xref: /linux/arch/arm64/kernel/cpufeature.c (revision e5ecedcd7cc231a115c11cfed79635583ef4f882)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94 
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97 
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT	\
100 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103 				 COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 unsigned int compat_elf_hwcap3 __read_mostly;
107 #endif
108 
109 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
110 EXPORT_SYMBOL(system_cpucaps);
111 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
112 
113 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
114 
115 bool arm64_use_ng_mappings = false;
116 EXPORT_SYMBOL(arm64_use_ng_mappings);
117 
118 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
119 
120 /*
121  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
122  * support it?
123  */
124 static bool __read_mostly allow_mismatched_32bit_el0;
125 
126 /*
127  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
128  * seen at least one CPU capable of 32-bit EL0.
129  */
130 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
131 
132 /*
133  * Mask of CPUs supporting 32-bit EL0.
134  * Only valid if arm64_mismatched_32bit_el0 is enabled.
135  */
136 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
137 
138 void dump_cpu_features(void)
139 {
140 	/* file-wide pr_fmt adds "CPU features: " prefix */
141 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
142 }
143 
144 #define __ARM64_MAX_POSITIVE(reg, field)				\
145 		((reg##_##field##_SIGNED ?				\
146 		  BIT(reg##_##field##_WIDTH - 1) :			\
147 		  BIT(reg##_##field##_WIDTH)) - 1)
148 
149 #define __ARM64_MIN_NEGATIVE(reg, field)  BIT(reg##_##field##_WIDTH - 1)
150 
151 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value)		\
152 		.sys_reg = SYS_##reg,					\
153 		.field_pos = reg##_##field##_SHIFT,			\
154 		.field_width = reg##_##field##_WIDTH,			\
155 		.sign = reg##_##field##_SIGNED,				\
156 		.min_field_value = min_value,				\
157 		.max_field_value = max_value,
158 
159 /*
160  * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
161  * an implicit maximum that depends on the sign-ess of the field.
162  *
163  * An unsigned field will be capped at all ones, while a signed field
164  * will be limited to the positive half only.
165  */
166 #define ARM64_CPUID_FIELDS(reg, field, min_value)			\
167 	__ARM64_CPUID_FIELDS(reg, field,				\
168 			     SYS_FIELD_VALUE(reg, field, min_value),	\
169 			     __ARM64_MAX_POSITIVE(reg, field))
170 
171 /*
172  * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
173  * implicit minimal value to max_value. This should be used when
174  * matching a non-implemented property.
175  */
176 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value)			\
177 	__ARM64_CPUID_FIELDS(reg, field,				\
178 			     __ARM64_MIN_NEGATIVE(reg, field),		\
179 			     SYS_FIELD_VALUE(reg, field, max_value))
180 
181 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
182 	{						\
183 		.sign = SIGNED,				\
184 		.visible = VISIBLE,			\
185 		.strict = STRICT,			\
186 		.type = TYPE,				\
187 		.shift = SHIFT,				\
188 		.width = WIDTH,				\
189 		.safe_val = SAFE_VAL,			\
190 	}
191 
192 /* Define a feature with unsigned values */
193 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
194 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
195 
196 /* Define a feature with a signed value */
197 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
198 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
199 
200 #define ARM64_FTR_END					\
201 	{						\
202 		.width = 0,				\
203 	}
204 
205 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
206 
207 static bool __system_matches_cap(unsigned int n);
208 
209 /*
210  * NOTE: Any changes to the visibility of features should be kept in
211  * sync with the documentation of the CPU feature register ABI.
212  */
213 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
214 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
219 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
222 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
227 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
228 	ARM64_FTR_END,
229 };
230 
231 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
232 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
240 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
242 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
245 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
247 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
249 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
251 	ARM64_FTR_END,
252 };
253 
254 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
255 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
256 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
257 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
258 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
259 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
260 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
261 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
262 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
263 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
264 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
265 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
266 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
267 	ARM64_FTR_END,
268 };
269 
270 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
271 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
272 	ARM64_FTR_END,
273 };
274 
275 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
276 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
278 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
280 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
281 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
282 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
283 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
285 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
286 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
287 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
288 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
290 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
292 	ARM64_FTR_END,
293 };
294 
295 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
296 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
297 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
298 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
299 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
300 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
301 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
302 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
303 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
304 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
305 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
306 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
307 	ARM64_FTR_END,
308 };
309 
310 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
311 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
312 	ARM64_FTR_END,
313 };
314 
315 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
316 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
317 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
318 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
319 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
320 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
321 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
322 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
323 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
324 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
325 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
326 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
327 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
328 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
329 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
330 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
331 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
332 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
333 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
334 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
335 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
336 	ARM64_FTR_END,
337 };
338 
339 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
340 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
341 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
342 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
343 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
344 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
345 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
346 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
347 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
348 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
349 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
350 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
351 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
352 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
353 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
354 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
355 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
356 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
357 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
358 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
359 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
360 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
362 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
364 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
366 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
368 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
370 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
372 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
373 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
374 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
375 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
376 	ARM64_FTR_END,
377 };
378 
379 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
380 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
381 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
382 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
383 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
384 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
385 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
386 	ARM64_FTR_END,
387 };
388 
389 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
390 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
391 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
392 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
393 	/*
394 	 * Page size not being supported at Stage-2 is not fatal. You
395 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
396 	 * your favourite nesting hypervisor.
397 	 *
398 	 * There is a small corner case where the hypervisor explicitly
399 	 * advertises a given granule size at Stage-2 (value 2) on some
400 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
401 	 * vCPUs. Although this is not forbidden by the architecture, it
402 	 * indicates that the hypervisor is being silly (or buggy).
403 	 *
404 	 * We make no effort to cope with this and pretend that if these
405 	 * fields are inconsistent across vCPUs, then it isn't worth
406 	 * trying to bring KVM up.
407 	 */
408 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
409 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
410 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
411 	/*
412 	 * We already refuse to boot CPUs that don't support our configured
413 	 * page size, so we can only detect mismatches for a page size other
414 	 * than the one we're currently using. Unfortunately, SoCs like this
415 	 * exist in the wild so, even though we don't like it, we'll have to go
416 	 * along with it and treat them as non-strict.
417 	 */
418 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
419 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
420 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
421 
422 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
423 	/* Linux shouldn't care about secure memory */
424 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
425 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
426 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
427 	/*
428 	 * Differing PARange is fine as long as all peripherals and memory are mapped
429 	 * within the minimum PARange of all CPUs
430 	 */
431 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
432 	ARM64_FTR_END,
433 };
434 
435 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
436 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
437 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
438 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
439 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
440 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
441 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
442 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
443 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
444 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
445 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
446 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
447 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
448 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
449 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
450 	ARM64_FTR_END,
451 };
452 
453 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
454 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
455 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
456 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
457 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
459 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
460 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
461 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
462 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
463 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
464 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
465 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
466 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
467 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
468 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
469 	ARM64_FTR_END,
470 };
471 
472 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
473 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
474 		       FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
475 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
476 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
477 	ARM64_FTR_END,
478 };
479 
480 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
481 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
482 	ARM64_FTR_END,
483 };
484 
485 static const struct arm64_ftr_bits ftr_ctr[] = {
486 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
487 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
488 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
489 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
490 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
491 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
492 	/*
493 	 * Linux can handle differing I-cache policies. Userspace JITs will
494 	 * make use of *minLine.
495 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
496 	 */
497 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
498 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
499 	ARM64_FTR_END,
500 };
501 
502 static struct arm64_ftr_override __ro_after_init no_override = { };
503 
504 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
505 	.name		= "SYS_CTR_EL0",
506 	.ftr_bits	= ftr_ctr,
507 	.override	= &no_override,
508 };
509 
510 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
511 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
512 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
513 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
514 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
515 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
516 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
517 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
518 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
519 	ARM64_FTR_END,
520 };
521 
522 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
523 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
524 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
525 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
526 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
527 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
528 	/*
529 	 * We can instantiate multiple PMU instances with different levels
530 	 * of support.
531 	 */
532 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
533 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
534 	ARM64_FTR_END,
535 };
536 
537 static const struct arm64_ftr_bits ftr_mvfr0[] = {
538 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
539 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
540 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
541 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
542 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
543 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
544 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
545 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
546 	ARM64_FTR_END,
547 };
548 
549 static const struct arm64_ftr_bits ftr_mvfr1[] = {
550 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
551 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
552 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
553 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
554 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
555 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
556 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
557 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
558 	ARM64_FTR_END,
559 };
560 
561 static const struct arm64_ftr_bits ftr_mvfr2[] = {
562 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
563 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
564 	ARM64_FTR_END,
565 };
566 
567 static const struct arm64_ftr_bits ftr_dczid[] = {
568 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
569 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
570 	ARM64_FTR_END,
571 };
572 
573 static const struct arm64_ftr_bits ftr_gmid[] = {
574 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
575 	ARM64_FTR_END,
576 };
577 
578 static const struct arm64_ftr_bits ftr_id_isar0[] = {
579 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
580 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
581 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
582 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
583 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
584 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
585 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
586 	ARM64_FTR_END,
587 };
588 
589 static const struct arm64_ftr_bits ftr_id_isar5[] = {
590 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
591 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
592 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
593 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
594 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
595 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
596 	ARM64_FTR_END,
597 };
598 
599 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
600 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
601 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
602 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
603 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
604 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
605 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
606 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
607 
608 	/*
609 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
610 	 * external abort on speculative read. It is safe to assume that an
611 	 * SError might be generated than it will not be. Hence it has been
612 	 * classified as FTR_HIGHER_SAFE.
613 	 */
614 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
615 	ARM64_FTR_END,
616 };
617 
618 static const struct arm64_ftr_bits ftr_id_isar4[] = {
619 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
620 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
621 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
622 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
623 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
624 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
625 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
626 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
627 	ARM64_FTR_END,
628 };
629 
630 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
631 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
632 	ARM64_FTR_END,
633 };
634 
635 static const struct arm64_ftr_bits ftr_id_isar6[] = {
636 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
637 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
638 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
639 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
640 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
641 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
642 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
643 	ARM64_FTR_END,
644 };
645 
646 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
647 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
648 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
649 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
650 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
651 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
652 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
653 	ARM64_FTR_END,
654 };
655 
656 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
657 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
658 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
659 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
660 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
661 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
662 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
663 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
664 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
665 	ARM64_FTR_END,
666 };
667 
668 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
669 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
670 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
671 	ARM64_FTR_END,
672 };
673 
674 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
675 	/* [31:28] TraceFilt */
676 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
677 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
678 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
679 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
680 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
681 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
682 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
683 	ARM64_FTR_END,
684 };
685 
686 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
687 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
688 	ARM64_FTR_END,
689 };
690 
691 static const struct arm64_ftr_bits ftr_mpamidr[] = {
692 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
693 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
694 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
695 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
696 	ARM64_FTR_END,
697 };
698 
699 /*
700  * Common ftr bits for a 32bit register with all hidden, strict
701  * attributes, with 4bit feature fields and a default safe value of
702  * 0. Covers the following 32bit registers:
703  * id_isar[1-3], id_mmfr[1-3]
704  */
705 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
706 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
707 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
708 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
709 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
710 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
711 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
712 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
713 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
714 	ARM64_FTR_END,
715 };
716 
717 /* Table for a single 32bit feature value */
718 static const struct arm64_ftr_bits ftr_single32[] = {
719 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
720 	ARM64_FTR_END,
721 };
722 
723 static const struct arm64_ftr_bits ftr_raz[] = {
724 	ARM64_FTR_END,
725 };
726 
727 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
728 		.sys_id = id,					\
729 		.reg = 	&(struct arm64_ftr_reg){		\
730 			.name = id_str,				\
731 			.override = (ovr),			\
732 			.ftr_bits = &((table)[0]),		\
733 	}}
734 
735 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
736 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
737 
738 #define ARM64_FTR_REG(id, table)		\
739 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
740 
741 struct arm64_ftr_override id_aa64mmfr0_override;
742 struct arm64_ftr_override id_aa64mmfr1_override;
743 struct arm64_ftr_override id_aa64mmfr2_override;
744 struct arm64_ftr_override id_aa64pfr0_override;
745 struct arm64_ftr_override id_aa64pfr1_override;
746 struct arm64_ftr_override id_aa64zfr0_override;
747 struct arm64_ftr_override id_aa64smfr0_override;
748 struct arm64_ftr_override id_aa64isar1_override;
749 struct arm64_ftr_override id_aa64isar2_override;
750 
751 struct arm64_ftr_override arm64_sw_feature_override;
752 
753 static const struct __ftr_reg_entry {
754 	u32			sys_id;
755 	struct arm64_ftr_reg 	*reg;
756 } arm64_ftr_regs[] = {
757 
758 	/* Op1 = 0, CRn = 0, CRm = 1 */
759 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
760 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
761 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
762 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
763 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
764 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
765 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
766 
767 	/* Op1 = 0, CRn = 0, CRm = 2 */
768 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
769 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
770 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
771 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
772 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
773 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
774 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
775 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
776 
777 	/* Op1 = 0, CRn = 0, CRm = 3 */
778 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
779 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
780 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
781 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
782 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
783 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
784 
785 	/* Op1 = 0, CRn = 0, CRm = 4 */
786 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
787 			       &id_aa64pfr0_override),
788 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
789 			       &id_aa64pfr1_override),
790 	ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
791 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
792 			       &id_aa64zfr0_override),
793 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
794 			       &id_aa64smfr0_override),
795 	ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
796 
797 	/* Op1 = 0, CRn = 0, CRm = 5 */
798 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
799 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
800 
801 	/* Op1 = 0, CRn = 0, CRm = 6 */
802 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
803 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
804 			       &id_aa64isar1_override),
805 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
806 			       &id_aa64isar2_override),
807 	ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
808 
809 	/* Op1 = 0, CRn = 0, CRm = 7 */
810 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
811 			       &id_aa64mmfr0_override),
812 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
813 			       &id_aa64mmfr1_override),
814 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
815 			       &id_aa64mmfr2_override),
816 	ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
817 	ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
818 
819 	/* Op1 = 0, CRn = 10, CRm = 4 */
820 	ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
821 
822 	/* Op1 = 1, CRn = 0, CRm = 0 */
823 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
824 
825 	/* Op1 = 3, CRn = 0, CRm = 0 */
826 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
827 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
828 
829 	/* Op1 = 3, CRn = 14, CRm = 0 */
830 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
831 };
832 
833 static int search_cmp_ftr_reg(const void *id, const void *regp)
834 {
835 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
836 }
837 
838 /*
839  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
840  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
841  * ascending order of sys_id, we use binary search to find a matching
842  * entry.
