xref: /linux/arch/arm64/kernel/cpufeature.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35 
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38 
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT	\
41 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46 				 COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50 
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53 
54 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
55 EXPORT_SYMBOL(cpu_hwcap_keys);
56 
57 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
58 	{						\
59 		.sign = SIGNED,				\
60 		.visible = VISIBLE,			\
61 		.strict = STRICT,			\
62 		.type = TYPE,				\
63 		.shift = SHIFT,				\
64 		.width = WIDTH,				\
65 		.safe_val = SAFE_VAL,			\
66 	}
67 
68 /* Define a feature with unsigned values */
69 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
71 
72 /* Define a feature with a signed value */
73 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
74 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
75 
76 #define ARM64_FTR_END					\
77 	{						\
78 		.width = 0,				\
79 	}
80 
81 /* meta feature for alternatives */
82 static bool __maybe_unused
83 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
84 
85 
86 /*
87  * NOTE: Any changes to the visibility of features should be kept in
88  * sync with the documentation of the CPU feature register ABI.
89  */
90 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
91 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
92 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
93 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
94 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
95 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
96 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
97 	ARM64_FTR_END,
98 };
99 
100 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
101 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
102 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
103 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
104 	ARM64_FTR_END,
105 };
106 
107 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
108 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
109 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
110 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
111 	/* Linux doesn't care about the EL3 */
112 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
113 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
114 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
115 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
116 	ARM64_FTR_END,
117 };
118 
119 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
120 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
121 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
122 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
123 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
124 	/* Linux shouldn't care about secure memory */
125 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
126 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
128 	/*
129 	 * Differing PARange is fine as long as all peripherals and memory are mapped
130 	 * within the minimum PARange of all CPUs
131 	 */
132 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
133 	ARM64_FTR_END,
134 };
135 
136 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
137 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
138 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
139 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
140 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
141 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
142 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
143 	ARM64_FTR_END,
144 };
145 
146 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
147 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
148 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
149 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
150 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
151 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
152 	ARM64_FTR_END,
153 };
154 
155 static const struct arm64_ftr_bits ftr_ctr[] = {
156 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
157 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
158 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
159 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
160 	/*
161 	 * Linux can handle differing I-cache policies. Userspace JITs will
162 	 * make use of *minLine.
163 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
164 	 */
165 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
166 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
167 	ARM64_FTR_END,
168 };
169 
170 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
171 	.name		= "SYS_CTR_EL0",
172 	.ftr_bits	= ftr_ctr
173 };
174 
175 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
176 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
177 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
178 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
179 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
180 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
181 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
182 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
183 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
184 	ARM64_FTR_END,
185 };
186 
187 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
188 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
189 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
190 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
191 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
192 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
193 	/*
194 	 * We can instantiate multiple PMU instances with different levels
195 	 * of support.
196 	 */
197 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
200 	ARM64_FTR_END,
201 };
202 
203 static const struct arm64_ftr_bits ftr_mvfr2[] = {
204 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
205 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
206 	ARM64_FTR_END,
207 };
208 
209 static const struct arm64_ftr_bits ftr_dczid[] = {
210 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
211 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
212 	ARM64_FTR_END,
213 };
214 
215 
216 static const struct arm64_ftr_bits ftr_id_isar5[] = {
217 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
