initcall(aarch32_el0_sysfs_init);
1651 
1652 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1653 {
1654 	if (!has_cpuid_feature(entry, scope))
1655 		return allow_mismatched_32bit_el0;
1656 
1657 	if (scope == SCOPE_SYSTEM)
1658 		pr_info("detected: 32-bit EL0 Support\n");
1659 
1660 	return true;
1661 }
1662 
1663 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1664 {
1665 	bool has_sre;
1666 
1667 	if (!has_cpuid_feature(entry, scope))
1668 		return false;
1669 
1670 	has_sre = gic_enable_sre();
1671 	if (!has_sre)
1672 		pr_warn_once("%s present but disabled by higher exception level\n",
1673 			     entry->desc);
1674 
1675 	return has_sre;
1676 }
1677 
1678 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1679 			  int scope)
1680 {
1681 	u64 ctr;
1682 
1683 	if (scope == SCOPE_SYSTEM)
1684 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1685 	else
1686 		ctr = read_cpuid_effective_cachetype();
1687 
1688 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1689 }
1690 
1691 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1692 {
1693 	/*
1694 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1695 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1696 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1697 	 * value.
1698 	 */
1699 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1700 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1701 }
1702 
1703 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1704 			  int scope)
1705 {
1706 	u64 ctr;
1707 
1708 	if (scope == SCOPE_SYSTEM)
1709 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1710 	else
1711 		ctr = read_cpuid_cachetype();
1712 
1713 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1714 }
1715 
1716 static bool __maybe_unused
1717 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1718 {
1719 	/*
1720 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1721 	 * may share TLB entries with a CPU stuck in the crashed
1722 	 * kernel.
1723 	 */
1724 	if (is_kdump_kernel())
1725 		return false;
1726 
1727 	if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1728 		return false;
1729 
1730 	return has_cpuid_feature(entry, scope);
1731 }
1732 
1733 static bool __meltdown_safe = true;
1734 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1735 
1736 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1737 				int scope)
1738 {
1739 	/* List of CPUs that are not vulnerable and don't need KPTI */
1740 	static const struct midr_range kpti_safe_list[] = {
1741 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1742 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1743 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1744 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1745 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1746 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1747 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1748 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1749 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1750 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1751 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1752 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1753 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1754 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1755 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1756 		{ /* sentinel */ }
1757 	};
1758 	char const *str = "kpti command line option";
1759 	bool meltdown_safe;
1760 
1761 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1762 
1763 	/* Defer to CPU feature registers */
1764 	if (has_cpuid_feature(entry, scope))
1765 		meltdown_safe = true;
1766 
1767 	if (!meltdown_safe)
1768 		__meltdown_safe = false;
1769 
1770 	/*
1771 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1772 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1773 	 * ends as well as you might imagine. Don't even try. We cannot rely
1774 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1775 	 * because cpucap detection order may change. However, since we know
1776 	 * affected CPUs are always in a homogeneous configuration, it is
1777 	 * safe to rely on this_cpu_has_cap() here.
1778 	 */
1779 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1780 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1781 		__kpti_forced = -1;
1782 	}
1783 
1784 	/* Useful for KASLR robustness */
1785 	if (kaslr_enabled() && kaslr_requires_kpti()) {
1786 		if (!__kpti_forced) {
1787 			str = "KASLR";
1788 			__kpti_forced = 1;
1789 		}
1790 	}
1791 
1792 	if (cpu_mitigations_off() && !__kpti_forced) {
1793 		str = "mitigations=off";
1794 		__kpti_forced = -1;
1795 	}
1796 
1797 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1798 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1799 		return false;
1800 	}
1801 
1802 	/* Forced? */
1803 	if (__kpti_forced) {
1804 		pr_info_once("kernel page table isolation forced %s by %s\n",
1805 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1806 		return __kpti_forced > 0;
1807 	}
1808 
1809 	return !meltdown_safe;
1810 }
1811 
1812 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1813 {
1814 	/*
1815 	 * Although the Apple M2 family appears to support NV1, the
1816 	 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1817 	 * that it doesn't support NV1 at all.
1818 	 */
1819 	static const struct midr_range nv1_ni_list[] = {
1820 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1821 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1822 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1823 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1824 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1825 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1826 		{}
1827 	};
1828 
1829 	return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1830 		!(has_cpuid_feature(entry, scope) ||
1831 		  is_midr_in_range_list(read_cpuid_id(), nv1_ni_list)));
1832 }
1833 
1834 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1835 static bool has_lpa2_at_stage1(u64 mmfr0)
1836 {
1837 	unsigned int tgran;
1838 
1839 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1840 					ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1841 	return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1842 }
1843 
1844 static bool has_lpa2_at_stage2(u64 mmfr0)
1845 {
1846 	unsigned int tgran;
1847 
1848 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1849 					ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1850 	return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1851 }
1852 
1853 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1854 {
1855 	u64 mmfr0;
1856 
1857 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1858 	return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1859 }
1860 #else
1861 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1862 {
1863 	return false;
1864 }
1865 #endif
1866 
1867 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1868 #define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1869 
1870 extern
1871 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1872 			     phys_addr_t size, pgprot_t prot,
1873 			     phys_addr_t (*pgtable_alloc)(int), int flags);
1874 
1875 static phys_addr_t __initdata kpti_ng_temp_alloc;
1876 
1877 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1878 {
1879 	kpti_ng_temp_alloc -= PAGE_SIZE;
1880 	return kpti_ng_temp_alloc;
1881 }
1882 
1883 static int __init __kpti_install_ng_mappings(void *__unused)
1884 {
1885 	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1886 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1887 	kpti_remap_fn *remap_fn;
1888 
1889 	int cpu = smp_processor_id();
1890 	int levels = CONFIG_PGTABLE_LEVELS;
1891 	int order = order_base_2(levels);
1892 	u64 kpti_ng_temp_pgd_pa = 0;
1893 	pgd_t *kpti_ng_temp_pgd;
1894 	u64 alloc = 0;
1895 
1896 	if (levels == 5 && !pgtable_l5_enabled())
1897 		levels = 4;
1898 	else if (levels == 4 && !pgtable_l4_enabled())
1899 		levels = 3;
1900 
1901 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1902 
1903 	if (!cpu) {
1904 		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1905 		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1906 		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1907 
1908 		//
1909 		// Create a minimal page table hierarchy that permits us to map
1910 		// the swapper page tables temporarily as we traverse them.
1911 		//
1912 		// The physical pages are laid out as follows:
1913 		//
1914 		// +--------+-/-------+-/------ +-/------ +-\\\--------+
1915 		// :  PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[]  :
1916 		// +--------+-\-------+-\------ +-\------ +-///--------+
1917 		//      ^
1918 		// The first page is mapped into this hierarchy at a PMD_SHIFT
1919 		// aligned virtual address, so that we can manipulate the PTE
1920 		// level entries while the mapping is active. The first entry
1921 		// covers the PTE[] page itself, the remaining entries are free
1922 		// to be used as a ad-hoc fixmap.