843  *
844  * returns - Upon success,  matching ftr_reg entry for id.
845  *         - NULL on failure. It is upto the caller to decide
846  *	     the impact of a failure.
847  */
848 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
849 {
850 	const struct __ftr_reg_entry *ret;
851 
852 	ret = bsearch((const void *)(unsigned long)sys_id,
853 			arm64_ftr_regs,
854 			ARRAY_SIZE(arm64_ftr_regs),
855 			sizeof(arm64_ftr_regs[0]),
856 			search_cmp_ftr_reg);
857 	if (ret)
858 		return ret->reg;
859 	return NULL;
860 }
861 
862 /*
863  * get_arm64_ftr_reg - Looks up a feature register entry using
864  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
865  *
866  * returns - Upon success,  matching ftr_reg entry for id.
867  *         - NULL on failure but with an WARN_ON().
868  */
869 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
870 {
871 	struct arm64_ftr_reg *reg;
872 
873 	reg = get_arm64_ftr_reg_nowarn(sys_id);
874 
875 	/*
876 	 * Requesting a non-existent register search is an error. Warn
877 	 * and let the caller handle it.
878 	 */
879 	WARN_ON(!reg);
880 	return reg;
881 }
882 
883 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
884 			       s64 ftr_val)
885 {
886 	u64 mask = arm64_ftr_mask(ftrp);
887 
888 	reg &= ~mask;
889 	reg |= (ftr_val << ftrp->shift) & mask;
890 	return reg;
891 }
892 
893 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
894 				s64 cur)
895 {
896 	s64 ret = 0;
897 
898 	switch (ftrp->type) {
899 	case FTR_EXACT:
900 		ret = ftrp->safe_val;
901 		break;
902 	case FTR_LOWER_SAFE:
903 		ret = min(new, cur);
904 		break;
905 	case FTR_HIGHER_OR_ZERO_SAFE:
906 		if (!cur || !new)
907 			break;
908 		fallthrough;
909 	case FTR_HIGHER_SAFE:
910 		ret = max(new, cur);
911 		break;
912 	default:
913 		BUG();
914 	}
915 
916 	return ret;
917 }
918 
919 static void __init sort_ftr_regs(void)
920 {
921 	unsigned int i;
922 
923 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
924 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
925 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
926 		unsigned int j = 0;
927 
928 		/*
929 		 * Features here must be sorted in descending order with respect
930 		 * to their shift values and should not overlap with each other.
931 		 */
932 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
933 			unsigned int width = ftr_reg->ftr_bits[j].width;
934 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
935 			unsigned int prev_shift;
936 
937 			WARN((shift  + width) > 64,
938 				"%s has invalid feature at shift %d\n",
939 				ftr_reg->name, shift);
940 
941 			/*
942 			 * Skip the first feature. There is nothing to
943 			 * compare against for now.
944 			 */
945 			if (j == 0)
946 				continue;
947 
948 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
949 			WARN((shift + width) > prev_shift,
950 				"%s has feature overlap at shift %d\n",
951 				ftr_reg->name, shift);
952 		}
953 
954 		/*
955 		 * Skip the first register. There is nothing to
956 		 * compare against for now.
957 		 */
958 		if (i == 0)
959 			continue;
960 		/*
961 		 * Registers here must be sorted in ascending order with respect
962 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
963 		 * to work correctly.
964 		 */
965 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
966 	}
967 }
968 
969 /*
970  * Initialise the CPU feature register from Boot CPU values.
971  * Also initiliases the strict_mask for the register.
972  * Any bits that are not covered by an arm64_ftr_bits entry are considered
973  * RES0 for the system-wide value, and must strictly match.
974  */
975 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
976 {
977 	u64 val = 0;
978 	u64 strict_mask = ~0x0ULL;
979 	u64 user_mask = 0;
980 	u64 valid_mask = 0;
981 
982 	const struct arm64_ftr_bits *ftrp;
983 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
984 
985 	if (!reg)
986 		return;
987 
988 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
989 		u64 ftr_mask = arm64_ftr_mask(ftrp);
990 		s64 ftr_new = arm64_ftr_value(ftrp, new);
991 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
992 
993 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
994 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
995 			char *str = NULL;
996 
997 			if (ftr_ovr != tmp) {
998 				/* Unsafe, remove the override */
999 				reg->override->mask &= ~ftr_mask;
1000 				reg->override->val &= ~ftr_mask;
1001 				tmp = ftr_ovr;
1002 				str = "ignoring override";
1003 			} else if (ftr_new != tmp) {
1004 				/* Override was valid */
1005 				ftr_new = tmp;
1006 				str = "forced";
1007 			} else {
1008 				/* Override was the safe value */
1009 				str = "already set";
1010 			}
1011 
1012 			pr_warn("%s[%d:%d]: %s to %llx\n",
1013 				reg->name,
1014 				ftrp->shift + ftrp->width - 1,
1015 				ftrp->shift, str,
1016 				tmp & (BIT(ftrp->width) - 1));
1017 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1018 			reg->override->val &= ~ftr_mask;
1019 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
1020 				reg->name,
1021 				ftrp->shift + ftrp->width - 1,
1022 				ftrp->shift);
1023 		}
1024 
1025 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
1026 
1027 		valid_mask |= ftr_mask;
1028 		if (!ftrp->strict)
1029 			strict_mask &= ~ftr_mask;
1030 		if (ftrp->visible)
1031 			user_mask |= ftr_mask;
1032 		else
1033 			reg->user_val = arm64_ftr_set_value(ftrp,
1034 							    reg->user_val,
1035 							    ftrp->safe_val);
1036 	}
1037 
1038 	val &= valid_mask;
1039 
1040 	reg->sys_val = val;
1041 	reg->strict_mask = strict_mask;
1042 	reg->user_mask = user_mask;
1043 }
1044 
1045 extern const struct arm64_cpu_capabilities arm64_errata[];
1046 static const struct arm64_cpu_capabilities arm64_features[];
1047 
1048 static void __init
1049 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1050 {
1051 	for (; caps->matches; caps++) {
1052 		if (WARN(caps->capability >= ARM64_NCAPS,
1053 			"Invalid capability %d\n", caps->capability))
1054 			continue;
1055 		if (WARN(cpucap_ptrs[caps->capability],
1056 			"Duplicate entry for capability %d\n",
1057 			caps->capability))
1058 			continue;
1059 		cpucap_ptrs[caps->capability] = caps;
1060 	}
1061 }
1062 
1063 static void __init init_cpucap_indirect_list(void)
1064 {
1065 	init_cpucap_indirect_list_from_array(arm64_features);
1066 	init_cpucap_indirect_list_from_array(arm64_errata);
1067 }
1068 
1069 static void __init setup_boot_cpu_capabilities(void);
1070 
1071 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1072 {
1073 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1074 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1075 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1076 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1077 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1078 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1079 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1080 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1081 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1082 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1083 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1084 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1085 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1086 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1087 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1088 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1089 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1090 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1091 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1092 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1093 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1094 }
1095 
1096 #ifdef CONFIG_ARM64_PSEUDO_NMI
1097 static bool enable_pseudo_nmi;
1098 
1099 static int __init early_enable_pseudo_nmi(char *p)
1100 {
1101 	return kstrtobool(p, &enable_pseudo_nmi);
1102 }
1103 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1104 
1105 static __init void detect_system_supports_pseudo_nmi(void)
1106 {
1107 	struct device_node *np;
1108 
1109 	if (!enable_pseudo_nmi)
1110 		return;
1111 
1112 	/*
1113 	 * Detect broken MediaTek firmware that doesn't properly save and
1114 	 * restore GIC priorities.
1115 	 */
1116 	np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1117 	if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1118 		pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1119 		enable_pseudo_nmi = false;
1120 	}
1121 	of_node_put(np);
1122 }
1123 #else /* CONFIG_ARM64_PSEUDO_NMI */
1124 static inline void detect_system_supports_pseudo_nmi(void) { }
1125 #endif
1126 
1127 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1128 {
1129 	/* Before we start using the tables, make sure it is sorted */
1130 	sort_ftr_regs();
1131 
1132 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1133 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1134 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1135 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1136 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1137 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1138 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1139 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1140 	init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1141 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1142 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1143 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1144 	init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1145 	init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1146 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1147 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1148 	init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1149 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1150 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1151 	init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1152 
1153 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1154 		init_32bit_cpu_features(&info->aarch32);
1155 
1156 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1157 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1158 		unsigned long cpacr = cpacr_save_enable_kernel_sve();
1159 
1160 		vec_init_vq_map(ARM64_VEC_SVE);
1161 
1162 		cpacr_restore(cpacr);
1163 	}
1164 
1165 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1166 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1167 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1168 
1169 		/*
1170 		 * We mask out SMPS since even if the hardware
1171 		 * supports priorities the kernel does not at present
1172 		 * and we block access to them.