219 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
222 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
223 	ARM64_FTR_END,
224 };
225 
226 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
227 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
228 	ARM64_FTR_END,
229 };
230 
231 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
232 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
233 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
235 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
236 	ARM64_FTR_END,
237 };
238 
239 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
241 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
242 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
243 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
244 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
245 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
248 	ARM64_FTR_END,
249 };
250 
251 /*
252  * Common ftr bits for a 32bit register with all hidden, strict
253  * attributes, with 4bit feature fields and a default safe value of
254  * 0. Covers the following 32bit registers:
255  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
256  */
257 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
258 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
259 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
260 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
261 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
262 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
263 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
264 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
265 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
266 	ARM64_FTR_END,
267 };
268 
269 /* Table for a single 32bit feature value */
270 static const struct arm64_ftr_bits ftr_single32[] = {
271 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
272 	ARM64_FTR_END,
273 };
274 
275 static const struct arm64_ftr_bits ftr_raz[] = {
276 	ARM64_FTR_END,
277 };
278 
279 #define ARM64_FTR_REG(id, table) {		\
280 	.sys_id = id,				\
281 	.reg = 	&(struct arm64_ftr_reg){	\
282 		.name = #id,			\
283 		.ftr_bits = &((table)[0]),	\
284 	}}
285 
286 static const struct __ftr_reg_entry {
287 	u32			sys_id;
288 	struct arm64_ftr_reg 	*reg;
289 } arm64_ftr_regs[] = {
290 
291 	/* Op1 = 0, CRn = 0, CRm = 1 */
292 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
293 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
294 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
295 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
296 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
297 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
298 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
299 
300 	/* Op1 = 0, CRn = 0, CRm = 2 */
301 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
302 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
303 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
304 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
305 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
306 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
307 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
308 
309 	/* Op1 = 0, CRn = 0, CRm = 3 */
310 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
311 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
312 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
313 
314 	/* Op1 = 0, CRn = 0, CRm = 4 */
315 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
316 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
317 
318 	/* Op1 = 0, CRn = 0, CRm = 5 */
319 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
320 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
321 
322 	/* Op1 = 0, CRn = 0, CRm = 6 */
323 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
324 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
325 
326 	/* Op1 = 0, CRn = 0, CRm = 7 */
327 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
328 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
329 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
330 
331 	/* Op1 = 3, CRn = 0, CRm = 0 */
332 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
333 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
334 
335 	/* Op1 = 3, CRn = 14, CRm = 0 */
336 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
337 };
338 
339 static int search_cmp_ftr_reg(const void *id, const void *regp)
340 {
341 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
342 }
343 
344 /*
345  * get_arm64_ftr_reg - Lookup a feature register entry using its
346  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
347  * ascending order of sys_id , we use binary search to find a matching
348  * entry.
349  *
350  * returns - Upon success,  matching ftr_reg entry for id.
351  *         - NULL on failure. It is upto the caller to decide
352  *	     the impact of a failure.
353  */
354 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
355 {
356 	const struct __ftr_reg_entry *ret;
357 
358 	ret = bsearch((const void *)(unsigned long)sys_id,
359 			arm64_ftr_regs,
360 			ARRAY_SIZE(arm64_ftr_regs),
361 			sizeof(arm64_ftr_regs[0]),
362 			search_cmp_ftr_reg);
363 	if (ret)
364 		return ret->reg;
365 	return NULL;
366 }
367 
368 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
369 			       s64 ftr_val)
370 {
371 	u64 mask = arm64_ftr_mask(ftrp);
372 
373 	reg &= ~mask;
374 	reg |= (ftr_val << ftrp->shift) & mask;
375 	return reg;
376 }
377 
378 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
379 				s64 cur)
380 {
381 	s64 ret = 0;
382 
383 	switch (ftrp->type) {
384 	case FTR_EXACT:
385 		ret = ftrp->safe_val;
386 		break;
387 	case FTR_LOWER_SAFE:
388 		ret = new < cur ? new : cur;
389 		break;
390 	case FTR_HIGHER_SAFE:
391 		ret = new > cur ? new : cur;
392 		break;
393 	default:
394 		BUG();
395 	}
396 
397 	return ret;
398 }
399 
400 static void __init sort_ftr_regs(void)
401 {
402 	int i;
403 
404 	/* Check that the array is sorted so that we can do the binary search */
405 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
406 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
407 }
408 
409 /*
410  * Initialise the CPU feature register from Boot CPU values.
411  * Also initiliases the strict_mask for the register.
412  * Any bits that are not covered by an arm64_ftr_bits entry are considered
413  * RES0 for the system-wide value, and must strictly match.