1923 		//
1924 		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1925 					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1926 					kpti_ng_pgd_alloc, 0);
1927 	}
1928 
1929 	cpu_install_idmap();
1930 	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1931 	cpu_uninstall_idmap();
1932 
1933 	if (!cpu) {
1934 		free_pages(alloc, order);
1935 		arm64_use_ng_mappings = true;
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static void __init kpti_install_ng_mappings(void)
1942 {
1943 	/* Check whether KPTI is going to be used */
1944 	if (!arm64_kernel_unmapped_at_el0())
1945 		return;
1946 
1947 	/*
1948 	 * We don't need to rewrite the page-tables if either we've done
1949 	 * it already or we have KASLR enabled and therefore have not
1950 	 * created any global mappings at all.
1951 	 */
1952 	if (arm64_use_ng_mappings)
1953 		return;
1954 
1955 	stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1956 }
1957 
1958 #else
1959 static inline void kpti_install_ng_mappings(void)
1960 {
1961 }
1962 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1963 
1964 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1965 {
1966 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1967 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1968 
1969 		__this_cpu_write(this_cpu_vector, v);
1970 	}
1971 
1972 }
1973 
1974 static int __init parse_kpti(char *str)
1975 {
1976 	bool enabled;
1977 	int ret = kstrtobool(str, &enabled);
1978 
1979 	if (ret)
1980 		return ret;
1981 
1982 	__kpti_forced = enabled ? 1 : -1;
1983 	return 0;
1984 }
1985 early_param("kpti", parse_kpti);
1986 
1987 #ifdef CONFIG_ARM64_HW_AFDBM
1988 static struct cpumask dbm_cpus __read_mostly;
1989 
1990 static inline void __cpu_enable_hw_dbm(void)
1991 {
1992 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1993 
1994 	write_sysreg(tcr, tcr_el1);
1995 	isb();
1996 	local_flush_tlb_all();
1997 }
1998 
1999 static bool cpu_has_broken_dbm(void)
2000 {
2001 	/* List of CPUs which have broken DBM support. */
2002 	static const struct midr_range cpus[] = {
2003 #ifdef CONFIG_ARM64_ERRATUM_1024718
2004 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2005 		/* Kryo4xx Silver (rdpe => r1p0) */
2006 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2007 #endif
2008 #ifdef CONFIG_ARM64_ERRATUM_2051678
2009 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2010 #endif
2011 		{},
2012 	};
2013 
2014 	return is_midr_in_range_list(read_cpuid_id(), cpus);
2015 }
2016 
2017 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2018 {
2019 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2020 	       !cpu_has_broken_dbm();
2021 }
2022 
2023 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2024 {
2025 	if (cpu_can_use_dbm(cap)) {
2026 		__cpu_enable_hw_dbm();
2027 		cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2028 	}
2029 }
2030 
2031 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2032 		       int __unused)
2033 {
2034 	/*
2035 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
2036 	 * run a mix of CPUs with and without the feature. So, we
2037 	 * unconditionally enable the capability to allow any late CPU
2038 	 * to use the feature. We only enable the control bits on the
2039 	 * CPU, if it is supported.
2040 	 */
2041 
2042 	return true;
2043 }
2044 
2045 #endif
2046 
2047 #ifdef CONFIG_ARM64_AMU_EXTN
2048 
2049 /*
2050  * The "amu_cpus" cpumask only signals that the CPU implementation for the
2051  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2052  * information regarding all the events that it supports. When a CPU bit is
2053  * set in the cpumask, the user of this feature can only rely on the presence
2054  * of the 4 fixed counters for that CPU. But this does not guarantee that the
2055  * counters are enabled or access to these counters is enabled by code
2056  * executed at higher exception levels (firmware).
2057  */
2058 static struct cpumask amu_cpus __read_mostly;
2059 
2060 bool cpu_has_amu_feat(int cpu)
2061 {
2062 	return cpumask_test_cpu(cpu, &amu_cpus);
2063 }
2064 
2065 int get_cpu_with_amu_feat(void)
2066 {
2067 	return cpumask_any(&amu_cpus);
2068 }
2069 
2070 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2071 {
2072 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2073 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2074 
2075 		/* 0 reference values signal broken/disabled counters */
2076 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2077 			update_freq_counters_refs();
2078 	}
2079 }
2080 
2081 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2082 		    int __unused)
2083 {
2084 	/*
2085 	 * The AMU extension is a non-conflicting feature: the kernel can
2086 	 * safely run a mix of CPUs with and without support for the
2087 	 * activity monitors extension. Therefore, unconditionally enable
2088 	 * the capability to allow any late CPU to use the feature.
2089 	 *
2090 	 * With this feature unconditionally enabled, the cpu_enable
2091 	 * function will be called for all CPUs that match the criteria,
2092 	 * including secondary and hotplugged, marking this feature as
2093 	 * present on that respective CPU. The enable function will also
2094 	 * print a detection message.
2095 	 */
2096 
2097 	return true;
2098 }
2099 #else
2100 int get_cpu_with_amu_feat(void)
2101 {
2102 	return nr_cpu_ids;
2103 }
2104 #endif
2105 
2106 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2107 {
2108 	return is_kernel_in_hyp_mode();
2109 }
2110 
2111 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2112 {
2113 	/*
2114 	 * Copy register values that aren't redirected by hardware.
2115 	 *
2116 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2117 	 * this value to tpidr_el2 before we patch the code. Once we've done
2118 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2119 	 * do anything here.
2120 	 */
2121 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2122 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2123 }
2124 
2125 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2126 				    int scope)
2127 {
2128 	if (kvm_get_mode() != KVM_MODE_NV)
2129 		return false;
2130 
2131 	if (!has_cpuid_feature(cap, scope)) {
2132 		pr_warn("unavailable: %s\n", cap->desc);
2133 		return false;
2134 	}
2135 
2136 	return true;
2137 }
2138 
2139 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2140 			  int __unused)
2141 {
2142 	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2143 }
2144 
2145 #ifdef CONFIG_ARM64_PAN
2146 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2147 {
2148 	/*
2149 	 * We modify PSTATE. This won't work from irq context as the PSTATE
2150 	 * is discarded once we return from the exception.
2151 	 */
2152 	WARN_ON_ONCE(in_interrupt());
2153 
2154 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2155 	set_pstate_pan(1);
2156 }
2157 #endif /* CONFIG_ARM64_PAN */
2158 
2159 #ifdef CONFIG_ARM64_RAS_EXTN
2160 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2161 {
2162 	/* Firmware may have left a deferred SError in this register. */
2163 	write_sysreg_s(0, SYS_DISR_EL1);
2164 }
2165 #endif /* CONFIG_ARM64_RAS_EXTN */
2166 
2167 #ifdef CONFIG_ARM64_PTR_AUTH
2168 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2169 {
2170 	int boot_val, sec_val;
2171 
2172 	/* We don't expect to be called with SCOPE_SYSTEM */
2173 	WARN_ON(scope == SCOPE_SYSTEM);
2174 	/*
2175 	 * The ptr-auth feature levels are not intercompatible with lower
2176 	 * levels. Hence we must match ptr-auth feature level of the secondary
2177 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2178 	 * from the sanitised register whereas direct register read is done for
2179 	 * the secondary CPUs.
2180 	 * The sanitised feature state is guaranteed to match that of the
2181 	 * boot CPU as a mismatched secondary CPU is parked before it gets
2182 	 * a chance to update the state, with the capability.