1173 		 */
1174 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1175 		vec_init_vq_map(ARM64_VEC_SME);
1176 
1177 		cpacr_restore(cpacr);
1178 	}
1179 
1180 	if (id_aa64pfr0_mpam(info->reg_id_aa64pfr0))
1181 		init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1182 
1183 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1184 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1185 }
1186 
1187 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1188 {
1189 	const struct arm64_ftr_bits *ftrp;
1190 
1191 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1192 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1193 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1194 
1195 		if (ftr_cur == ftr_new)
1196 			continue;
1197 		/* Find a safe value */
1198 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1199 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1200 	}
1201 
1202 }
1203 
1204 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1205 {
1206 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1207 
1208 	if (!regp)
1209 		return 0;
1210 
1211 	update_cpu_ftr_reg(regp, val);
1212 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1213 		return 0;
1214 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1215 			regp->name, boot, cpu, val);
1216 	return 1;
1217 }
1218 
1219 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1220 {
1221 	const struct arm64_ftr_bits *ftrp;
1222 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1223 
1224 	if (!regp)
1225 		return;
1226 
1227 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1228 		if (ftrp->shift == field) {
1229 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1230 			break;
1231 		}
1232 	}
1233 
1234 	/* Bogus field? */
1235 	WARN_ON(!ftrp->width);
1236 }
1237 
1238 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1239 					 struct cpuinfo_arm64 *boot)
1240 {
1241 	static bool boot_cpu_32bit_regs_overridden = false;
1242 
1243 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1244 		return;
1245 
1246 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1247 		return;
1248 
1249 	boot->aarch32 = info->aarch32;
1250 	init_32bit_cpu_features(&boot->aarch32);
1251 	boot_cpu_32bit_regs_overridden = true;
1252 }
1253 
1254 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1255 				     struct cpuinfo_32bit *boot)
1256 {
1257 	int taint = 0;
1258 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1259 
1260 	/*
1261 	 * If we don't have AArch32 at EL1, then relax the strictness of
1262 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1263 	 */
1264 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1265 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1266 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1267 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1268 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1269 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1270 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1271 	}
1272 
1273 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1274 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1275 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1276 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1277 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1278 				      info->reg_id_isar0, boot->reg_id_isar0);
1279 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1280 				      info->reg_id_isar1, boot->reg_id_isar1);
1281 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1282 				      info->reg_id_isar2, boot->reg_id_isar2);
1283 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1284 				      info->reg_id_isar3, boot->reg_id_isar3);
1285 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1286 				      info->reg_id_isar4, boot->reg_id_isar4);
1287 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1288 				      info->reg_id_isar5, boot->reg_id_isar5);
1289 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1290 				      info->reg_id_isar6, boot->reg_id_isar6);
1291 
1292 	/*
1293 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1294 	 * ACTLR formats could differ across CPUs and therefore would have to
1295 	 * be trapped for virtualization anyway.
1296 	 */
1297 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1298 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1299 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1300 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1301 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1302 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1303 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1304 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1305 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1306 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1307 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1308 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1309 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1310 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1311 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1312 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1313 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1314 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1315 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1316 				      info->reg_mvfr0, boot->reg_mvfr0);
1317 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1318 				      info->reg_mvfr1, boot->reg_mvfr1);
1319 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1320 				      info->reg_mvfr2, boot->reg_mvfr2);
1321 
1322 	return taint;
1323 }
1324 
1325 /*
1326  * Update system wide CPU feature registers with the values from a
1327  * non-boot CPU. Also performs SANITY checks to make sure that there
1328  * aren't any insane variations from that of the boot CPU.
1329  */
1330 void update_cpu_features(int cpu,
1331 			 struct cpuinfo_arm64 *info,
1332 			 struct cpuinfo_arm64 *boot)
1333 {
1334 	int taint = 0;
1335 
1336 	/*
1337 	 * The kernel can handle differing I-cache policies, but otherwise
1338 	 * caches should look identical. Userspace JITs will make use of
1339 	 * *minLine.
1340 	 */
1341 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1342 				      info->reg_ctr, boot->reg_ctr);
1343 
1344 	/*
1345 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1346 	 * could result in too much or too little memory being zeroed if a
1347 	 * process is preempted and migrated between CPUs.
1348 	 */
1349 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1350 				      info->reg_dczid, boot->reg_dczid);
1351 
1352 	/* If different, timekeeping will be broken (especially with KVM) */
1353 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1354 				      info->reg_cntfrq, boot->reg_cntfrq);
1355 
1356 	/*
1357 	 * The kernel uses self-hosted debug features and expects CPUs to
1358 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1359 	 * and BRPs to be identical.
1360 	 * ID_AA64DFR1 is currently RES0.
1361 	 */
1362 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1363 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1364 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1365 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1366 	/*
1367 	 * Even in big.LITTLE, processors should be identical instruction-set
1368 	 * wise.
1369 	 */
1370 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1371 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1372 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1373 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1374 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1375 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1376 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1377 				      info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1378 
1379 	/*
1380 	 * Differing PARange support is fine as long as all peripherals and
1381 	 * memory are mapped within the minimum PARange of all CPUs.
1382 	 * Linux should not care about secure memory.
1383 	 */
1384 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1385 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1386 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1387 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1388 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1389 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1390 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1391 				      info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1392 
1393 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1394 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1395 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1396 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1397 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1398 				      info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1399 
1400 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1401 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1402 
1403 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1404 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1405 
1406 	taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1407 				      info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1408 
1409 	/* Probe vector lengths */
1410 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1411 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1412 		if (!system_capabilities_finalized()) {
1413 			unsigned long cpacr = cpacr_save_enable_kernel_sve();
1414 
1415 			vec_update_vq_map(ARM64_VEC_SVE);
1416 
1417 			cpacr_restore(cpacr);
1418 		}
1419 	}
1420 
1421 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1422 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1423 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1424 
1425 		/*
1426 		 * We mask out SMPS since even if the hardware
1427 		 * supports priorities the kernel does not at present
1428 		 * and we block access to them.
1429 		 */
1430 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1431 
1432 		/* Probe vector lengths */
1433 		if (!system_capabilities_finalized())
1434 			vec_update_vq_map(ARM64_VEC_SME);
1435 
1436 		cpacr_restore(cpacr);
1437 	}
1438 
1439 	if (id_aa64pfr0_mpam(info->reg_id_aa64pfr0)) {
1440 		taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1441 					info->reg_mpamidr, boot->reg_mpamidr);
1442 	}
1443 
1444 	/*
1445 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1446 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1447 	 * value is the same on all CPUs.
1448 	 */
1449 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1450 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1451 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1452 					      info->reg_gmid, boot->reg_gmid);
1453 	}
1454 
1455 	/*
1456 	 * If we don't have AArch32 at all then skip the checks entirely
1457 	 * as the register values may be UNKNOWN and we're not going to be
1458 	 * using them for anything.
1459 	 *
1460 	 * This relies on a sanitised view of the AArch64 ID registers
1461 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1462 	 */
1463 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1464 		lazy_init_32bit_cpu_features(info, boot);
1465 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1466 						   &boot->aarch32);
1467 	}
1468 
1469 	/*
1470 	 * Mismatched CPU features are a recipe for disaster. Don't even
1471 	 * pretend to support them.
1472 	 */
1473 	if (taint) {
1474 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1475 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1476 	}
1477 }
1478 
1479 u64 read_sanitised_ftr_reg(u32 id)
1480 {
1481 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1482 
1483 	if (!regp)
1484 		return 0;
1485 	return regp->sys_val;
1486 }
1487 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1488 
1489 #define read_sysreg_case(r)	\
1490 	case r:		val = read_sysreg_s(r); break;
1491 
1492 /*
1493  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1494  * Read the system register on the current CPU
1495  */
1496 u64 __read_sysreg_by_encoding(u32 sys_id)
1497 {
1498 	struct arm64_ftr_reg *regp;
1499 	u64 val;
1500 
1501 	switch (sys_id) {
1502 	read_sysreg_case(SYS_ID_PFR0_EL1);
1503 	read_sysreg_case(SYS_ID_PFR1_EL1);
1504 	read_sysreg_case(SYS_ID_PFR2_EL1);
1505 	read_sysreg_case(SYS_ID_DFR0_EL1);
1506 	read_sysreg_case(SYS_ID_DFR1_EL1);
1507 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1508 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1509 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1510 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1511 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1512 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1513 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1514 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1515 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1516 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1517 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1518 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1519 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1520 	read_sysreg_case(SYS_MVFR0_EL1);
1521 	read_sysreg_case(SYS_MVFR1_EL1);
1522 	read_sysreg_case(SYS_MVFR2_EL1);
1523 
1524 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1525 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1526 	read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1527 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1528 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1529 	read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1530 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1531 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1532 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1533 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1534 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1535 	read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1536 	read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1537 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1538 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1539 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1540 	read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1541 
1542 	read_sysreg_case(SYS_CNTFRQ_EL0);
1543 	read_sysreg_case(SYS_CTR_EL0);
1544 	read_sysreg_case(SYS_DCZID_EL0);
1545 
1546 	default:
1547 		BUG();
1548 		return 0;
1549 	}
1550 
1551 	regp  = get_arm64_ftr_reg(sys_id);
1552 	if (regp) {
1553 		val &= ~regp->override->mask;
1554 		val |= (regp->override->val & regp->override->mask);
1555 	}
1556 
1557 	return val;
1558 }
1559 
1560 #include <linux/irqchip/arm-gic-v3.h>
1561 
1562 static bool
1563 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1564 {
1565 	return true;
1566 }
1567 
1568 static bool
1569 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1570 {
1571 	int val, min, max;
1572 	u64 tmp;
1573 
1574 	val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1575 						entry->field_width,
1576 						entry->sign);
1577 
1578 	tmp = entry->min_field_value;
1579 	tmp <<= entry->field_pos;
1580 
1581 	min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1582 						entry->field_width,
1583 						entry->sign);
1584 
1585 	tmp = entry->max_field_value;
1586 	tmp <<= entry->field_pos;
1587 
1588 	max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1589 						entry->field_width,
1590 						entry->sign);
1591 
1592 	return val >= min && val <= max;
1593 }
1594 
1595 static u64
1596 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1597 {
1598 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1599 	if (scope == SCOPE_SYSTEM)
1600 		return read_sanitised_ftr_reg(entry->sys_reg);
1601 	else
1602 		return __read_sysreg_by_encoding(entry->sys_reg);
1603 }
1604 
1605 static bool
1606 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1607 {
1608 	int mask;
1609 	struct arm64_ftr_reg *regp;
1610 	u64 val = read_scoped_sysreg(entry, scope);
1611 
1612 	regp = get_arm64_ftr_reg(entry->sys_reg);
1613 	if (!regp)
1614 		return false;
1615 
1616 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1617 							  entry->field_pos,
1618 							  entry->field_width);
1619 	if (!mask)
1620 		return false;
1621 
1622 	return feature_matches(val, entry);
1623 }
1624 
1625 static bool
1626 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1627 {
1628 	u64 val = read_scoped_sysreg(entry, scope);
1629 	return feature_matches(val, entry);
1630 }
1631 
1632 const struct cpumask *system_32bit_el0_cpumask(void)
1633 {
1634 	if (!system_supports_32bit_el0())
1635 		return cpu_none_mask;
1636 
1637 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1638 		return cpu_32bit_el0_mask;
1639 
1640 	return cpu_possible_mask;
1641 }
1642 
1643 static int __init parse_32bit_el0_param(char *str)
1644 {
1645 	allow_mismatched_32bit_el0 = true;
1646 	return 0;
1647 }
1648 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1649 
1650 static ssize_t aarch32_el0_show(struct device *dev,
1651 				struct device_attribute *attr, char *buf)
1652 {
1653 	const struct cpumask *mask = system_32bit_el0_cpumask();
1654 
1655 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1656 }
1657 static const DEVICE_ATTR_RO(aarch32_el0);
1658 
1659 static int __init aarch32_el0_sysfs_init(void)
1660 {
1661 	struct device *dev_root;
1662 	int ret = 0;
1663 
1664 	if (!allow_mismatched_32bit_el0)
1665 		return 0;
1666 
1667 	dev_root = bus_get_dev_root(&cpu_subsys);
1668 	if (dev_root) {
1669 		ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1670 		put_device(dev_root);
1671 	}
1672 	return ret;
1673 }
1674 device_initcall(aarch32_el0_sysfs_init);
1675 
1676 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1677 {
1678 	if (!has_cpuid_feature(entry, scope))
1679 		return allow_mismatched_32bit_el0;
1680 
1681 	if (scope == SCOPE_SYSTEM)
1682 		pr_info("detected: 32-bit EL0 Support\n");
1683 
1684 	return true;
1685 }
1686 
1687 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1688 {
1689 	bool has_sre;
1690 
1691 	if (!has_cpuid_feature(entry, scope))
1692 		return false;
1693 
1694 	has_sre = gic_enable_sre();
1695 	if (!has_sre)
1696 		pr_warn_once("%s present but disabled by higher exception level\n",
1697 			     entry->desc);
1698 
1699 	return has_sre;
1700 }
1701 
1702 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1703 			  int scope)
1704 {
1705 	u64 ctr;
1706 
1707 	if (scope == SCOPE_SYSTEM)
1708 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1709 	else
1710 		ctr = read_cpuid_effective_cachetype();
1711 
1712 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1713 }
1714 
1715 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1716 {
1717 	/*
1718 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1719 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1720 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1721 	 * value.