414  */
415 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
416 {
417 	u64 val = 0;
418 	u64 strict_mask = ~0x0ULL;
419 	u64 user_mask = 0;
420 	u64 valid_mask = 0;
421 
422 	const struct arm64_ftr_bits *ftrp;
423 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
424 
425 	BUG_ON(!reg);
426 
427 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
428 		u64 ftr_mask = arm64_ftr_mask(ftrp);
429 		s64 ftr_new = arm64_ftr_value(ftrp, new);
430 
431 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
432 
433 		valid_mask |= ftr_mask;
434 		if (!ftrp->strict)
435 			strict_mask &= ~ftr_mask;
436 		if (ftrp->visible)
437 			user_mask |= ftr_mask;
438 		else
439 			reg->user_val = arm64_ftr_set_value(ftrp,
440 							    reg->user_val,
441 							    ftrp->safe_val);
442 	}
443 
444 	val &= valid_mask;
445 
446 	reg->sys_val = val;
447 	reg->strict_mask = strict_mask;
448 	reg->user_mask = user_mask;
449 }
450 
451 void __init init_cpu_features(struct cpuinfo_arm64 *info)
452 {
453 	/* Before we start using the tables, make sure it is sorted */
454 	sort_ftr_regs();
455 
456 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
457 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
458 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
459 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
460 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
461 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
462 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
463 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
464 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
465 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
466 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
467 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
468 
469 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
470 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
471 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
472 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
473 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
474 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
475 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
476 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
477 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
478 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
479 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
480 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
481 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
482 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
483 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
484 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
485 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
486 	}
487 
488 }
489 
490 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
491 {
492 	const struct arm64_ftr_bits *ftrp;
493 
494 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
495 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
496 		s64 ftr_new = arm64_ftr_value(ftrp, new);
497 
498 		if (ftr_cur == ftr_new)
499 			continue;
500 		/* Find a safe value */
501 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
502 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
503 	}
504 
505 }
506 
507 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
508 {
509 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
510 
511 	BUG_ON(!regp);
512 	update_cpu_ftr_reg(regp, val);
513 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
514 		return 0;
515 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
516 			regp->name, boot, cpu, val);
517 	return 1;
518 }
519 
520 /*
521  * Update system wide CPU feature registers with the values from a
522  * non-boot CPU. Also performs SANITY checks to make sure that there
523  * aren't any insane variations from that of the boot CPU.
524  */
525 void update_cpu_features(int cpu,
526 			 struct cpuinfo_arm64 *info,
527 			 struct cpuinfo_arm64 *boot)
528 {
529 	int taint = 0;
530 
531 	/*
532 	 * The kernel can handle differing I-cache policies, but otherwise
533 	 * caches should look identical. Userspace JITs will make use of
534 	 * *minLine.
535 	 */
536 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
537 				      info->reg_ctr, boot->reg_ctr);
538 
539 	/*
540 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
541 	 * could result in too much or too little memory being zeroed if a
542 	 * process is preempted and migrated between CPUs.
543 	 */
544 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
545 				      info->reg_dczid, boot->reg_dczid);
546 
547 	/* If different, timekeeping will be broken (especially with KVM) */
548 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
549 				      info->reg_cntfrq, boot->reg_cntfrq);
550 
551 	/*
552 	 * The kernel uses self-hosted debug features and expects CPUs to
553 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
554 	 * and BRPs to be identical.
555 	 * ID_AA64DFR1 is currently RES0.
556 	 */
557 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
558 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
559 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
560 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
561 	/*
562 	 * Even in big.LITTLE, processors should be identical instruction-set
563 	 * wise.
564 	 */
565 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
566 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
567 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
568 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
569 
570 	/*
571 	 * Differing PARange support is fine as long as all peripherals and
572 	 * memory are mapped within the minimum PARange of all CPUs.
573 	 * Linux should not care about secure memory.
574 	 */
575 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
576 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
577 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
578 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
579 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
580 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
581 
582 	/*
583 	 * EL3 is not our concern.
584 	 * ID_AA64PFR1 is currently RES0.
585 	 */
586 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
587 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
588 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
589 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
590 
591 	/*
592 	 * If we have AArch32, we care about 32-bit features for compat.
593 	 * If the system doesn't support AArch32, don't update them.
594 	 */
595 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
596 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
597 
598 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
599 					info->reg_id_dfr0, boot->reg_id_dfr0);
600 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
601 					info->reg_id_isar0, boot->reg_id_isar0);
602 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
603 					info->reg_id_isar1, boot->reg_id_isar1);
604 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
605 					info->reg_id_isar2, boot->reg_id_isar2);
606 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
607 					info->reg_id_isar3, boot->reg_id_isar3);
608 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
609 					info->reg_id_isar4, boot->reg_id_isar4);
610 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
611 					info->reg_id_isar5, boot->reg_id_isar5);
612 
613 		/*
614 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
615 		 * ACTLR formats could differ across CPUs and therefore would have to
616 		 * be trapped for virtualization anyway.