2183 	 */
2184 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2185 					       entry->field_pos, entry->sign);
2186 	if (scope & SCOPE_BOOT_CPU)
2187 		return boot_val >= entry->min_field_value;
2188 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2189 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2190 					      entry->field_pos, entry->sign);
2191 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2192 }
2193 
2194 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2195 				     int scope)
2196 {
2197 	bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2198 	bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2199 	bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2200 
2201 	return apa || apa3 || api;
2202 }
2203 
2204 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2205 			     int __unused)
2206 {
2207 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2208 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2209 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2210 
2211 	return gpa || gpa3 || gpi;
2212 }
2213 #endif /* CONFIG_ARM64_PTR_AUTH */
2214 
2215 #ifdef CONFIG_ARM64_E0PD
2216 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2217 {
2218 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2219 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2220 }
2221 #endif /* CONFIG_ARM64_E0PD */
2222 
2223 #ifdef CONFIG_ARM64_PSEUDO_NMI
2224 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2225 				   int scope)
2226 {
2227 	/*
2228 	 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2229 	 * feature, so will be detected earlier.
2230 	 */
2231 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2232 	if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2233 		return false;
2234 
2235 	return enable_pseudo_nmi;
2236 }
2237 
2238 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2239 				      int scope)
2240 {
2241 	/*
2242 	 * If we're not using priority masking then we won't be poking PMR_EL1,
2243 	 * and there's no need to relax synchronization of writes to it, and
2244 	 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2245 	 * that.
2246 	 *
2247 	 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2248 	 * feature, so will be detected earlier.
2249 	 */
2250 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2251 	if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2252 		return false;
2253 
2254 	/*
2255 	 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2256 	 * hint for interrupt distribution, a DSB is not necessary when
2257 	 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2258 	 *
2259 	 * Linux itself doesn't use 1:N distribution, so has no need to
2260 	 * set PMHE. The only reason to have it set is if EL3 requires it
2261 	 * (and we can't change it).
2262 	 */
2263 	return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2264 }
2265 #endif
2266 
2267 #ifdef CONFIG_ARM64_BTI
2268 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2269 {
2270 	/*
2271 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2272 	 * function entry points using BR is a requirement for
2273 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2274 	 * So, be strict and forbid other BRs using other registers to
2275 	 * jump onto a PACIxSP instruction:
2276 	 */
2277 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2278 	isb();
2279 }
2280 #endif /* CONFIG_ARM64_BTI */
2281 
2282 #ifdef CONFIG_ARM64_MTE
2283 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2284 {
2285 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2286 
2287 	mte_cpu_setup();
2288 
2289 	/*
2290 	 * Clear the tags in the zero page. This needs to be done via the
2291 	 * linear map which has the Tagged attribute.
2292 	 */
2293 	if (try_page_mte_tagging(ZERO_PAGE(0))) {
2294 		mte_clear_page_tags(lm_alias(empty_zero_page));
2295 		set_page_mte_tagged(ZERO_PAGE(0));
2296 	}
2297 
2298 	kasan_init_hw_tags_cpu();
2299 }
2300 #endif /* CONFIG_ARM64_MTE */
2301 
2302 static void user_feature_fixup(void)
2303 {
2304 	if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2305 		struct arm64_ftr_reg *regp;
2306 
2307 		regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2308 		if (regp)
2309 			regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2310 	}
2311 
2312 	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2313 		struct arm64_ftr_reg *regp;
2314 
2315 		regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2316 		if (regp)
2317 			regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2318 	}
2319 }
2320 
2321 static void elf_hwcap_fixup(void)
2322 {
2323 #ifdef CONFIG_COMPAT
2324 	if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2325 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2326 #endif /* CONFIG_COMPAT */
2327 }
2328 
2329 #ifdef CONFIG_KVM
2330 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2331 {
2332 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2333 }
2334 #endif /* CONFIG_KVM */
2335 
2336 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2337 {
2338 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2339 }
2340 
2341 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2342 {
2343 	set_pstate_dit(1);
2344 }
2345 
2346 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2347 {
2348 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2349 }
2350 
2351 /* Internal helper functions to match cpu capability type */
2352 static bool
2353 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2354 {
2355 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2356 }
2357 
2358 static bool
2359 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2360 {
2361 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2362 }
2363 
2364 static bool
2365 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2366 {
2367 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2368 }
2369 
2370 static const struct arm64_cpu_capabilities arm64_features[] = {
2371 	{
2372 		.capability = ARM64_ALWAYS_BOOT,
2373 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2374 		.matches = has_always,
2375 	},
2376 	{
2377 		.capability = ARM64_ALWAYS_SYSTEM,
2378 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2379 		.matches = has_always,
2380 	},
2381 	{
2382 		.desc = "GIC system register CPU interface",
2383 		.capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2384 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2385 		.matches = has_useable_gicv3_cpuif,
2386 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2387 	},
2388 	{
2389 		.desc = "Enhanced Counter Virtualization",
2390 		.capability = ARM64_HAS_ECV,
2391 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2392 		.matches = has_cpuid_feature,
2393 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2394 	},
2395 	{
2396 		.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2397 		.capability = ARM64_HAS_ECV_CNTPOFF,
2398 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2399 		.matches = has_cpuid_feature,
2400 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2401 	},
2402 #ifdef CONFIG_ARM64_PAN
2403 	{
2404 		.desc = "Privileged Access Never",
2405 		.capability = ARM64_HAS_PAN,
2406 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2407 		.matches = has_cpuid_feature,
2408 		.cpu_enable = cpu_enable_pan,
2409 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2410 	},
2411 #endif /* CONFIG_ARM64_PAN */
2412 #ifdef CONFIG_ARM64_EPAN
2413 	{
2414 		.desc = "Enhanced Privileged Access Never",
2415 		.capability = ARM64_HAS_EPAN,
2416 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2417 		.matches = has_cpuid_feature,
2418 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2419 	},
2420 #endif /* CONFIG_ARM64_EPAN */
2421 #ifdef CONFIG_ARM64_LSE_ATOMICS
2422 	{
2423 		.desc = "LSE atomic instructions",
2424 		.capability = ARM64_HAS_LSE_ATOMICS,
2425 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2426 		.matches = has_cpuid_feature,
2427 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2428 	},
2429 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2430 	{
2431 		.desc = "Virtualization Host Extensions",
2432 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2433 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2434 		.matches = runs_at_el2,
2435 		.cpu_enable = cpu_copy_el2regs,
2436 	},
2437 	{
2438 		.desc = "Nested Virtualization Support",
2439 		.capability = ARM64_HAS_NESTED_VIRT,
2440 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2441 		.matches = has_nested_virt_support,
2442 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2443 	},
2444 	{
2445 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2446 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2447 		.matches = has_32bit_el0,
2448 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2449 	},
2450 #ifdef CONFIG_KVM
2451 	{
2452 		.desc = "32-bit EL1 Support",
2453 		.capability = ARM64_HAS_32BIT_EL1,
2454 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2455 		.matches = has_cpuid_feature,
2456 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2457 	},
2458 	{
2459 		.desc = "Protected KVM",
2460 		.capability = ARM64_KVM_PROTECTED_MODE,
2461 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2462 		.matches = is_kvm_protected_mode,
2463 	},
2464 	{
2465 		.desc = "HCRX_EL2 register",
2466 		.capability = ARM64_HAS_HCX,
2467 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2468 		.matches = has_cpuid_feature,
2469 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2470 	},
2471 #endif
2472 	{
2473 		.desc = "Kernel page table isolation (KPTI)",
2474 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2475 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2476 		.cpu_enable = cpu_enable_kpti,
2477 		.matches = unmap_kernel_at_el0,
2478 		/*
2479 		 * The ID feature fields below are used to indicate that
2480 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2481 		 * more details.