1722 	 */
1723 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1724 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1725 }
1726 
1727 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1728 			  int scope)
1729 {
1730 	u64 ctr;
1731 
1732 	if (scope == SCOPE_SYSTEM)
1733 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1734 	else
1735 		ctr = read_cpuid_cachetype();
1736 
1737 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1738 }
1739 
1740 static bool __maybe_unused
1741 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1742 {
1743 	/*
1744 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1745 	 * may share TLB entries with a CPU stuck in the crashed
1746 	 * kernel.
1747 	 */
1748 	if (is_kdump_kernel())
1749 		return false;
1750 
1751 	if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1752 		return false;
1753 
1754 	return has_cpuid_feature(entry, scope);
1755 }
1756 
1757 static bool __meltdown_safe = true;
1758 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1759 
1760 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1761 				int scope)
1762 {
1763 	/* List of CPUs that are not vulnerable and don't need KPTI */
1764 	static const struct midr_range kpti_safe_list[] = {
1765 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1766 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1767 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1768 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1769 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1770 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1771 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1772 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1773 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1774 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1775 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1776 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1777 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1778 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1779 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1780 		{ /* sentinel */ }
1781 	};
1782 	char const *str = "kpti command line option";
1783 	bool meltdown_safe;
1784 
1785 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1786 
1787 	/* Defer to CPU feature registers */
1788 	if (has_cpuid_feature(entry, scope))
1789 		meltdown_safe = true;
1790 
1791 	if (!meltdown_safe)
1792 		__meltdown_safe = false;
1793 
1794 	/*
1795 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1796 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1797 	 * ends as well as you might imagine. Don't even try. We cannot rely
1798 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1799 	 * because cpucap detection order may change. However, since we know
1800 	 * affected CPUs are always in a homogeneous configuration, it is
1801 	 * safe to rely on this_cpu_has_cap() here.
1802 	 */
1803 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1804 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1805 		__kpti_forced = -1;
1806 	}
1807 
1808 	/* Useful for KASLR robustness */
1809 	if (kaslr_enabled() && kaslr_requires_kpti()) {
1810 		if (!__kpti_forced) {
1811 			str = "KASLR";
1812 			__kpti_forced = 1;
1813 		}
1814 	}
1815 
1816 	if (cpu_mitigations_off() && !__kpti_forced) {
1817 		str = "mitigations=off";
1818 		__kpti_forced = -1;
1819 	}
1820 
1821 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1822 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1823 		return false;
1824 	}
1825 
1826 	/* Forced? */
1827 	if (__kpti_forced) {
1828 		pr_info_once("kernel page table isolation forced %s by %s\n",
1829 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1830 		return __kpti_forced > 0;
1831 	}
1832 
1833 	return !meltdown_safe;
1834 }
1835 
1836 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1837 {
1838 	/*
1839 	 * Although the Apple M2 family appears to support NV1, the
1840 	 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1841 	 * that it doesn't support NV1 at all.
1842 	 */
1843 	static const struct midr_range nv1_ni_list[] = {
1844 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1845 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1846 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1847 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1848 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1849 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1850 		{}
1851 	};
1852 
1853 	return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1854 		!(has_cpuid_feature(entry, scope) ||
1855 		  is_midr_in_range_list(read_cpuid_id(), nv1_ni_list)));
1856 }
1857 
1858 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1859 static bool has_lpa2_at_stage1(u64 mmfr0)
1860 {
1861 	unsigned int tgran;
1862 
1863 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1864 					ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1865 	return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1866 }
1867 
1868 static bool has_lpa2_at_stage2(u64 mmfr0)
1869 {
1870 	unsigned int tgran;
1871 
1872 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1873 					ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1874 	return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1875 }
1876 
1877 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1878 {
1879 	u64 mmfr0;
1880 
1881 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1882 	return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1883 }
1884 #else
1885 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1886 {
1887 	return false;
1888 }
1889 #endif
1890 
1891 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1892 #define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1893 
1894 extern
1895 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1896 			     phys_addr_t size, pgprot_t prot,
1897 			     phys_addr_t (*pgtable_alloc)(int), int flags);
1898 
1899 static phys_addr_t __initdata kpti_ng_temp_alloc;
1900 
1901 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1902 {
1903 	kpti_ng_temp_alloc -= PAGE_SIZE;
1904 	return kpti_ng_temp_alloc;
1905 }
1906 
1907 static int __init __kpti_install_ng_mappings(void *__unused)
1908 {
1909 	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1910 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1911 	kpti_remap_fn *remap_fn;
1912 
1913 	int cpu = smp_processor_id();
1914 	int levels = CONFIG_PGTABLE_LEVELS;
1915 	int order = order_base_2(levels);
1916 	u64 kpti_ng_temp_pgd_pa = 0;
1917 	pgd_t *kpti_ng_temp_pgd;
1918 	u64 alloc = 0;
1919 
1920 	if (levels == 5 && !pgtable_l5_enabled())
1921 		levels = 4;
1922 	else if (levels == 4 && !pgtable_l4_enabled())
1923 		levels = 3;
1924 
1925 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1926 
1927 	if (!cpu) {
1928 		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1929 		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1930 		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1931 
1932 		//
1933 		// Create a minimal page table hierarchy that permits us to map
1934 		// the swapper page tables temporarily as we traverse them.
1935 		//
1936 		// The physical pages are laid out as follows:
1937 		//
1938 		// +--------+-/-------+-/------ +-/------ +-\\\--------+
1939 		// :  PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[]  :
1940 		// +--------+-\-------+-\------ +-\------ +-///--------+
1941 		//      ^
1942 		// The first page is mapped into this hierarchy at a PMD_SHIFT
1943 		// aligned virtual address, so that we can manipulate the PTE
1944 		// level entries while the mapping is active. The first entry
1945 		// covers the PTE[] page itself, the remaining entries are free
1946 		// to be used as a ad-hoc fixmap.
1947 		//
1948 		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1949 					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1950 					kpti_ng_pgd_alloc, 0);
1951 	}
1952 
1953 	cpu_install_idmap();
1954 	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1955 	cpu_uninstall_idmap();
1956 
1957 	if (!cpu) {
1958 		free_pages(alloc, order);
1959 		arm64_use_ng_mappings = true;
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 static void __init kpti_install_ng_mappings(void)
1966 {
1967 	/* Check whether KPTI is going to be used */
1968 	if (!arm64_kernel_unmapped_at_el0())
1969 		return;
1970 
1971 	/*
1972 	 * We don't need to rewrite the page-tables if either we've done
1973 	 * it already or we have KASLR enabled and therefore have not
1974 	 * created any global mappings at all.
1975 	 */
1976 	if (arm64_use_ng_mappings)
1977 		return;
1978 
1979 	stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1980 }
1981 
1982 #else
1983 static inline void kpti_install_ng_mappings(void)
1984 {
1985 }
1986 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1987 
1988 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1989 {
1990 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1991 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1992 
1993 		__this_cpu_write(this_cpu_vector, v);
1994 	}
1995 
1996 }
1997 
1998 static int __init parse_kpti(char *str)
1999 {
2000 	bool enabled;
2001 	int ret = kstrtobool(str, &enabled);
2002 
2003 	if (ret)
2004 		return ret;
2005 
2006 	__kpti_forced = enabled ? 1 : -1;
2007 	return 0;
2008 }
2009 early_param("kpti", parse_kpti);
2010 
2011 #ifdef CONFIG_ARM64_HW_AFDBM
2012 static struct cpumask dbm_cpus __read_mostly;
2013 
2014 static inline void __cpu_enable_hw_dbm(void)
2015 {
2016 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
2017 
2018 	write_sysreg(tcr, tcr_el1);
2019 	isb();
2020 	local_flush_tlb_all();
2021 }
2022 
2023 static bool cpu_has_broken_dbm(void)
2024 {
2025 	/* List of CPUs which have broken DBM support. */
2026 	static const struct midr_range cpus[] = {
2027 #ifdef CONFIG_ARM64_ERRATUM_1024718
2028 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2029 		/* Kryo4xx Silver (rdpe => r1p0) */
2030 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2031 #endif
2032 #ifdef CONFIG_ARM64_ERRATUM_2051678
2033 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2034 #endif
2035 		{},
2036 	};
2037 
2038 	return is_midr_in_range_list(read_cpuid_id(), cpus);
2039 }
2040 
2041 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2042 {
2043 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2044 	       !cpu_has_broken_dbm();
2045 }
2046 
2047 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2048 {
2049 	if (cpu_can_use_dbm(cap)) {
2050 		__cpu_enable_hw_dbm();
2051 		cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2052 	}
2053 }
2054 
2055 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2056 		       int __unused)
2057 {
2058 	/*
2059 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
2060 	 * run a mix of CPUs with and without the feature. So, we
2061 	 * unconditionally enable the capability to allow any late CPU
2062 	 * to use the feature. We only enable the control bits on the
2063 	 * CPU, if it is supported.
2064 	 */
2065 
2066 	return true;
2067 }
2068 
2069 #endif
2070 
2071 #ifdef CONFIG_ARM64_AMU_EXTN
2072 
2073 /*
2074  * The "amu_cpus" cpumask only signals that the CPU implementation for the
2075  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2076  * information regarding all the events that it supports. When a CPU bit is
2077  * set in the cpumask, the user of this feature can only rely on the presence
2078  * of the 4 fixed counters for that CPU. But this does not guarantee that the
2079  * counters are enabled or access to these counters is enabled by code
2080  * executed at higher exception levels (firmware).
2081  */
2082 static struct cpumask amu_cpus __read_mostly;
2083 
2084 bool cpu_has_amu_feat(int cpu)
2085 {
2086 	return cpumask_test_cpu(cpu, &amu_cpus);
2087 }
2088 
2089 int get_cpu_with_amu_feat(void)
2090 {
2091 	return cpumask_any(&amu_cpus);
2092 }
2093 
2094 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2095 {
2096 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2097 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2098 
2099 		/* 0 reference values signal broken/disabled counters */
2100 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2101 			update_freq_counters_refs();
2102 	}
2103 }
2104 
2105 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2106 		    int __unused)
2107 {
2108 	/*
2109 	 * The AMU extension is a non-conflicting feature: the kernel can
2110 	 * safely run a mix of CPUs with and without support for the
2111 	 * activity monitors extension. Therefore, unconditionally enable
2112 	 * the capability to allow any late CPU to use the feature.
2113 	 *
2114 	 * With this feature unconditionally enabled, the cpu_enable
2115 	 * function will be called for all CPUs that match the criteria,
2116 	 * including secondary and hotplugged, marking this feature as
2117 	 * present on that respective CPU. The enable function will also
2118 	 * print a detection message.
2119 	 */
2120 
2121 	return true;
2122 }
2123 #else
2124 int get_cpu_with_amu_feat(void)
2125 {
2126 	return nr_cpu_ids;
2127 }
2128 #endif
2129 
2130 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2131 {
2132 	return is_kernel_in_hyp_mode();
2133 }
2134 
2135 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2136 {
2137 	/*
2138 	 * Copy register values that aren't redirected by hardware.
2139 	 *
2140 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2141 	 * this value to tpidr_el2 before we patch the code. Once we've done
2142 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2143 	 * do anything here.
2144 	 */
2145 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2146 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2147 }
2148 
2149 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2150 				    int scope)
2151 {
2152 	if (kvm_get_mode() != KVM_MODE_NV)
2153 		return false;
2154 
2155 	if (!has_cpuid_feature(cap, scope)) {
2156 		pr_warn("unavailable: %s\n", cap->desc);
2157 		return false;
2158 	}
2159 
2160 	return true;
2161 }
2162 
2163 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2164 			  int __unused)
2165 {
2166 	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2167 }
2168 
2169 #ifdef CONFIG_ARM64_PAN
2170 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2171 {
2172 	/*
2173 	 * We modify PSTATE. This won't work from irq context as the PSTATE
2174 	 * is discarded once we return from the exception.