617 		 */
618 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
619 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
620 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
621 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
622 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
623 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
624 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
625 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
626 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
627 					info->reg_id_pfr0, boot->reg_id_pfr0);
628 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
629 					info->reg_id_pfr1, boot->reg_id_pfr1);
630 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
631 					info->reg_mvfr0, boot->reg_mvfr0);
632 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
633 					info->reg_mvfr1, boot->reg_mvfr1);
634 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
635 					info->reg_mvfr2, boot->reg_mvfr2);
636 	}
637 
638 	/*
639 	 * Mismatched CPU features are a recipe for disaster. Don't even
640 	 * pretend to support them.
641 	 */
642 	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
643 			"Unsupported CPU feature variation.\n");
644 }
645 
646 u64 read_sanitised_ftr_reg(u32 id)
647 {
648 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
649 
650 	/* We shouldn't get a request for an unsupported register */
651 	BUG_ON(!regp);
652 	return regp->sys_val;
653 }
654 
655 #define read_sysreg_case(r)	\
656 	case r:		return read_sysreg_s(r)
657 
658 /*
659  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
660  * Read the system register on the current CPU
661  */
662 static u64 __read_sysreg_by_encoding(u32 sys_id)
663 {
664 	switch (sys_id) {
665 	read_sysreg_case(SYS_ID_PFR0_EL1);
666 	read_sysreg_case(SYS_ID_PFR1_EL1);
667 	read_sysreg_case(SYS_ID_DFR0_EL1);
668 	read_sysreg_case(SYS_ID_MMFR0_EL1);
669 	read_sysreg_case(SYS_ID_MMFR1_EL1);
670 	read_sysreg_case(SYS_ID_MMFR2_EL1);
671 	read_sysreg_case(SYS_ID_MMFR3_EL1);
672 	read_sysreg_case(SYS_ID_ISAR0_EL1);
673 	read_sysreg_case(SYS_ID_ISAR1_EL1);
674 	read_sysreg_case(SYS_ID_ISAR2_EL1);
675 	read_sysreg_case(SYS_ID_ISAR3_EL1);
676 	read_sysreg_case(SYS_ID_ISAR4_EL1);
677 	read_sysreg_case(SYS_ID_ISAR5_EL1);
678 	read_sysreg_case(SYS_MVFR0_EL1);
679 	read_sysreg_case(SYS_MVFR1_EL1);
680 	read_sysreg_case(SYS_MVFR2_EL1);
681 
682 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
683 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
684 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
685 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
686 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
687 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
688 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
689 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
690 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
691 
692 	read_sysreg_case(SYS_CNTFRQ_EL0);
693 	read_sysreg_case(SYS_CTR_EL0);
694 	read_sysreg_case(SYS_DCZID_EL0);
695 
696 	default:
697 		BUG();
698 		return 0;
699 	}
700 }
701 
702 #include <linux/irqchip/arm-gic-v3.h>
703 
704 static bool
705 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
706 {
707 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
708 
709 	return val >= entry->min_field_value;
710 }
711 
712 static bool
713 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
714 {
715 	u64 val;
716 
717 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
718 	if (scope == SCOPE_SYSTEM)
719 		val = read_sanitised_ftr_reg(entry->sys_reg);
720 	else
721 		val = __read_sysreg_by_encoding(entry->sys_reg);
722 
723 	return feature_matches(val, entry);
724 }
725 
726 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
727 {
728 	bool has_sre;
729 
730 	if (!has_cpuid_feature(entry, scope))
731 		return false;
732 
733 	has_sre = gic_enable_sre();
734 	if (!has_sre)
735 		pr_warn_once("%s present but disabled by higher exception level\n",
736 			     entry->desc);
737 
738 	return has_sre;
739 }
740 
741 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
742 {
743 	u32 midr = read_cpuid_id();
744 
745 	/* Cavium ThunderX pass 1.x and 2.x */
746 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
747 		MIDR_CPU_VAR_REV(0, 0),
748 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
749 }
750 
751 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
752 {
753 	return is_kernel_in_hyp_mode();
754 }
755 
756 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
757 			   int __unused)
758 {
759 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
760 
761 	/*
762 	 * Activate the lower HYP offset only if:
763 	 * - the idmap doesn't clash with it,
764 	 * - the kernel is not running at EL2.