2482 		 */
2483 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2484 	},
2485 	{
2486 		.capability = ARM64_HAS_FPSIMD,
2487 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2488 		.matches = has_cpuid_feature,
2489 		.cpu_enable = cpu_enable_fpsimd,
2490 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2491 	},
2492 #ifdef CONFIG_ARM64_PMEM
2493 	{
2494 		.desc = "Data cache clean to Point of Persistence",
2495 		.capability = ARM64_HAS_DCPOP,
2496 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2497 		.matches = has_cpuid_feature,
2498 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2499 	},
2500 	{
2501 		.desc = "Data cache clean to Point of Deep Persistence",
2502 		.capability = ARM64_HAS_DCPODP,
2503 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2504 		.matches = has_cpuid_feature,
2505 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2506 	},
2507 #endif
2508 #ifdef CONFIG_ARM64_SVE
2509 	{
2510 		.desc = "Scalable Vector Extension",
2511 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2512 		.capability = ARM64_SVE,
2513 		.cpu_enable = cpu_enable_sve,
2514 		.matches = has_cpuid_feature,
2515 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2516 	},
2517 #endif /* CONFIG_ARM64_SVE */
2518 #ifdef CONFIG_ARM64_RAS_EXTN
2519 	{
2520 		.desc = "RAS Extension Support",
2521 		.capability = ARM64_HAS_RAS_EXTN,
2522 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2523 		.matches = has_cpuid_feature,
2524 		.cpu_enable = cpu_clear_disr,
2525 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2526 	},
2527 #endif /* CONFIG_ARM64_RAS_EXTN */
2528 #ifdef CONFIG_ARM64_AMU_EXTN
2529 	{
2530 		.desc = "Activity Monitors Unit (AMU)",
2531 		.capability = ARM64_HAS_AMU_EXTN,
2532 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2533 		.matches = has_amu,
2534 		.cpu_enable = cpu_amu_enable,
2535 		.cpus = &amu_cpus,
2536 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2537 	},
2538 #endif /* CONFIG_ARM64_AMU_EXTN */
2539 	{
2540 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2541 		.capability = ARM64_HAS_CACHE_IDC,
2542 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2543 		.matches = has_cache_idc,
2544 		.cpu_enable = cpu_emulate_effective_ctr,
2545 	},
2546 	{
2547 		.desc = "Instruction cache invalidation not required for I/D coherence",
2548 		.capability = ARM64_HAS_CACHE_DIC,
2549 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2550 		.matches = has_cache_dic,
2551 	},
2552 	{
2553 		.desc = "Stage-2 Force Write-Back",
2554 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2555 		.capability = ARM64_HAS_STAGE2_FWB,
2556 		.matches = has_cpuid_feature,
2557 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2558 	},
2559 	{
2560 		.desc = "ARMv8.4 Translation Table Level",
2561 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2562 		.capability = ARM64_HAS_ARMv8_4_TTL,
2563 		.matches = has_cpuid_feature,
2564 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2565 	},
2566 	{
2567 		.desc = "TLB range maintenance instructions",
2568 		.capability = ARM64_HAS_TLB_RANGE,
2569 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2570 		.matches = has_cpuid_feature,
2571 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2572 	},
2573 #ifdef CONFIG_ARM64_HW_AFDBM
2574 	{
2575 		.desc = "Hardware dirty bit management",
2576 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2577 		.capability = ARM64_HW_DBM,
2578 		.matches = has_hw_dbm,
2579 		.cpu_enable = cpu_enable_hw_dbm,
2580 		.cpus = &dbm_cpus,
2581 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2582 	},
2583 #endif
2584 	{
2585 		.desc = "CRC32 instructions",
2586 		.capability = ARM64_HAS_CRC32,
2587 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2588 		.matches = has_cpuid_feature,
2589 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2590 	},
2591 	{
2592 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2593 		.capability = ARM64_SSBS,
2594 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2595 		.matches = has_cpuid_feature,
2596 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2597 	},
2598 #ifdef CONFIG_ARM64_CNP
2599 	{
2600 		.desc = "Common not Private translations",
2601 		.capability = ARM64_HAS_CNP,
2602 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2603 		.matches = has_useable_cnp,
2604 		.cpu_enable = cpu_enable_cnp,
2605 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2606 	},
2607 #endif
2608 	{
2609 		.desc = "Speculation barrier (SB)",
2610 		.capability = ARM64_HAS_SB,
2611 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2612 		.matches = has_cpuid_feature,
2613 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2614 	},
2615 #ifdef CONFIG_ARM64_PTR_AUTH
2616 	{
2617 		.desc = "Address authentication (architected QARMA5 algorithm)",
2618 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2619 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2620 		.matches = has_address_auth_cpucap,
2621 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2622 	},
2623 	{
2624 		.desc = "Address authentication (architected QARMA3 algorithm)",
2625 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2626 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2627 		.matches = has_address_auth_cpucap,
2628 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2629 	},
2630 	{
2631 		.desc = "Address authentication (IMP DEF algorithm)",
2632 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2633 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2634 		.matches = has_address_auth_cpucap,
2635 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2636 	},
2637 	{
2638 		.capability = ARM64_HAS_ADDRESS_AUTH,
2639 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2640 		.matches = has_address_auth_metacap,
2641 	},
2642 	{
2643 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2644 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2645 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2646 		.matches = has_cpuid_feature,
2647 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2648 	},
2649 	{
2650 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2651 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2652 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2653 		.matches = has_cpuid_feature,
2654 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2655 	},
2656 	{
2657 		.desc = "Generic authentication (IMP DEF algorithm)",
2658 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2659 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2660 		.matches = has_cpuid_feature,
2661 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2662 	},
2663 	{
2664 		.capability = ARM64_HAS_GENERIC_AUTH,
2665 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2666 		.matches = has_generic_auth,
2667 	},
2668 #endif /* CONFIG_ARM64_PTR_AUTH */
2669 #ifdef CONFIG_ARM64_PSEUDO_NMI
2670 	{
2671 		/*
2672 		 * Depends on having GICv3
2673 		 */
2674 		.desc = "IRQ priority masking",
2675 		.capability = ARM64_HAS_GIC_PRIO_MASKING,
2676 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2677 		.matches = can_use_gic_priorities,
2678 	},
2679 	{
2680 		/*
2681 		 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2682 		 */
2683 		.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2684 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2685 		.matches = has_gic_prio_relaxed_sync,
2686 	},
2687 #endif
2688 #ifdef CONFIG_ARM64_E0PD
2689 	{
2690 		.desc = "E0PD",
2691 		.capability = ARM64_HAS_E0PD,
2692 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2693 		.cpu_enable = cpu_enable_e0pd,
2694 		.matches = has_cpuid_feature,
2695 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2696 	},
2697 #endif
2698 	{
2699 		.desc = "Random Number Generator",
2700 		.capability = ARM64_HAS_RNG,
2701 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2702 		.matches = has_cpuid_feature,
2703 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2704 	},
2705 #ifdef CONFIG_ARM64_BTI
2706 	{
2707 		.desc = "Branch Target Identification",
2708 		.capability = ARM64_BTI,
2709 #ifdef CONFIG_ARM64_BTI_KERNEL
2710 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2711 #else
2712 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2713 #endif
2714 		.matches = has_cpuid_feature,
2715 		.cpu_enable = bti_enable,
2716 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2717 	},
2718 #endif
2719 #ifdef CONFIG_ARM64_MTE
2720 	{
2721 		.desc = "Memory Tagging Extension",
2722 		.capability = ARM64_MTE,
2723 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2724 		.matches = has_cpuid_feature,
2725 		.cpu_enable = cpu_enable_mte,
2726 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2727 	},
2728 	{
2729 		.desc = "Asymmetric MTE Tag Check Fault",
2730 		.capability = ARM64_MTE_ASYMM,
2731 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2732 		.matches = has_cpuid_feature,
2733 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2734 	},
2735 #endif /* CONFIG_ARM64_MTE */
2736 	{
2737 		.desc = "RCpc load-acquire (LDAPR)",
2738 		.capability = ARM64_HAS_LDAPR,
2739 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2740 		.matches = has_cpuid_feature,
2741 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2742 	},
2743 	{
2744 		.desc = "Fine Grained Traps",
2745 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2746 		.capability = ARM64_HAS_FGT,
2747 		.matches = has_cpuid_feature,
2748 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2749 	},
2750 #ifdef CONFIG_ARM64_SME
2751 	{
2752 		.desc = "Scalable Matrix Extension",
2753 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2754 		.capability = ARM64_SME,
2755 		.matches = has_cpuid_feature,
2756 		.cpu_enable = cpu_enable_sme,
2757 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2758 	},
2759 	/* FA64 should be sorted after the base SME capability */
2760 	{
2761 		.desc = "FA64",
2762 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2763 		.capability = ARM64_SME_FA64,
2764 		.matches = has_cpuid_feature,
2765 		.cpu_enable = cpu_enable_fa64,
2766 		ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2767 	},
2768 	{
2769 		.desc = "SME2",
2770 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2771 		.capability = ARM64_SME2,
2772 		.matches = has_cpuid_feature,
2773 		.cpu_enable = cpu_enable_sme2,
2774 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2775 	},
2776 #endif /* CONFIG_ARM64_SME */
2777 	{
2778 		.desc = "WFx with timeout",
2779 		.capability = ARM64_HAS_WFXT,
2780 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2781 		.matches = has_cpuid_feature,
2782 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2783 	},
2784 	{
2785 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2786 		.capability = ARM64_HAS_TIDCP1,