2175 	 */
2176 	WARN_ON_ONCE(in_interrupt());
2177 
2178 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2179 	set_pstate_pan(1);
2180 }
2181 #endif /* CONFIG_ARM64_PAN */
2182 
2183 #ifdef CONFIG_ARM64_RAS_EXTN
2184 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2185 {
2186 	/* Firmware may have left a deferred SError in this register. */
2187 	write_sysreg_s(0, SYS_DISR_EL1);
2188 }
2189 #endif /* CONFIG_ARM64_RAS_EXTN */
2190 
2191 #ifdef CONFIG_ARM64_PTR_AUTH
2192 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2193 {
2194 	int boot_val, sec_val;
2195 
2196 	/* We don't expect to be called with SCOPE_SYSTEM */
2197 	WARN_ON(scope == SCOPE_SYSTEM);
2198 	/*
2199 	 * The ptr-auth feature levels are not intercompatible with lower
2200 	 * levels. Hence we must match ptr-auth feature level of the secondary
2201 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2202 	 * from the sanitised register whereas direct register read is done for
2203 	 * the secondary CPUs.
2204 	 * The sanitised feature state is guaranteed to match that of the
2205 	 * boot CPU as a mismatched secondary CPU is parked before it gets
2206 	 * a chance to update the state, with the capability.
2207 	 */
2208 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2209 					       entry->field_pos, entry->sign);
2210 	if (scope & SCOPE_BOOT_CPU)
2211 		return boot_val >= entry->min_field_value;
2212 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2213 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2214 					      entry->field_pos, entry->sign);
2215 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2216 }
2217 
2218 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2219 				     int scope)
2220 {
2221 	bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2222 	bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2223 	bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2224 
2225 	return apa || apa3 || api;
2226 }
2227 
2228 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2229 			     int __unused)
2230 {
2231 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2232 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2233 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2234 
2235 	return gpa || gpa3 || gpi;
2236 }
2237 #endif /* CONFIG_ARM64_PTR_AUTH */
2238 
2239 #ifdef CONFIG_ARM64_E0PD
2240 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2241 {
2242 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2243 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2244 }
2245 #endif /* CONFIG_ARM64_E0PD */
2246 
2247 #ifdef CONFIG_ARM64_PSEUDO_NMI
2248 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2249 				   int scope)
2250 {
2251 	/*
2252 	 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2253 	 * feature, so will be detected earlier.
2254 	 */
2255 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2256 	if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2257 		return false;
2258 
2259 	return enable_pseudo_nmi;
2260 }
2261 
2262 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2263 				      int scope)
2264 {
2265 	/*
2266 	 * If we're not using priority masking then we won't be poking PMR_EL1,
2267 	 * and there's no need to relax synchronization of writes to it, and
2268 	 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2269 	 * that.
2270 	 *
2271 	 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2272 	 * feature, so will be detected earlier.
2273 	 */
2274 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2275 	if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2276 		return false;
2277 
2278 	/*
2279 	 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2280 	 * hint for interrupt distribution, a DSB is not necessary when
2281 	 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2282 	 *
2283 	 * Linux itself doesn't use 1:N distribution, so has no need to
2284 	 * set PMHE. The only reason to have it set is if EL3 requires it
2285 	 * (and we can't change it).
2286 	 */
2287 	return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2288 }
2289 #endif
2290 
2291 #ifdef CONFIG_ARM64_BTI
2292 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2293 {
2294 	/*
2295 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2296 	 * function entry points using BR is a requirement for
2297 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2298 	 * So, be strict and forbid other BRs using other registers to
2299 	 * jump onto a PACIxSP instruction:
2300 	 */
2301 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2302 	isb();
2303 }
2304 #endif /* CONFIG_ARM64_BTI */
2305 
2306 #ifdef CONFIG_ARM64_MTE
2307 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2308 {
2309 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2310 
2311 	mte_cpu_setup();
2312 
2313 	/*
2314 	 * Clear the tags in the zero page. This needs to be done via the
2315 	 * linear map which has the Tagged attribute.
2316 	 */
2317 	if (try_page_mte_tagging(ZERO_PAGE(0))) {
2318 		mte_clear_page_tags(lm_alias(empty_zero_page));
2319 		set_page_mte_tagged(ZERO_PAGE(0));
2320 	}
2321 
2322 	kasan_init_hw_tags_cpu();
2323 }
2324 #endif /* CONFIG_ARM64_MTE */
2325 
2326 static void user_feature_fixup(void)
2327 {
2328 	if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2329 		struct arm64_ftr_reg *regp;
2330 
2331 		regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2332 		if (regp)
2333 			regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2334 	}
2335 
2336 	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2337 		struct arm64_ftr_reg *regp;
2338 
2339 		regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2340 		if (regp)
2341 			regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2342 	}
2343 }
2344 
2345 static void elf_hwcap_fixup(void)
2346 {
2347 #ifdef CONFIG_COMPAT
2348 	if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2349 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2350 #endif /* CONFIG_COMPAT */
2351 }
2352 
2353 #ifdef CONFIG_KVM
2354 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2355 {
2356 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2357 }
2358 #endif /* CONFIG_KVM */
2359 
2360 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2361 {
2362 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2363 }
2364 
2365 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2366 {
2367 	set_pstate_dit(1);
2368 }
2369 
2370 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2371 {
2372 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2373 }
2374 
2375 #ifdef CONFIG_ARM64_POE
2376 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2377 {
2378 	sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2379 	sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2380 }
2381 #endif
2382 
2383 #ifdef CONFIG_ARM64_GCS
2384 static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2385 {
2386 	/* GCSPR_EL0 is always readable */
2387 	write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2388 }
2389 #endif
2390 
2391 /* Internal helper functions to match cpu capability type */
2392 static bool
2393 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2394 {
2395 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2396 }
2397 
2398 static bool
2399 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2400 {
2401 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2402 }
2403 
2404 static bool
2405 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2406 {
2407 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2408 }
2409 
2410 static bool
2411 test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2412 {
2413 	if (!has_cpuid_feature(entry, scope))
2414 		return false;
2415 
2416 	/* Check firmware actually enabled MPAM on this cpu. */
2417 	return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2418 }
2419 
2420 static void
2421 cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2422 {
2423 	/*
2424 	 * Access by the kernel (at EL1) should use the reserved PARTID
2425 	 * which is configured unrestricted. This avoids priority-inversion
2426 	 * where latency sensitive tasks have to wait for a task that has
2427 	 * been throttled to release the lock.
2428 	 */
2429 	write_sysreg_s(0, SYS_MPAM1_EL1);
2430 }
2431 
2432 static bool
2433 test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2434 {
2435 	u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2436 
2437 	return idr & MPAMIDR_EL1_HAS_HCR;
2438 }
2439 
2440 static const struct arm64_cpu_capabilities arm64_features[] = {
2441 	{
2442 		.capability = ARM64_ALWAYS_BOOT,
2443 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2444 		.matches = has_always,
2445 	},
2446 	{
2447 		.capability = ARM64_ALWAYS_SYSTEM,
2448 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2449 		.matches = has_always,
2450 	},
2451 	{
2452 		.desc = "GIC system register CPU interface",
2453 		.capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2454 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2455 		.matches = has_useable_gicv3_cpuif,
2456 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2457 	},
2458 	{
2459 		.desc = "Enhanced Counter Virtualization",
2460 		.capability = ARM64_HAS_ECV,
2461 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2462 		.matches = has_cpuid_feature,
2463 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2464 	},
2465 	{
2466 		.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2467 		.capability = ARM64_HAS_ECV_CNTPOFF,
2468 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2469 		.matches = has_cpuid_feature,
2470 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2471 	},
2472 #ifdef CONFIG_ARM64_PAN
2473 	{
2474 		.desc = "Privileged Access Never",
2475 		.capability = ARM64_HAS_PAN,
2476 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2477 		.matches = has_cpuid_feature,
2478 		.cpu_enable = cpu_enable_pan,
2479 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2480 	},
2481 #endif /* CONFIG_ARM64_PAN */
2482 #ifdef CONFIG_ARM64_EPAN
2483 	{
2484 		.desc = "Enhanced Privileged Access Never",
2485 		.capability = ARM64_HAS_EPAN,
2486 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2487 		.matches = has_cpuid_feature,
2488 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2489 	},
2490 #endif /* CONFIG_ARM64_EPAN */
2491 #ifdef CONFIG_ARM64_LSE_ATOMICS
2492 	{
2493 		.desc = "LSE atomic instructions",
2494 		.capability = ARM64_HAS_LSE_ATOMICS,
2495 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2496 		.matches = has_cpuid_feature,
2497 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2498 	},
2499 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2500 	{
2501 		.desc = "Virtualization Host Extensions",
2502 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2503 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2504 		.matches = runs_at_el2,
2505 		.cpu_enable = cpu_copy_el2regs,
2506 	},
2507 	{
2508 		.desc = "Nested Virtualization Support",
2509 		.capability = ARM64_HAS_NESTED_VIRT,
2510 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2511 		.matches = has_nested_virt_support,
2512 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2513 	},
2514 	{
2515 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2516 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2517 		.matches = has_32bit_el0,
2518 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2519 	},
2520 #ifdef CONFIG_KVM
2521 	{
2522 		.desc = "32-bit EL1 Support",
2523 		.capability = ARM64_HAS_32BIT_EL1,
2524 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2525 		.matches = has_cpuid_feature,
2526 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2527 	},
2528 	{
2529 		.desc = "Protected KVM",
2530 		.capability = ARM64_KVM_PROTECTED_MODE,
2531 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2532 		.matches = is_kvm_protected_mode,
2533 	},
2534 	{
2535 		.desc = "HCRX_EL2 register",
2536 		.capability = ARM64_HAS_HCX,
2537 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2538 		.matches = has_cpuid_feature,
2539 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2540 	},
2541 #endif
2542 	{
2543 		.desc = "Kernel page table isolation (KPTI)",
2544 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2545 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2546 		.cpu_enable = cpu_enable_kpti,
2547 		.matches = unmap_kernel_at_el0,
2548 		/*
2549 		 * The ID feature fields below are used to indicate that
2550 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2551 		 * more details.