765 	 */
766 	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
767 }
768 
769 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
770 {
771 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
772 
773 	return cpuid_feature_extract_signed_field(pfr0,
774 					ID_AA64PFR0_FP_SHIFT) < 0;
775 }
776 
777 static const struct arm64_cpu_capabilities arm64_features[] = {
778 	{
779 		.desc = "GIC system register CPU interface",
780 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
781 		.def_scope = SCOPE_SYSTEM,
782 		.matches = has_useable_gicv3_cpuif,
783 		.sys_reg = SYS_ID_AA64PFR0_EL1,
784 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
785 		.sign = FTR_UNSIGNED,
786 		.min_field_value = 1,
787 	},
788 #ifdef CONFIG_ARM64_PAN
789 	{
790 		.desc = "Privileged Access Never",
791 		.capability = ARM64_HAS_PAN,
792 		.def_scope = SCOPE_SYSTEM,
793 		.matches = has_cpuid_feature,
794 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
795 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
796 		.sign = FTR_UNSIGNED,
797 		.min_field_value = 1,
798 		.enable = cpu_enable_pan,
799 	},
800 #endif /* CONFIG_ARM64_PAN */
801 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
802 	{
803 		.desc = "LSE atomic instructions",
804 		.capability = ARM64_HAS_LSE_ATOMICS,
805 		.def_scope = SCOPE_SYSTEM,
806 		.matches = has_cpuid_feature,
807 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
808 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
809 		.sign = FTR_UNSIGNED,
810 		.min_field_value = 2,
811 	},
812 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
813 	{
814 		.desc = "Software prefetching using PRFM",
815 		.capability = ARM64_HAS_NO_HW_PREFETCH,
816 		.def_scope = SCOPE_SYSTEM,
817 		.matches = has_no_hw_prefetch,
818 	},
819 #ifdef CONFIG_ARM64_UAO
820 	{
821 		.desc = "User Access Override",
822 		.capability = ARM64_HAS_UAO,
823 		.def_scope = SCOPE_SYSTEM,
824 		.matches = has_cpuid_feature,
825 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
826 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
827 		.min_field_value = 1,
828 		/*
829 		 * We rely on stop_machine() calling uao_thread_switch() to set
830 		 * UAO immediately after patching.
831 		 */
832 	},
833 #endif /* CONFIG_ARM64_UAO */
834 #ifdef CONFIG_ARM64_PAN
835 	{
836 		.capability = ARM64_ALT_PAN_NOT_UAO,
837 		.def_scope = SCOPE_SYSTEM,
838 		.matches = cpufeature_pan_not_uao,
839 	},
840 #endif /* CONFIG_ARM64_PAN */
841 	{
842 		.desc = "Virtualization Host Extensions",
843 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
844 		.def_scope = SCOPE_SYSTEM,
845 		.matches = runs_at_el2,
846 	},
847 	{
848 		.desc = "32-bit EL0 Support",
849 		.capability = ARM64_HAS_32BIT_EL0,
850 		.def_scope = SCOPE_SYSTEM,
851 		.matches = has_cpuid_feature,
852 		.sys_reg = SYS_ID_AA64PFR0_EL1,
853 		.sign = FTR_UNSIGNED,
854 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
855 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
856 	},
857 	{
858 		.desc = "Reduced HYP mapping offset",
859 		.capability = ARM64_HYP_OFFSET_LOW,
860 		.def_scope = SCOPE_SYSTEM,
861 		.matches = hyp_offset_low,
862 	},
863 	{
864 		/* FP/SIMD is not implemented */
865 		.capability = ARM64_HAS_NO_FPSIMD,
866 		.def_scope = SCOPE_SYSTEM,
867 		.min_field_value = 0,
868 		.matches = has_no_fpsimd,
869 	},
870 	{},
871 };
872 
873 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
874 	{							\
875 		.desc = #cap,					\
876 		.def_scope = SCOPE_SYSTEM,			\
877 		.matches = has_cpuid_feature,			\
878 		.sys_reg = reg,					\
879 		.field_pos = field,				\
880 		.sign = s,					\
881 		.min_field_value = min_value,			\
882 		.hwcap_type = type,				\
883 		.hwcap = cap,					\
884 	}
885 
886 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
887 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
888 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
889 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
890 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
891 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
892 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
893 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
894 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
895 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
896 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
897 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