2787 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2788 		.matches = has_cpuid_feature,
2789 		.cpu_enable = cpu_trap_el0_impdef,
2790 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2791 	},
2792 	{
2793 		.desc = "Data independent timing control (DIT)",
2794 		.capability = ARM64_HAS_DIT,
2795 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2796 		.matches = has_cpuid_feature,
2797 		.cpu_enable = cpu_enable_dit,
2798 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2799 	},
2800 	{
2801 		.desc = "Memory Copy and Memory Set instructions",
2802 		.capability = ARM64_HAS_MOPS,
2803 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2804 		.matches = has_cpuid_feature,
2805 		.cpu_enable = cpu_enable_mops,
2806 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2807 	},
2808 	{
2809 		.capability = ARM64_HAS_TCR2,
2810 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2811 		.matches = has_cpuid_feature,
2812 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2813 	},
2814 	{
2815 		.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2816 		.capability = ARM64_HAS_S1PIE,
2817 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2818 		.matches = has_cpuid_feature,
2819 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2820 	},
2821 	{
2822 		.desc = "VHE for hypervisor only",
2823 		.capability = ARM64_KVM_HVHE,
2824 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2825 		.matches = hvhe_possible,
2826 	},
2827 	{
2828 		.desc = "Enhanced Virtualization Traps",
2829 		.capability = ARM64_HAS_EVT,
2830 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2831 		.matches = has_cpuid_feature,
2832 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2833 	},
2834 	{
2835 		.desc = "52-bit Virtual Addressing for KVM (LPA2)",
2836 		.capability = ARM64_HAS_LPA2,
2837 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2838 		.matches = has_lpa2,
2839 	},
2840 	{
2841 		.desc = "FPMR",
2842 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2843 		.capability = ARM64_HAS_FPMR,
2844 		.matches = has_cpuid_feature,
2845 		.cpu_enable = cpu_enable_fpmr,
2846 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2847 	},
2848 #ifdef CONFIG_ARM64_VA_BITS_52
2849 	{
2850 		.capability = ARM64_HAS_VA52,
2851 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2852 		.matches = has_cpuid_feature,
2853 #ifdef CONFIG_ARM64_64K_PAGES
2854 		.desc = "52-bit Virtual Addressing (LVA)",
2855 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
2856 #else
2857 		.desc = "52-bit Virtual Addressing (LPA2)",
2858 #ifdef CONFIG_ARM64_4K_PAGES
2859 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
2860 #else
2861 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
2862 #endif
2863 #endif
2864 	},
2865 #endif
2866 	{
2867 		.desc = "NV1",
2868 		.capability = ARM64_HAS_HCR_NV1,
2869 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2870 		.matches = has_nv1,
2871 		ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
2872 	},
2873 	{},
2874 };
2875 
2876 #define HWCAP_CPUID_MATCH(reg, field, min_value)			\
2877 		.matches = has_user_cpuid_feature,			\
2878 		ARM64_CPUID_FIELDS(reg, field, min_value)
2879 
2880 #define __HWCAP_CAP(name, cap_type, cap)					\
2881 		.desc = name,							\
2882 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2883 		.hwcap_type = cap_type,						\
2884 		.hwcap = cap,							\
2885 
2886 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)		\
2887 	{									\
2888 		__HWCAP_CAP(#cap, cap_type, cap)				\
2889 		HWCAP_CPUID_MATCH(reg, field, min_value) 		\
2890 	}
2891 
2892 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2893 	{									\
2894 		__HWCAP_CAP(#cap, cap_type, cap)				\
2895 		.matches = cpucap_multi_entry_cap_matches,			\
2896 		.match_list = list,						\
2897 	}
2898 
2899 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2900 	{									\
2901 		__HWCAP_CAP(#cap, cap_type, cap)				\
2902 		.matches = match,						\
2903 	}
2904 
2905 #ifdef CONFIG_ARM64_PTR_AUTH
2906 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2907 	{
2908 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2909 	},
2910 	{
2911 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2912 	},
2913 	{
2914 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2915 	},
2916 	{},
2917 };
2918 
2919 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2920 	{
2921 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2922 	},
2923 	{
2924 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2925 	},
2926 	{
2927 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2928 	},
2929 	{},
2930 };
2931 #endif
2932 
2933 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2934 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2935 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2936 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2937 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2938 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2939 	HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2940 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2941 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
2942 	HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2943 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2944 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2945 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2946 	HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2947 	HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2948 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2949 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2950 	HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2951 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2952 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2953 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2954 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2955 	HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2956 	HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
2957 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2958 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2959 	HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2960 	HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2961 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2962 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2963 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
2964 	HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2965 	HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2966 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2967 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2968 	HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2969 	HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2970 	HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
2971 	HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
2972 	HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2973 #ifdef CONFIG_ARM64_SVE
2974 	HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2975 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2976 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2977 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2978 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2979 	HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2980 	HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
2981 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2982 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2983 	HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2984 	HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2985 	HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2986 	HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2987 	HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2988 #endif
2989 	HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2990 #ifdef CONFIG_ARM64_BTI
2991 	HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2992 #endif
2993 #ifdef CONFIG_ARM64_PTR_AUTH
2994 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2995 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2996 #endif
2997 #ifdef CONFIG_ARM64_MTE
2998 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2999 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3000 #endif /* CONFIG_ARM64_MTE */
3001 	HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3002 	HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3003 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3004 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3005 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3006 	HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3007 	HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3008 	HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3009 #ifdef CONFIG_ARM64_SME
3010 	HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3011 	HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3012 	HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3013 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3014 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3015 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3016 	HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3017 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3018 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3019 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3020 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3021 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3022 	HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3023 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3024 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3025 	HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3026 	HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3027 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3028 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3029 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3030 #endif /* CONFIG_ARM64_SME */
3031 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3032 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3033 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3034 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3035 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3036 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3037 	{},
3038 };
3039 
3040 #ifdef CONFIG_COMPAT
3041 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3042 {
3043 	/*
3044 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3045 	 * in line with that of arm32 as in vfp_init(). We make sure that the
3046 	 * check is future proof, by making sure value is non-zero.