2552 		 */
2553 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2554 	},
2555 	{
2556 		.capability = ARM64_HAS_FPSIMD,
2557 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2558 		.matches = has_cpuid_feature,
2559 		.cpu_enable = cpu_enable_fpsimd,
2560 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2561 	},
2562 #ifdef CONFIG_ARM64_PMEM
2563 	{
2564 		.desc = "Data cache clean to Point of Persistence",
2565 		.capability = ARM64_HAS_DCPOP,
2566 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2567 		.matches = has_cpuid_feature,
2568 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2569 	},
2570 	{
2571 		.desc = "Data cache clean to Point of Deep Persistence",
2572 		.capability = ARM64_HAS_DCPODP,
2573 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2574 		.matches = has_cpuid_feature,
2575 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2576 	},
2577 #endif
2578 #ifdef CONFIG_ARM64_SVE
2579 	{
2580 		.desc = "Scalable Vector Extension",
2581 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2582 		.capability = ARM64_SVE,
2583 		.cpu_enable = cpu_enable_sve,
2584 		.matches = has_cpuid_feature,
2585 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2586 	},
2587 #endif /* CONFIG_ARM64_SVE */
2588 #ifdef CONFIG_ARM64_RAS_EXTN
2589 	{
2590 		.desc = "RAS Extension Support",
2591 		.capability = ARM64_HAS_RAS_EXTN,
2592 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2593 		.matches = has_cpuid_feature,
2594 		.cpu_enable = cpu_clear_disr,
2595 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2596 	},
2597 #endif /* CONFIG_ARM64_RAS_EXTN */
2598 #ifdef CONFIG_ARM64_AMU_EXTN
2599 	{
2600 		.desc = "Activity Monitors Unit (AMU)",
2601 		.capability = ARM64_HAS_AMU_EXTN,
2602 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2603 		.matches = has_amu,
2604 		.cpu_enable = cpu_amu_enable,
2605 		.cpus = &amu_cpus,
2606 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2607 	},
2608 #endif /* CONFIG_ARM64_AMU_EXTN */
2609 	{
2610 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2611 		.capability = ARM64_HAS_CACHE_IDC,
2612 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2613 		.matches = has_cache_idc,
2614 		.cpu_enable = cpu_emulate_effective_ctr,
2615 	},
2616 	{
2617 		.desc = "Instruction cache invalidation not required for I/D coherence",
2618 		.capability = ARM64_HAS_CACHE_DIC,
2619 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2620 		.matches = has_cache_dic,
2621 	},
2622 	{
2623 		.desc = "Stage-2 Force Write-Back",
2624 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2625 		.capability = ARM64_HAS_STAGE2_FWB,
2626 		.matches = has_cpuid_feature,
2627 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2628 	},
2629 	{
2630 		.desc = "ARMv8.4 Translation Table Level",
2631 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2632 		.capability = ARM64_HAS_ARMv8_4_TTL,
2633 		.matches = has_cpuid_feature,
2634 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2635 	},
2636 	{
2637 		.desc = "TLB range maintenance instructions",
2638 		.capability = ARM64_HAS_TLB_RANGE,
2639 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2640 		.matches = has_cpuid_feature,
2641 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2642 	},
2643 #ifdef CONFIG_ARM64_HW_AFDBM
2644 	{
2645 		.desc = "Hardware dirty bit management",
2646 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2647 		.capability = ARM64_HW_DBM,
2648 		.matches = has_hw_dbm,
2649 		.cpu_enable = cpu_enable_hw_dbm,
2650 		.cpus = &dbm_cpus,
2651 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2652 	},
2653 #endif
2654 #ifdef CONFIG_ARM64_HAFT
2655 	{
2656 		.desc = "Hardware managed Access Flag for Table Descriptors",
2657 		/*
2658 		 * Contrary to the page/block access flag, the table access flag
2659 		 * cannot be emulated in software (no access fault will occur).
2660 		 * Therefore this should be used only if it's supported system
2661 		 * wide.
2662 		 */
2663 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2664 		.capability = ARM64_HAFT,
2665 		.matches = has_cpuid_feature,
2666 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2667 	},
2668 #endif
2669 	{
2670 		.desc = "CRC32 instructions",
2671 		.capability = ARM64_HAS_CRC32,
2672 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2673 		.matches = has_cpuid_feature,
2674 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2675 	},
2676 	{
2677 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2678 		.capability = ARM64_SSBS,
2679 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2680 		.matches = has_cpuid_feature,
2681 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2682 	},
2683 #ifdef CONFIG_ARM64_CNP
2684 	{
2685 		.desc = "Common not Private translations",
2686 		.capability = ARM64_HAS_CNP,
2687 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2688 		.matches = has_useable_cnp,
2689 		.cpu_enable = cpu_enable_cnp,
2690 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2691 	},
2692 #endif
2693 	{
2694 		.desc = "Speculation barrier (SB)",
2695 		.capability = ARM64_HAS_SB,
2696 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2697 		.matches = has_cpuid_feature,
2698 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2699 	},
2700 #ifdef CONFIG_ARM64_PTR_AUTH
2701 	{
2702 		.desc = "Address authentication (architected QARMA5 algorithm)",
2703 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2704 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2705 		.matches = has_address_auth_cpucap,
2706 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2707 	},
2708 	{
2709 		.desc = "Address authentication (architected QARMA3 algorithm)",
2710 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2711 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2712 		.matches = has_address_auth_cpucap,
2713 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2714 	},
2715 	{
2716 		.desc = "Address authentication (IMP DEF algorithm)",
2717 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2718 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2719 		.matches = has_address_auth_cpucap,
2720 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2721 	},
2722 	{
2723 		.capability = ARM64_HAS_ADDRESS_AUTH,
2724 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2725 		.matches = has_address_auth_metacap,
2726 	},
2727 	{
2728 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2729 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2730 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2731 		.matches = has_cpuid_feature,
2732 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2733 	},
2734 	{
2735 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2736 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2737 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2738 		.matches = has_cpuid_feature,
2739 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2740 	},
2741 	{
2742 		.desc = "Generic authentication (IMP DEF algorithm)",
2743 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2744 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2745 		.matches = has_cpuid_feature,
2746 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2747 	},
2748 	{
2749 		.capability = ARM64_HAS_GENERIC_AUTH,
2750 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2751 		.matches = has_generic_auth,
2752 	},
2753 #endif /* CONFIG_ARM64_PTR_AUTH */
2754 #ifdef CONFIG_ARM64_PSEUDO_NMI
2755 	{
2756 		/*
2757 		 * Depends on having GICv3
2758 		 */
2759 		.desc = "IRQ priority masking",
2760 		.capability = ARM64_HAS_GIC_PRIO_MASKING,
2761 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2762 		.matches = can_use_gic_priorities,
2763 	},
2764 	{
2765 		/*
2766 		 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2767 		 */
2768 		.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2769 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2770 		.matches = has_gic_prio_relaxed_sync,
2771 	},
2772 #endif
2773 #ifdef CONFIG_ARM64_E0PD
2774 	{
2775 		.desc = "E0PD",
2776 		.capability = ARM64_HAS_E0PD,
2777 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2778 		.cpu_enable = cpu_enable_e0pd,
2779 		.matches = has_cpuid_feature,
2780 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2781 	},
2782 #endif
2783 	{
2784 		.desc = "Random Number Generator",
2785 		.capability = ARM64_HAS_RNG,
2786 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2787 		.matches = has_cpuid_feature,
2788 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2789 	},
2790 #ifdef CONFIG_ARM64_BTI
2791 	{
2792 		.desc = "Branch Target Identification",
2793 		.capability = ARM64_BTI,
2794 #ifdef CONFIG_ARM64_BTI_KERNEL
2795 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2796 #else
2797 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2798 #endif
2799 		.matches = has_cpuid_feature,
2800 		.cpu_enable = bti_enable,
2801 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2802 	},
2803 #endif
2804 #ifdef CONFIG_ARM64_MTE
2805 	{
2806 		.desc = "Memory Tagging Extension",
2807 		.capability = ARM64_MTE,
2808 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2809 		.matches = has_cpuid_feature,
2810 		.cpu_enable = cpu_enable_mte,
2811 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2812 	},
2813 	{
2814 		.desc = "Asymmetric MTE Tag Check Fault",
2815 		.capability = ARM64_MTE_ASYMM,
2816 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2817 		.matches = has_cpuid_feature,
2818 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2819 	},
2820 #endif /* CONFIG_ARM64_MTE */
2821 	{
2822 		.desc = "RCpc load-acquire (LDAPR)",
2823 		.capability = ARM64_HAS_LDAPR,
2824 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2825 		.matches = has_cpuid_feature,
2826 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2827 	},
2828 	{
2829 		.desc = "Fine Grained Traps",
2830 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2831 		.capability = ARM64_HAS_FGT,
2832 		.matches = has_cpuid_feature,
2833 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2834 	},
2835 #ifdef CONFIG_ARM64_SME
2836 	{
2837 		.desc = "Scalable Matrix Extension",
2838 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2839 		.capability = ARM64_SME,
2840 		.matches = has_cpuid_feature,
2841 		.cpu_enable = cpu_enable_sme,
2842 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2843 	},
2844 	/* FA64 should be sorted after the base SME capability */
2845 	{
2846 		.desc = "FA64",
2847 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2848 		.capability = ARM64_SME_FA64,
2849 		.matches = has_cpuid_feature,
2850 		.cpu_enable = cpu_enable_fa64,
2851 		ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2852 	},
2853 	{
2854 		.desc = "SME2",
2855 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2856 		.capability = ARM64_SME2,
2857 		.matches = has_cpuid_feature,
2858 		.cpu_enable = cpu_enable_sme2,
2859 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2860 	},
2861 #endif /* CONFIG_ARM64_SME */
2862 	{
2863 		.desc = "WFx with timeout",
2864 		.capability = ARM64_HAS_WFXT,
2865 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2866 		.matches = has_cpuid_feature,
2867 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2868 	},
2869 	{
2870 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2871 		.capability = ARM64_HAS_TIDCP1,
2872 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2873 		.matches = has_cpuid_feature,
2874 		.cpu_enable = cpu_trap_el0_impdef,
2875 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2876 	},
2877 	{
2878 		.desc = "Data independent timing control (DIT)",
2879 		.capability = ARM64_HAS_DIT,
2880 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2881 		.matches = has_cpuid_feature,
2882 		.cpu_enable = cpu_enable_dit,
2883 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2884 	},
2885 	{
2886 		.desc = "Memory Copy and Memory Set instructions",
2887 		.capability = ARM64_HAS_MOPS,
2888 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2889 		.matches = has_cpuid_feature,
2890 		.cpu_enable = cpu_enable_mops,
2891 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2892 	},
2893 	{
2894 		.capability = ARM64_HAS_TCR2,
2895 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2896 		.matches = has_cpuid_feature,
2897 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2898 	},
2899 	{
2900 		.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2901 		.capability = ARM64_HAS_S1PIE,
2902 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2903 		.matches = has_cpuid_feature,
2904 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2905 	},
2906 	{
2907 		.desc = "VHE for hypervisor only",
2908 		.capability = ARM64_KVM_HVHE,
2909 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2910 		.matches = hvhe_possible,
2911 	},
2912 	{
2913 		.desc = "Enhanced Virtualization Traps",
2914 		.capability = ARM64_HAS_EVT,
2915 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2916 		.matches = has_cpuid_feature,
2917 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2918 	},
2919 	{
2920 		.desc = "52-bit Virtual Addressing for KVM (LPA2)",
2921 		.capability = ARM64_HAS_LPA2,
2922 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2923 		.matches = has_lpa2,
2924 	},
2925 	{
2926 		.desc = "FPMR",
2927 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2928 		.capability = ARM64_HAS_FPMR,
2929 		.matches = has_cpuid_feature,
2930 		.cpu_enable = cpu_enable_fpmr,
2931 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2932 	},
2933 #ifdef CONFIG_ARM64_VA_BITS_52
2934 	{
2935 		.capability = ARM64_HAS_VA52,
2936 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2937 		.matches = has_cpuid_feature,
2938 #ifdef CONFIG_ARM64_64K_PAGES
2939 		.desc = "52-bit Virtual Addressing (LVA)",
2940 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
2941 #else
2942 		.desc = "52-bit Virtual Addressing (LPA2)",
2943 #ifdef CONFIG_ARM64_4K_PAGES
2944 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
2945 #else
2946 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
2947 #endif
2948 #endif
2949 	},
2950 #endif
2951 	{
2952 		.desc = "Memory Partitioning And Monitoring",
2953 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2954 		.capability = ARM64_MPAM,
2955 		.matches = test_has_mpam,
2956 		.cpu_enable = cpu_enable_mpam,
2957 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
2958 	},
2959 	{
2960 		.desc = "Memory Partitioning And Monitoring Virtualisation",
2961 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2962 		.capability = ARM64_MPAM_HCR,
2963 		.matches = test_has_mpam_hcr,
2964 	},
2965 	{
2966 		.desc = "NV1",
2967 		.capability = ARM64_HAS_HCR_NV1,
2968 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2969 		.matches = has_nv1,
2970 		ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
2971 	},
2972 #ifdef CONFIG_ARM64_POE
2973 	{
2974 		.desc = "Stage-1 Permission Overlay Extension (S1POE)",
2975 		.capability = ARM64_HAS_S1POE,
2976 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2977 		.matches = has_cpuid_feature,
2978 		.cpu_enable = cpu_enable_poe,
2979 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
2980 	},
2981 #endif
2982 #ifdef CONFIG_ARM64_GCS
2983 	{
2984 		.desc = "Guarded Control Stack (GCS)",
2985 		.capability = ARM64_HAS_GCS,
2986 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2987 		.cpu_enable = cpu_enable_gcs,
2988 		.matches = has_cpuid_feature,
2989 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
2990 	},
2991 #endif
2992 	{},
2993 };
2994 
2995 #define HWCAP_CPUID_MATCH(reg, field, min_value)			\
2996 		.matches = has_user_cpuid_feature,			\
2997 		ARM64_CPUID_FIELDS(reg, field, min_value)
2998 
2999 #define __HWCAP_CAP(name, cap_type, cap)					\
3000 		.desc = name,							\
3001 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
3002 		.hwcap_type = cap_type,						\
3003 		.hwcap = cap,							\
3004 
3005 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)		\
3006 	{									\
3007 		__HWCAP_CAP(#cap, cap_type, cap)				\
3008 		HWCAP_CPUID_MATCH(reg, field, min_value) 		\
3009 	}
3010 
3011 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
3012 	{									\
3013 		__HWCAP_CAP(#cap, cap_type, cap)				\
3014 		.matches = cpucap_multi_entry_cap_matches,			\
3015 		.match_list = list,						\
3016 	}
3017 
3018 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
3019 	{									\
3020 		__HWCAP_CAP(#cap, cap_type, cap)				\
3021 		.matches = match,						\
3022 	}
3023 
3024 #ifdef CONFIG_ARM64_PTR_AUTH
3025 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3026 	{
3027 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3028 	},
3029 	{
3030 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3031 	},
3032 	{
3033 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3034 	},
3035 	{},
3036 };
3037 
3038 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3039 	{
3040 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3041 	},
3042 	{
3043 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3044 	},
3045 	{
3046 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3047 	},
3048 	{},
3049 };
3050 #endif
3051 
3052 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3053 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3054 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3055 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3056 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3057 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3058 	HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3059 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3060 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3061 	HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3062 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3063 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3064 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3065 	HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3066 	HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3067 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3068 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3069 	HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3070 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3071 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3072 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3073 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3074 	HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3075 	HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3076 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3077 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3078 	HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3079 	HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3080 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3081 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3082 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3083 	HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3084 	HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3085 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3086 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3087 	HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3088 	HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3089 	HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3090 	HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3091 	HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3092 #ifdef CONFIG_ARM64_SVE
3093 	HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3094 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3095 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3096 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3097 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3098 	HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3099 	HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3100 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3101 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3102 	HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3103 	HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3104 	HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3105 	HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3106 	HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3107 #endif
3108 #ifdef CONFIG_ARM64_GCS
3109 	HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3110 #endif
3111 	HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3112 #ifdef CONFIG_ARM64_BTI
3113 	HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3114 #endif
3115 #ifdef CONFIG_ARM64_PTR_AUTH
3116 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3117 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3118 #endif
3119 #ifdef CONFIG_ARM64_MTE
3120 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3121 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3122 #endif /* CONFIG_ARM64_MTE */
3123 	HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3124 	HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3125 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3126 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3127 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3128 	HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3129 	HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3130 	HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3131 #ifdef CONFIG_ARM64_SME
3132 	HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3133 	HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3134 	HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3135 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3136 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3137 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3138 	HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3139 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3140 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3141 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3142 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3143 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3144 	HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3145 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3146 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3147 	HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3148 	HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3149 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3150 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3151 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3152 #endif /* CONFIG_ARM64_SME */
3153 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3154 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3155 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3156 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3157 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3158 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3159 #ifdef CONFIG_ARM64_POE
3160 	HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3161 #endif
3162 	{},
3163 };
3164 
3165 #ifdef CONFIG_COMPAT
3166 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3167 {
3168 	/*
3169 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3170 	 * in line with that of arm32 as in vfp_init(). We make sure that the
3171 	 * check is future proof, by making sure value is non-zero.