898 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
899 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
900 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
901 	{},
902 };
903 
904 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
905 #ifdef CONFIG_COMPAT
906 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
907 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
908 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
909 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
910 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
911 #endif
912 	{},
913 };
914 
915 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
916 {
917 	switch (cap->hwcap_type) {
918 	case CAP_HWCAP:
919 		elf_hwcap |= cap->hwcap;
920 		break;
921 #ifdef CONFIG_COMPAT
922 	case CAP_COMPAT_HWCAP:
923 		compat_elf_hwcap |= (u32)cap->hwcap;
924 		break;
925 	case CAP_COMPAT_HWCAP2:
926 		compat_elf_hwcap2 |= (u32)cap->hwcap;
927 		break;
928 #endif
929 	default:
930 		WARN_ON(1);
931 		break;
932 	}
933 }
934 
935 /* Check if we have a particular HWCAP enabled */
936 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
937 {
938 	bool rc;
939 
940 	switch (cap->hwcap_type) {
941 	case CAP_HWCAP:
942 		rc = (elf_hwcap & cap->hwcap) != 0;
943 		break;
944 #ifdef CONFIG_COMPAT
945 	case CAP_COMPAT_HWCAP:
946 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
947 		break;
948 	case CAP_COMPAT_HWCAP2:
949 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
950 		break;
951 #endif
952 	default:
953 		WARN_ON(1);
954 		rc = false;
955 	}
956 
957 	return rc;
958 }
959 
960 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
961 {
962 	/* We support emulation of accesses to CPU ID feature registers */
963 	elf_hwcap |= HWCAP_CPUID;
964 	for (; hwcaps->matches; hwcaps++)
965 		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
966 			cap_set_elf_hwcap(hwcaps);
967 }
968 
969 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
970 			    const char *info)
971 {
972 	for (; caps->matches; caps++) {
973 		if (!caps->matches(caps, caps->def_scope))
974 			continue;
975 
976 		if (!cpus_have_cap(caps->capability) && caps->desc)
977 			pr_info("%s %s\n", info, caps->desc);
978 		cpus_set_cap(caps->capability);
979 	}
980 }
981 
982 /*
983  * Run through the enabled capabilities and enable() it on all active
984  * CPUs
985  */
986 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
987 {
988 	for (; caps->matches; caps++) {
989 		unsigned int num = caps->capability;
990 
991 		if (!cpus_have_cap(num))
992 			continue;
993 
994 		/* Ensure cpus_have_const_cap(num) works */
995 		static_branch_enable(&cpu_hwcap_keys[num]);
996 
997 		if (caps->enable) {
998 			/*
999 			 * Use stop_machine() as it schedules the work allowing
1000 			 * us to modify PSTATE, instead of on_each_cpu() which
1001 			 * uses an IPI, giving us a PSTATE that disappears when
1002 			 * we return.
1003 			 */
1004 			stop_machine(caps->enable, NULL, cpu_online_mask);
1005 		}
1006 	}
1007 }
1008 
1009 /*
1010  * Flag to indicate if we have computed the system wide
1011  * capabilities based on the boot time active CPUs. This
1012  * will be used to determine if a new booting CPU should
1013  * go through the verification process to make sure that it
1014  * supports the system capabilities, without using a hotplug
1015  * notifier.
1016  */
1017 static bool sys_caps_initialised;
1018 
1019 static inline void set_sys_caps_initialised(void)
1020 {
1021 	sys_caps_initialised = true;
1022 }
1023 
1024 /*
1025  * Check for CPU features that are used in early boot
1026  * based on the Boot CPU value.
1027  */
1028 static void check_early_cpu_features(void)
1029 {
1030 	verify_cpu_run_el();
1031 	verify_cpu_asid_bits();
1032 }
1033 
1034 static void
1035 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1036 {
1037 
1038 	for (; caps->matches; caps++)
1039 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1040 			pr_crit("CPU%d: missing HWCAP: %s\n",
1041 					smp_processor_id(), caps->desc);
1042 			cpu_die_early();
1043 		}
1044 }
1045 
1046 static void
1047 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1048 {
1049 	for (; caps->matches; caps++) {
1050 		if (!cpus_have_cap(caps->capability))
1051 			continue;
1052 		/*
1053 		 * If the new CPU misses an advertised feature, we cannot proceed
1054 		 * further, park the cpu.