3047 	 */
3048 	u32 mvfr1;
3049 
3050 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3051 	if (scope == SCOPE_SYSTEM)
3052 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3053 	else
3054 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3055 
3056 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3057 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3058 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3059 }
3060 #endif
3061 
3062 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3063 #ifdef CONFIG_COMPAT
3064 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3065 	HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3066 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3067 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3068 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3069 	HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3070 	HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3071 	HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3072 	HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3073 	HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3074 	HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3075 	HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3076 	HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3077 	HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3078 	HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3079 	HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3080 	HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3081 	HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3082 #endif
3083 	{},
3084 };
3085 
3086 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3087 {
3088 	switch (cap->hwcap_type) {
3089 	case CAP_HWCAP:
3090 		cpu_set_feature(cap->hwcap);
3091 		break;
3092 #ifdef CONFIG_COMPAT
3093 	case CAP_COMPAT_HWCAP:
3094 		compat_elf_hwcap |= (u32)cap->hwcap;
3095 		break;
3096 	case CAP_COMPAT_HWCAP2:
3097 		compat_elf_hwcap2 |= (u32)cap->hwcap;
3098 		break;
3099 #endif
3100 	default:
3101 		WARN_ON(1);
3102 		break;
3103 	}
3104 }
3105 
3106 /* Check if we have a particular HWCAP enabled */
3107 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3108 {
3109 	bool rc;
3110 
3111 	switch (cap->hwcap_type) {
3112 	case CAP_HWCAP:
3113 		rc = cpu_have_feature(cap->hwcap);
3114 		break;
3115 #ifdef CONFIG_COMPAT
3116 	case CAP_COMPAT_HWCAP:
3117 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3118 		break;
3119 	case CAP_COMPAT_HWCAP2:
3120 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3121 		break;
3122 #endif
3123 	default:
3124 		WARN_ON(1);
3125 		rc = false;
3126 	}
3127 
3128 	return rc;
3129 }
3130 
3131 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3132 {
3133 	/* We support emulation of accesses to CPU ID feature registers */
3134 	cpu_set_named_feature(CPUID);
3135 	for (; hwcaps->matches; hwcaps++)
3136 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3137 			cap_set_elf_hwcap(hwcaps);
3138 }
3139 
3140 static void update_cpu_capabilities(u16 scope_mask)
3141 {
3142 	int i;
3143 	const struct arm64_cpu_capabilities *caps;
3144 
3145 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3146 	for (i = 0; i < ARM64_NCAPS; i++) {
3147 		caps = cpucap_ptrs[i];
3148 		if (!caps || !(caps->type & scope_mask) ||
3149 		    cpus_have_cap(caps->capability) ||
3150 		    !caps->matches(caps, cpucap_default_scope(caps)))
3151 			continue;
3152 
3153 		if (caps->desc && !caps->cpus)
3154 			pr_info("detected: %s\n", caps->desc);
3155 
3156 		__set_bit(caps->capability, system_cpucaps);
3157 
3158 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3159 			set_bit(caps->capability, boot_cpucaps);
3160 	}
3161 }
3162 
3163 /*
3164  * Enable all the available capabilities on this CPU. The capabilities
3165  * with BOOT_CPU scope are handled separately and hence skipped here.
3166  */
3167 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3168 {
3169 	int i;
3170 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3171 
3172 	for_each_available_cap(i) {
3173 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3174 
3175 		if (WARN_ON(!cap))
3176 			continue;
3177 
3178 		if (!(cap->type & non_boot_scope))
3179 			continue;
3180 
3181 		if (cap->cpu_enable)
3182 			cap->cpu_enable(cap);
3183 	}
3184 	return 0;
3185 }
3186 
3187 /*
3188  * Run through the enabled capabilities and enable() it on all active
3189  * CPUs
3190  */
3191 static void __init enable_cpu_capabilities(u16 scope_mask)
3192 {
3193 	int i;
3194 	const struct arm64_cpu_capabilities *caps;
3195 	bool boot_scope;
3196 
3197 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3198 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3199 
3200 	for (i = 0; i < ARM64_NCAPS; i++) {
3201 		caps = cpucap_ptrs[i];
3202 		if (!caps || !(caps->type & scope_mask) ||
3203 		    !cpus_have_cap(caps->capability))
3204 			continue;
3205 
3206 		if (boot_scope && caps->cpu_enable)
3207 			/*
3208 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3209 			 * before any secondary CPU boots. Thus, each secondary
3210 			 * will enable the capability as appropriate via
3211 			 * check_local_cpu_capabilities(). The only exception is
3212 			 * the boot CPU, for which the capability must be
3213 			 * enabled here. This approach avoids costly
3214 			 * stop_machine() calls for this case.
3215 			 */
3216 			caps->cpu_enable(caps);
3217 	}
3218 
3219 	/*
3220 	 * For all non-boot scope capabilities, use stop_machine()
3221 	 * as it schedules the work allowing us to modify PSTATE,
3222 	 * instead of on_each_cpu() which uses an IPI, giving us a
3223 	 * PSTATE that disappears when we return.
3224 	 */
3225 	if (!boot_scope)
3226 		stop_machine(cpu_enable_non_boot_scope_capabilities,
3227 			     NULL, cpu_online_mask);
3228 }
3229 
3230 /*
3231  * Run through the list of capabilities to check for conflicts.
3232  * If the system has already detected a capability, take necessary
3233  * action on this CPU.