3172 	 */
3173 	u32 mvfr1;
3174 
3175 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3176 	if (scope == SCOPE_SYSTEM)
3177 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3178 	else
3179 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3180 
3181 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3182 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3183 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3184 }
3185 #endif
3186 
3187 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3188 #ifdef CONFIG_COMPAT
3189 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3190 	HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3191 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3192 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3193 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3194 	HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3195 	HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3196 	HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3197 	HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3198 	HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3199 	HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3200 	HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3201 	HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3202 	HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3203 	HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3204 	HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3205 	HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3206 	HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3207 #endif
3208 	{},
3209 };
3210 
3211 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3212 {
3213 	switch (cap->hwcap_type) {
3214 	case CAP_HWCAP:
3215 		cpu_set_feature(cap->hwcap);
3216 		break;
3217 #ifdef CONFIG_COMPAT
3218 	case CAP_COMPAT_HWCAP:
3219 		compat_elf_hwcap |= (u32)cap->hwcap;
3220 		break;
3221 	case CAP_COMPAT_HWCAP2:
3222 		compat_elf_hwcap2 |= (u32)cap->hwcap;
3223 		break;
3224 #endif
3225 	default:
3226 		WARN_ON(1);
3227 		break;
3228 	}
3229 }
3230 
3231 /* Check if we have a particular HWCAP enabled */
3232 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3233 {
3234 	bool rc;
3235 
3236 	switch (cap->hwcap_type) {
3237 	case CAP_HWCAP:
3238 		rc = cpu_have_feature(cap->hwcap);
3239 		break;
3240 #ifdef CONFIG_COMPAT
3241 	case CAP_COMPAT_HWCAP:
3242 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3243 		break;
3244 	case CAP_COMPAT_HWCAP2:
3245 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3246 		break;
3247 #endif
3248 	default:
3249 		WARN_ON(1);
3250 		rc = false;
3251 	}
3252 
3253 	return rc;
3254 }
3255 
3256 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3257 {
3258 	/* We support emulation of accesses to CPU ID feature registers */
3259 	cpu_set_named_feature(CPUID);
3260 	for (; hwcaps->matches; hwcaps++)
3261 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3262 			cap_set_elf_hwcap(hwcaps);
3263 }
3264 
3265 static void update_cpu_capabilities(u16 scope_mask)
3266 {
3267 	int i;
3268 	const struct arm64_cpu_capabilities *caps;
3269 
3270 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3271 	for (i = 0; i < ARM64_NCAPS; i++) {
3272 		caps = cpucap_ptrs[i];
3273 		if (!caps || !(caps->type & scope_mask) ||
3274 		    cpus_have_cap(caps->capability) ||
3275 		    !caps->matches(caps, cpucap_default_scope(caps)))
3276 			continue;
3277 
3278 		if (caps->desc && !caps->cpus)
3279 			pr_info("detected: %s\n", caps->desc);
3280 
3281 		__set_bit(caps->capability, system_cpucaps);
3282 
3283 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3284 			set_bit(caps->capability, boot_cpucaps);
3285 	}
3286 }
3287 
3288 /*
3289  * Enable all the available capabilities on this CPU. The capabilities
3290  * with BOOT_CPU scope are handled separately and hence skipped here.
3291  */
3292 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3293 {
3294 	int i;
3295 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3296 
3297 	for_each_available_cap(i) {
3298 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3299 
3300 		if (WARN_ON(!cap))
3301 			continue;
3302 
3303 		if (!(cap->type & non_boot_scope))
3304 			continue;
3305 
3306 		if (cap->cpu_enable)
3307 			cap->cpu_enable(cap);
3308 	}
3309 	return 0;
3310 }
3311 
3312 /*
3313  * Run through the enabled capabilities and enable() it on all active
3314  * CPUs
3315  */
3316 static void __init enable_cpu_capabilities(u16 scope_mask)
3317 {
3318 	int i;
3319 	const struct arm64_cpu_capabilities *caps;
3320 	bool boot_scope;
3321 
3322 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3323 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3324 
3325 	for (i = 0; i < ARM64_NCAPS; i++) {
3326 		caps = cpucap_ptrs[i];
3327 		if (!caps || !(caps->type & scope_mask) ||
3328 		    !cpus_have_cap(caps->capability))
3329 			continue;
3330 
3331 		if (boot_scope && caps->cpu_enable)
3332 			/*
3333 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3334 			 * before any secondary CPU boots. Thus, each secondary
3335 			 * will enable the capability as appropriate via
3336 			 * check_local_cpu_capabilities(). The only exception is
3337 			 * the boot CPU, for which the capability must be
3338 			 * enabled here. This approach avoids costly
3339 			 * stop_machine() calls for this case.
3340 			 */
3341 			caps->cpu_enable(caps);
3342 	}
3343 
3344 	/*
3345 	 * For all non-boot scope capabilities, use stop_machine()
3346 	 * as it schedules the work allowing us to modify PSTATE,
3347 	 * instead of on_each_cpu() which uses an IPI, giving us a
3348 	 * PSTATE that disappears when we return.
3349 	 */
3350 	if (!boot_scope)
3351 		stop_machine(cpu_enable_non_boot_scope_capabilities,
3352 			     NULL, cpu_online_mask);
3353 }
3354 
3355 /*
3356  * Run through the list of capabilities to check for conflicts.
3357  * If the system has already detected a capability, take necessary
3358  * action on this CPU.
3359  */
3360 static void verify_local_cpu_caps(u16 scope_mask)
3361 {
3362 	int i;
3363 	bool cpu_has_cap, system_has_cap;
3364 	const struct arm64_cpu_capabilities *caps;
3365 
3366 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3367 
3368 	for (i = 0; i < ARM64_NCAPS; i++) {
3369 		caps = cpucap_ptrs[i];
3370 		if (!caps || !(caps->type & scope_mask))
3371 			continue;
3372 
3373 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3374 		system_has_cap = cpus_have_cap(caps->capability);
3375 
3376 		if (system_has_cap) {
3377 			/*
3378 			 * Check if the new CPU misses an advertised feature,
3379 			 * which is not safe to miss.
3380 			 */
3381 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3382 				break;
3383 			/*
3384 			 * We have to issue cpu_enable() irrespective of
3385 			 * whether the CPU has it or not, as it is enabeld
3386 			 * system wide. It is upto the call back to take
3387 			 * appropriate action on this CPU.
3388 			 */
3389 			if (caps->cpu_enable)
3390 				caps->cpu_enable(caps);
3391 		} else {
3392 			/*
3393 			 * Check if the CPU has this capability if it isn't
3394 			 * safe to have when the system doesn't.
3395 			 */
3396 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3397 				break;
3398 		}
3399 	}
3400 
3401 	if (i < ARM64_NCAPS) {
3402 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3403 			smp_processor_id(), caps->capability,
3404 			caps->desc, system_has_cap, cpu_has_cap);
3405 
3406 		if (cpucap_panic_on_conflict(caps))
3407 			cpu_panic_kernel();
3408 		else
3409 			cpu_die_early();
3410 	}
3411 }
3412 
3413 /*
3414  * Check for CPU features that are used in early boot
3415  * based on the Boot CPU value.
3416  */
3417 static void check_early_cpu_features(void)
3418 {
3419 	verify_cpu_asid_bits();
3420 
3421 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3422 }
3423 
3424 static void
3425 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3426 {
3427 
3428 	for (; caps->matches; caps++)
3429 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3430 			pr_crit("CPU%d: missing HWCAP: %s\n",
3431 					smp_processor_id(), caps->desc);
3432 			cpu_die_early();
3433 		}
3434 }
3435 
3436 static void verify_local_elf_hwcaps(void)
3437 {
3438 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3439 
3440 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3441 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3442 }
3443 
3444 static void verify_sve_features(void)
3445 {
3446 	unsigned long cpacr = cpacr_save_enable_kernel_sve();
3447 
3448 	if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3449 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3450 			smp_processor_id());
3451 		cpu_die_early();
3452 	}
3453 
3454 	cpacr_restore(cpacr);
3455 }
3456 
3457 static void verify_sme_features(void)
3458 {
3459 	unsigned long cpacr = cpacr_save_enable_kernel_sme();
3460 
3461 	if (vec_verify_vq_map(ARM64_VEC_SME)) {
3462 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3463 			smp_processor_id());
3464 		cpu_die_early();
3465 	}
3466 
3467 	cpacr_restore(cpacr);
3468 }
3469 
3470 static void verify_hyp_capabilities(void)
3471 {
3472 	u64 safe_mmfr1, mmfr0, mmfr1;
3473 	int parange, ipa_max;
3474 	unsigned int safe_vmid_bits, vmid_bits;
3475 
3476 	if (!IS_ENABLED(CONFIG_KVM))
3477 		return;
3478 
3479 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3480 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3481 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3482 
3483 	/* Verify VMID bits */
3484 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3485 	vmid_bits = get_vmid_bits(mmfr1);
3486 	if (vmid_bits < safe_vmid_bits) {
3487 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3488 		cpu_die_early();
3489 	}
3490 
3491 	/* Verify IPA range */
3492 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3493 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3494 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3495 	if (ipa_max < get_kvm_ipa_limit()) {
3496 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3497 		cpu_die_early();
3498 	}
3499 }
3500 
3501 static void verify_mpam_capabilities(void)
3502 {
3503 	u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3504 	u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3505 	u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3506 
3507 	if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3508 	    FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3509 		pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3510 		cpu_die_early();
3511 	}
3512 
3513 	cpu_idr = read_cpuid(MPAMIDR_EL1);
3514 	sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3515 	if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3516 	    FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3517 		pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3518 		cpu_die_early();
3519 	}
3520 
3521 	cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3522 	cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3523 	sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3524 	sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3525 	if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3526 		pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3527 		cpu_die_early();
3528 	}
3529 }
3530 
3531 /*
3532  * Run through the enabled system capabilities and enable() it on this CPU.