3234  */
3235 static void verify_local_cpu_caps(u16 scope_mask)
3236 {
3237 	int i;
3238 	bool cpu_has_cap, system_has_cap;
3239 	const struct arm64_cpu_capabilities *caps;
3240 
3241 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3242 
3243 	for (i = 0; i < ARM64_NCAPS; i++) {
3244 		caps = cpucap_ptrs[i];
3245 		if (!caps || !(caps->type & scope_mask))
3246 			continue;
3247 
3248 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3249 		system_has_cap = cpus_have_cap(caps->capability);
3250 
3251 		if (system_has_cap) {
3252 			/*
3253 			 * Check if the new CPU misses an advertised feature,
3254 			 * which is not safe to miss.
3255 			 */
3256 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3257 				break;
3258 			/*
3259 			 * We have to issue cpu_enable() irrespective of
3260 			 * whether the CPU has it or not, as it is enabeld
3261 			 * system wide. It is upto the call back to take
3262 			 * appropriate action on this CPU.
3263 			 */
3264 			if (caps->cpu_enable)
3265 				caps->cpu_enable(caps);
3266 		} else {
3267 			/*
3268 			 * Check if the CPU has this capability if it isn't
3269 			 * safe to have when the system doesn't.
3270 			 */
3271 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3272 				break;
3273 		}
3274 	}
3275 
3276 	if (i < ARM64_NCAPS) {
3277 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3278 			smp_processor_id(), caps->capability,
3279 			caps->desc, system_has_cap, cpu_has_cap);
3280 
3281 		if (cpucap_panic_on_conflict(caps))
3282 			cpu_panic_kernel();
3283 		else
3284 			cpu_die_early();
3285 	}
3286 }
3287 
3288 /*
3289  * Check for CPU features that are used in early boot
3290  * based on the Boot CPU value.
3291  */
3292 static void check_early_cpu_features(void)
3293 {
3294 	verify_cpu_asid_bits();
3295 
3296 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3297 }
3298 
3299 static void
3300 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3301 {
3302 
3303 	for (; caps->matches; caps++)
3304 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3305 			pr_crit("CPU%d: missing HWCAP: %s\n",
3306 					smp_processor_id(), caps->desc);
3307 			cpu_die_early();
3308 		}
3309 }
3310 
3311 static void verify_local_elf_hwcaps(void)
3312 {
3313 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3314 
3315 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3316 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3317 }
3318 
3319 static void verify_sve_features(void)
3320 {
3321 	unsigned long cpacr = cpacr_save_enable_kernel_sve();
3322 
3323 	if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3324 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3325 			smp_processor_id());
3326 		cpu_die_early();
3327 	}
3328 
3329 	cpacr_restore(cpacr);
3330 }
3331 
3332 static void verify_sme_features(void)
3333 {
3334 	unsigned long cpacr = cpacr_save_enable_kernel_sme();
3335 
3336 	if (vec_verify_vq_map(ARM64_VEC_SME)) {
3337 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3338 			smp_processor_id());
3339 		cpu_die_early();
3340 	}
3341 
3342 	cpacr_restore(cpacr);
3343 }
3344 
3345 static void verify_hyp_capabilities(void)
3346 {
3347 	u64 safe_mmfr1, mmfr0, mmfr1;
3348 	int parange, ipa_max;
3349 	unsigned int safe_vmid_bits, vmid_bits;
3350 
3351 	if (!IS_ENABLED(CONFIG_KVM))
3352 		return;
3353 
3354 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3355 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3356 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3357 
3358 	/* Verify VMID bits */
3359 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3360 	vmid_bits = get_vmid_bits(mmfr1);
3361 	if (vmid_bits < safe_vmid_bits) {
3362 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3363 		cpu_die_early();
3364 	}
3365 
3366 	/* Verify IPA range */
3367 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3368 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3369 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3370 	if (ipa_max < get_kvm_ipa_limit()) {
3371 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3372 		cpu_die_early();
3373 	}
3374 }
3375 
3376 /*
3377  * Run through the enabled system capabilities and enable() it on this CPU.
3378  * The capabilities were decided based on the available CPUs at the boot time.
3379  * Any new CPU should match the system wide status of the capability. If the
3380  * new CPU doesn't have a capability which the system now has enabled, we
3381  * cannot do anything to fix it up and could cause unexpected failures. So
3382  * we park the CPU.
3383  */
3384 static void verify_local_cpu_capabilities(void)
3385 {
3386 	/*
3387 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3388 	 * check_early_cpu_features(), as they need to be verified
3389 	 * on all secondary CPUs.
3390 	 */
3391 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3392 	verify_local_elf_hwcaps();
3393 
3394 	if (system_supports_sve())
3395 		verify_sve_features();
3396 
3397 	if (system_supports_sme())
3398 		verify_sme_features();
3399 
3400 	if (is_hyp_mode_available())
3401 		verify_hyp_capabilities();
3402 }
3403 
3404 void check_local_cpu_capabilities(void)
3405 {
3406 	/*
3407 	 * All secondary CPUs should conform to the early CPU features
3408 	 * in use by the kernel based on boot CPU.
3409 	 */
3410 	check_early_cpu_features();
3411 
3412 	/*
3413 	 * If we haven't finalised the system capabilities, this CPU gets
3414 	 * a chance to update the errata work arounds and local features.
3415 	 * Otherwise, this CPU should verify that it has all the system
3416 	 * advertised capabilities.
3417 	 */
3418 	if (!system_capabilities_finalized())
3419 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3420 	else
3421 		verify_local_cpu_capabilities();
3422 }
3423 
3424 bool this_cpu_has_cap(unsigned int n)
3425 {
3426 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3427 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3428 
3429 		if (cap)
3430 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3431 	}
3432 
3433 	return false;
3434 }
3435 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3436 
3437 /*
3438  * This helper function is used in a narrow window when,
3439  * - The system wide safe registers are set with all the SMP CPUs and,
3440  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3441  */
3442 static bool __maybe_unused __system_matches_cap(unsigned int n)
3443 {
3444 	if (n < ARM64_NCAPS) {
3445 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3446 
3447 		if (cap)
3448 			return cap->matches(cap, SCOPE_SYSTEM);
3449 	}
3450 	return false;
3451 }
3452 
3453 void cpu_set_feature(unsigned int num)
3454 {
3455 	set_bit(num, elf_hwcap);
3456 }
3457 
3458 bool cpu_have_feature(unsigned int num)
3459 {
3460 	return test_bit(num, elf_hwcap);
3461 }
3462 EXPORT_SYMBOL_GPL(cpu_have_feature);
3463 
3464 unsigned long cpu_get_elf_hwcap(void)
3465 {
3466 	/*
3467 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3468 	 * note that for userspace compatibility we guarantee that bits 62
3469 	 * and 63 will always be returned as 0.
3470 	 */
3471 	return elf_hwcap[0];
3472 }
3473 
3474 unsigned long cpu_get_elf_hwcap2(void)
3475 {
3476 	return elf_hwcap[1];
3477 }
3478 
3479 static void __init setup_boot_cpu_capabilities(void)
3480 {
3481 	/*
3482 	 * The boot CPU's feature register values have been recorded. Detect
3483 	 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3484 	 * patch alternatives for the available boot cpucaps.
3485 	 */
3486 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3487 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3488 	apply_boot_alternatives();
3489 }
3490 
3491 void __init setup_boot_cpu_features(void)
3492 {
3493 	/*
3494 	 * Initialize the indirect array of CPU capabilities pointers before we
3495 	 * handle the boot CPU.
3496 	 */
3497 	init_cpucap_indirect_list();
3498 
3499 	/*
3500 	 * Detect broken pseudo-NMI. Must be called _before_ the call to
3501 	 * setup_boot_cpu_capabilities() since it interacts with
3502 	 * can_use_gic_priorities().
3503 	 */
3504 	detect_system_supports_pseudo_nmi();
3505 
3506 	setup_boot_cpu_capabilities();
3507 }
3508 
3509 static void __init setup_system_capabilities(void)
3510 {
3511 	/*
3512 	 * The system-wide safe feature register values have been finalized.
3513 	 * Detect, enable, and patch alternatives for the available system
3514 	 * cpucaps.
3515 	 */
3516 	update_cpu_capabilities(SCOPE_SYSTEM);
3517 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3518 	apply_alternatives_all();
3519 
3520 	/*
3521 	 * Log any cpucaps with a cpumask as these aren't logged by
3522 	 * update_cpu_capabilities().
3523 	 */
3524 	for (int i = 0; i < ARM64_NCAPS; i++) {
3525 		const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3526 
3527 		if (caps && caps->cpus && caps->desc &&
3528 			cpumask_any(caps->cpus) < nr_cpu_ids)
3529 			pr_info("detected: %s on CPU%*pbl\n",
3530 				caps->desc, cpumask_pr_args(caps->cpus));
3531 	}
3532 
3533 	/*
3534 	 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3535 	 */
3536 	if (system_uses_ttbr0_pan())
3537 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3538 }
3539 
3540 void __init setup_system_features(void)
3541 {
3542 	setup_system_capabilities();
3543 
3544 	kpti_install_ng_mappings();
3545 
3546 	sve_setup();
3547 	sme_setup();
3548 
3549 	/*
3550 	 * Check for sane CTR_EL0.CWG value.
3551 	 */
3552 	if (!cache_type_cwg())
3553 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3554 			ARCH_DMA_MINALIGN);
3555 }
3556 
3557 void __init setup_user_features(void)
3558 {
3559 	user_feature_fixup();
3560 
3561 	setup_elf_hwcaps(arm64_elf_hwcaps);
3562 
3563 	if (system_supports_32bit_el0()) {
3564 		setup_elf_hwcaps(compat_elf_hwcaps);
3565 		elf_hwcap_fixup();
3566 	}
3567 
3568 	minsigstksz_setup();
3569 }
3570 
3571 static int enable_mismatched_32bit_el0(unsigned int cpu)
3572 {
3573 	/*
3574 	 * The first 32-bit-capable CPU we detected and so can no longer
3575 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3576 	 * a 32-bit-capable CPU.
3577 	 */
3578 	static int lucky_winner = -1;
3579 
3580 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3581 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3582 
3583 	if (cpu_32bit) {
3584 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3585 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3586 	}
3587 
3588 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3589 		return 0;
3590 
3591 	if (lucky_winner >= 0)
3592 		return 0;
3593 
3594 	/*
3595 	 * We've detected a mismatch. We need to keep one of our CPUs with
3596 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3597 	 * every CPU in the system for a 32-bit task.
3598 	 */
3599 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3600 							 cpu_active_mask);
3601 	get_cpu_device(lucky_winner)->offline_disabled = true;
3602 	setup_elf_hwcaps(compat_elf_hwcaps);
3603 	elf_hwcap_fixup();
3604 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3605 		cpu, lucky_winner);
3606 	return 0;
3607 }
3608 
3609 static int __init init_32bit_el0_mask(void)
3610 {
3611 	if (!allow_mismatched_32bit_el0)
3612 		return 0;
3613 
3614 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3615 		return -ENOMEM;
3616 
3617 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3618 				 "arm64/mismatched_32bit_el0:online",
3619 				 enable_mismatched_32bit_el0, NULL);
3620 }
3621 subsys_initcall_sync(init_32bit_el0_mask);
3622 
3623 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3624 {
3625 	cpu_enable_swapper_cnp();
3626 }
3627 
3628 /*
3629  * We emulate only the following system register space.
3630  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3631  * See Table C5-6 System instruction encodings for System register accesses,
3632  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3633  */
3634 static inline bool __attribute_const__ is_emulated(u32 id)
3635 {
3636 	return (sys_reg_Op0(id) == 0x3 &&
3637 		sys_reg_CRn(id) == 0x0 &&
3638 		sys_reg_Op1(id) == 0x0 &&
3639 		(sys_reg_CRm(id) == 0 ||
3640 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3641 }
3642 
3643 /*
3644  * With CRm == 0, reg should be one of :
3645  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3646  */
3647 static inline int emulate_id_reg(u32 id, u64 *valp)
3648 {
3649 	switch (id) {
3650 	case SYS_MIDR_EL1:
3651 		*valp = read_cpuid_id();
3652 		break;
3653 	case SYS_MPIDR_EL1:
3654 		*valp = SYS_MPIDR_SAFE_VAL;
3655 		break;
3656 	case SYS_REVIDR_EL1:
3657 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3658 		*valp = 0;
3659 		break;
3660 	default:
3661 		return -EINVAL;
3662 	}
3663 
3664 	return 0;
3665 }
3666 
3667 static int emulate_sys_reg(u32 id, u64 *valp)
3668 {
3669 	struct arm64_ftr_reg *regp;
3670 
3671 	if (!is_emulated(id))
3672 		return -EINVAL;
3673 
3674 	if (sys_reg_CRm(id) == 0)
3675 		return emulate_id_reg(id, valp);
3676 
3677 	regp = get_arm64_ftr_reg_nowarn(id);
3678 	if (regp)
3679 		*valp = arm64_ftr_reg_user_value(regp);
3680 	else
3681 		/*
3682 		 * The untracked registers are either IMPLEMENTATION DEFINED
3683 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3684 		 */
3685 		*valp = 0;
3686 	return 0;
3687 }
3688 
3689 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3690 {
3691 	int rc;
3692 	u64 val;
3693 
3694 	rc = emulate_sys_reg(sys_reg, &val);
3695 	if (!rc) {
3696 		pt_regs_write_reg(regs, rt, val);
3697 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3698 	}
3699 	return rc;
3700 }
3701 
3702 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3703 {
3704 	u32 sys_reg, rt;
3705 
3706 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3707 		return false;
3708 
3709 	/*
3710 	 * sys_reg values are defined as used in mrs/msr instruction.
3711 	 * shift the imm value to get the encoding.
3712 	 */
3713 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3714 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3715 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
3716 }
3717 
3718 enum mitigation_state arm64_get_meltdown_state(void)
3719 {
3720 	if (__meltdown_safe)
3721 		return SPECTRE_UNAFFECTED;
3722 
3723 	if (arm64_kernel_unmapped_at_el0())
3724 		return SPECTRE_MITIGATED;
3725 
3726 	return SPECTRE_VULNERABLE;
3727 }
3728 
3729 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3730 			  char *buf)
3731 {
3732 	switch (arm64_get_meltdown_state()) {
3733 	case SPECTRE_UNAFFECTED:
3734 		return sprintf(buf, "Not affected\n");
3735 
3736 	case SPECTRE_MITIGATED:
3737 		return sprintf(buf, "Mitigation: PTI\n");
3738 
3739 	default:
3740 		return sprintf(buf, "Vulnerable\n");
3741 	}
3742 }
3743