3533  * The capabilities were decided based on the available CPUs at the boot time.
3534  * Any new CPU should match the system wide status of the capability. If the
3535  * new CPU doesn't have a capability which the system now has enabled, we
3536  * cannot do anything to fix it up and could cause unexpected failures. So
3537  * we park the CPU.
3538  */
3539 static void verify_local_cpu_capabilities(void)
3540 {
3541 	/*
3542 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3543 	 * check_early_cpu_features(), as they need to be verified
3544 	 * on all secondary CPUs.
3545 	 */
3546 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3547 	verify_local_elf_hwcaps();
3548 
3549 	if (system_supports_sve())
3550 		verify_sve_features();
3551 
3552 	if (system_supports_sme())
3553 		verify_sme_features();
3554 
3555 	if (is_hyp_mode_available())
3556 		verify_hyp_capabilities();
3557 
3558 	if (system_supports_mpam())
3559 		verify_mpam_capabilities();
3560 }
3561 
3562 void check_local_cpu_capabilities(void)
3563 {
3564 	/*
3565 	 * All secondary CPUs should conform to the early CPU features
3566 	 * in use by the kernel based on boot CPU.
3567 	 */
3568 	check_early_cpu_features();
3569 
3570 	/*
3571 	 * If we haven't finalised the system capabilities, this CPU gets
3572 	 * a chance to update the errata work arounds and local features.
3573 	 * Otherwise, this CPU should verify that it has all the system
3574 	 * advertised capabilities.
3575 	 */
3576 	if (!system_capabilities_finalized())
3577 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3578 	else
3579 		verify_local_cpu_capabilities();
3580 }
3581 
3582 bool this_cpu_has_cap(unsigned int n)
3583 {
3584 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3585 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3586 
3587 		if (cap)
3588 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3589 	}
3590 
3591 	return false;
3592 }
3593 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3594 
3595 /*
3596  * This helper function is used in a narrow window when,
3597  * - The system wide safe registers are set with all the SMP CPUs and,
3598  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3599  */
3600 static bool __maybe_unused __system_matches_cap(unsigned int n)
3601 {
3602 	if (n < ARM64_NCAPS) {
3603 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3604 
3605 		if (cap)
3606 			return cap->matches(cap, SCOPE_SYSTEM);
3607 	}
3608 	return false;
3609 }
3610 
3611 void cpu_set_feature(unsigned int num)
3612 {
3613 	set_bit(num, elf_hwcap);
3614 }
3615 
3616 bool cpu_have_feature(unsigned int num)
3617 {
3618 	return test_bit(num, elf_hwcap);
3619 }
3620 EXPORT_SYMBOL_GPL(cpu_have_feature);
3621 
3622 unsigned long cpu_get_elf_hwcap(void)
3623 {
3624 	/*
3625 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3626 	 * note that for userspace compatibility we guarantee that bits 62
3627 	 * and 63 will always be returned as 0.
3628 	 */
3629 	return elf_hwcap[0];
3630 }
3631 
3632 unsigned long cpu_get_elf_hwcap2(void)
3633 {
3634 	return elf_hwcap[1];
3635 }
3636 
3637 unsigned long cpu_get_elf_hwcap3(void)
3638 {
3639 	return elf_hwcap[2];
3640 }
3641 
3642 static void __init setup_boot_cpu_capabilities(void)
3643 {
3644 	/*
3645 	 * The boot CPU's feature register values have been recorded. Detect
3646 	 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3647 	 * patch alternatives for the available boot cpucaps.
3648 	 */
3649 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3650 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3651 	apply_boot_alternatives();
3652 }
3653 
3654 void __init setup_boot_cpu_features(void)
3655 {
3656 	/*
3657 	 * Initialize the indirect array of CPU capabilities pointers before we
3658 	 * handle the boot CPU.
3659 	 */
3660 	init_cpucap_indirect_list();
3661 
3662 	/*
3663 	 * Detect broken pseudo-NMI. Must be called _before_ the call to
3664 	 * setup_boot_cpu_capabilities() since it interacts with
3665 	 * can_use_gic_priorities().
3666 	 */
3667 	detect_system_supports_pseudo_nmi();
3668 
3669 	setup_boot_cpu_capabilities();
3670 }
3671 
3672 static void __init setup_system_capabilities(void)
3673 {
3674 	/*
3675 	 * The system-wide safe feature register values have been finalized.
3676 	 * Detect, enable, and patch alternatives for the available system
3677 	 * cpucaps.
3678 	 */
3679 	update_cpu_capabilities(SCOPE_SYSTEM);
3680 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3681 	apply_alternatives_all();
3682 
3683 	/*
3684 	 * Log any cpucaps with a cpumask as these aren't logged by
3685 	 * update_cpu_capabilities().
3686 	 */
3687 	for (int i = 0; i < ARM64_NCAPS; i++) {
3688 		const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3689 
3690 		if (caps && caps->cpus && caps->desc &&
3691 			cpumask_any(caps->cpus) < nr_cpu_ids)
3692 			pr_info("detected: %s on CPU%*pbl\n",
3693 				caps->desc, cpumask_pr_args(caps->cpus));
3694 	}
3695 
3696 	/*
3697 	 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3698 	 */
3699 	if (system_uses_ttbr0_pan())
3700 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3701 }
3702 
3703 void __init setup_system_features(void)
3704 {
3705 	setup_system_capabilities();
3706 
3707 	kpti_install_ng_mappings();
3708 
3709 	sve_setup();
3710 	sme_setup();
3711 
3712 	/*
3713 	 * Check for sane CTR_EL0.CWG value.
3714 	 */
3715 	if (!cache_type_cwg())
3716 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3717 			ARCH_DMA_MINALIGN);
3718 }
3719 
3720 void __init setup_user_features(void)
3721 {
3722 	user_feature_fixup();
3723 
3724 	setup_elf_hwcaps(arm64_elf_hwcaps);
3725 
3726 	if (system_supports_32bit_el0()) {
3727 		setup_elf_hwcaps(compat_elf_hwcaps);
3728 		elf_hwcap_fixup();
3729 	}
3730 
3731 	minsigstksz_setup();
3732 }
3733 
3734 static int enable_mismatched_32bit_el0(unsigned int cpu)
3735 {
3736 	/*
3737 	 * The first 32-bit-capable CPU we detected and so can no longer
3738 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3739 	 * a 32-bit-capable CPU.
3740 	 */
3741 	static int lucky_winner = -1;
3742 
3743 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3744 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3745 
3746 	if (cpu_32bit) {
3747 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3748 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3749 	}
3750 
3751 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3752 		return 0;
3753 
3754 	if (lucky_winner >= 0)
3755 		return 0;
3756 
3757 	/*
3758 	 * We've detected a mismatch. We need to keep one of our CPUs with
3759 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3760 	 * every CPU in the system for a 32-bit task.
3761 	 */
3762 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3763 							 cpu_active_mask);
3764 	get_cpu_device(lucky_winner)->offline_disabled = true;
3765 	setup_elf_hwcaps(compat_elf_hwcaps);
3766 	elf_hwcap_fixup();
3767 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3768 		cpu, lucky_winner);
3769 	return 0;
3770 }
3771 
3772 static int __init init_32bit_el0_mask(void)
3773 {
3774 	if (!allow_mismatched_32bit_el0)
3775 		return 0;
3776 
3777 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3778 		return -ENOMEM;
3779 
3780 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3781 				 "arm64/mismatched_32bit_el0:online",
3782 				 enable_mismatched_32bit_el0, NULL);
3783 }
3784 subsys_initcall_sync(init_32bit_el0_mask);
3785 
3786 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3787 {
3788 	cpu_enable_swapper_cnp();
3789 }
3790 
3791 /*
3792  * We emulate only the following system register space.
3793  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3794  * See Table C5-6 System instruction encodings for System register accesses,
3795  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3796  */
3797 static inline bool __attribute_const__ is_emulated(u32 id)
3798 {
3799 	return (sys_reg_Op0(id) == 0x3 &&
3800 		sys_reg_CRn(id) == 0x0 &&
3801 		sys_reg_Op1(id) == 0x0 &&
3802 		(sys_reg_CRm(id) == 0 ||
3803 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3804 }
3805 
3806 /*
3807  * With CRm == 0, reg should be one of :
3808  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3809  */
3810 static inline int emulate_id_reg(u32 id, u64 *valp)
3811 {
3812 	switch (id) {
3813 	case SYS_MIDR_EL1:
3814 		*valp = read_cpuid_id();
3815 		break;
3816 	case SYS_MPIDR_EL1:
3817 		*valp = SYS_MPIDR_SAFE_VAL;
3818 		break;
3819 	case SYS_REVIDR_EL1:
3820 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3821 		*valp = 0;
3822 		break;
3823 	default:
3824 		return -EINVAL;
3825 	}
3826 
3827 	return 0;
3828 }
3829 
3830 static int emulate_sys_reg(u32 id, u64 *valp)
3831 {
3832 	struct arm64_ftr_reg *regp;
3833 
3834 	if (!is_emulated(id))
3835 		return -EINVAL;
3836 
3837 	if (sys_reg_CRm(id) == 0)
3838 		return emulate_id_reg(id, valp);
3839 
3840 	regp = get_arm64_ftr_reg_nowarn(id);
3841 	if (regp)
3842 		*valp = arm64_ftr_reg_user_value(regp);
3843 	else
3844 		/*
3845 		 * The untracked registers are either IMPLEMENTATION DEFINED
3846 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3847 		 */
3848 		*valp = 0;
3849 	return 0;
3850 }
3851 
3852 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3853 {
3854 	int rc;
3855 	u64 val;
3856 
3857 	rc = emulate_sys_reg(sys_reg, &val);
3858 	if (!rc) {
3859 		pt_regs_write_reg(regs, rt, val);
3860 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3861 	}
3862 	return rc;
3863 }
3864 
3865 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3866 {
3867 	u32 sys_reg, rt;
3868 
3869 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3870 		return false;
3871 
3872 	/*
3873 	 * sys_reg values are defined as used in mrs/msr instruction.
3874 	 * shift the imm value to get the encoding.
3875 	 */
3876 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3877 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3878 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
3879 }
3880 
3881 enum mitigation_state arm64_get_meltdown_state(void)
3882 {
3883 	if (__meltdown_safe)
3884 		return SPECTRE_UNAFFECTED;
3885 
3886 	if (arm64_kernel_unmapped_at_el0())
3887 		return SPECTRE_MITIGATED;
3888 
3889 	return SPECTRE_VULNERABLE;
3890 }
3891 
3892 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3893 			  char *buf)
3894 {
3895 	switch (arm64_get_meltdown_state()) {
3896 	case SPECTRE_UNAFFECTED:
3897 		return sprintf(buf, "Not affected\n");
3898 
3899 	case SPECTRE_MITIGATED:
3900 		return sprintf(buf, "Mitigation: PTI\n");
3901 
3902 	default:
3903 		return sprintf(buf, "Vulnerable\n");
3904 	}
3905 }
3906