1055 		 */
1056 		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1057 			pr_crit("CPU%d: missing feature: %s\n",
1058 					smp_processor_id(), caps->desc);
1059 			cpu_die_early();
1060 		}
1061 		if (caps->enable)
1062 			caps->enable(NULL);
1063 	}
1064 }
1065 
1066 /*
1067  * Run through the enabled system capabilities and enable() it on this CPU.
1068  * The capabilities were decided based on the available CPUs at the boot time.
1069  * Any new CPU should match the system wide status of the capability. If the
1070  * new CPU doesn't have a capability which the system now has enabled, we
1071  * cannot do anything to fix it up and could cause unexpected failures. So
1072  * we park the CPU.
1073  */
1074 static void verify_local_cpu_capabilities(void)
1075 {
1076 	verify_local_cpu_errata_workarounds();
1077 	verify_local_cpu_features(arm64_features);
1078 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1079 	if (system_supports_32bit_el0())
1080 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1081 }
1082 
1083 void check_local_cpu_capabilities(void)
1084 {
1085 	/*
1086 	 * All secondary CPUs should conform to the early CPU features
1087 	 * in use by the kernel based on boot CPU.
1088 	 */
1089 	check_early_cpu_features();
1090 
1091 	/*
1092 	 * If we haven't finalised the system capabilities, this CPU gets
1093 	 * a chance to update the errata work arounds.
1094 	 * Otherwise, this CPU should verify that it has all the system
1095 	 * advertised capabilities.
1096 	 */
1097 	if (!sys_caps_initialised)
1098 		update_cpu_errata_workarounds();
1099 	else
1100 		verify_local_cpu_capabilities();
1101 }
1102 
1103 static void __init setup_feature_capabilities(void)
1104 {
1105 	update_cpu_capabilities(arm64_features, "detected feature:");
1106 	enable_cpu_capabilities(arm64_features);
1107 }
1108 
1109 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1110 EXPORT_SYMBOL(arm64_const_caps_ready);
1111 
1112 static void __init mark_const_caps_ready(void)
1113 {
1114 	static_branch_enable(&arm64_const_caps_ready);
1115 }
1116 
1117 /*
1118  * Check if the current CPU has a given feature capability.
1119  * Should be called from non-preemptible context.
1120  */
1121 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1122 			       unsigned int cap)
1123 {
1124 	const struct arm64_cpu_capabilities *caps;
1125 
1126 	if (WARN_ON(preemptible()))
1127 		return false;
1128 
1129 	for (caps = cap_array; caps->desc; caps++)
1130 		if (caps->capability == cap && caps->matches)
1131 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1132 
1133 	return false;
1134 }
1135 
1136 extern const struct arm64_cpu_capabilities arm64_errata[];
1137 
1138 bool this_cpu_has_cap(unsigned int cap)
1139 {
1140 	return (__this_cpu_has_cap(arm64_features, cap) ||
1141 		__this_cpu_has_cap(arm64_errata, cap));
1142 }
1143 
1144 void __init setup_cpu_features(void)
1145 {
1146 	u32 cwg;
1147 	int cls;
1148 
1149 	/* Set the CPU feature capabilies */
1150 	setup_feature_capabilities();
1151 	enable_errata_workarounds();
1152 	mark_const_caps_ready();
1153 	setup_elf_hwcaps(arm64_elf_hwcaps);
1154 
1155 	if (system_supports_32bit_el0())
1156 		setup_elf_hwcaps(compat_elf_hwcaps);
1157 
1158 	/* Advertise that we have computed the system capabilities */
1159 	set_sys_caps_initialised();
1160 
1161 	/*
1162 	 * Check for sane CTR_EL0.CWG value.
1163 	 */
1164 	cwg = cache_type_cwg();
1165 	cls = cache_line_size();
1166 	if (!cwg)
1167 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1168 			cls);
1169 	if (L1_CACHE_BYTES < cls)
1170 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1171 			L1_CACHE_BYTES, cls);
1172 }
1173 
1174 static bool __maybe_unused
1175 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1176 {
1177 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1178 }
1179 
1180 /*
1181  * We emulate only the following system register space.
1182  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1183  * See Table C5-6 System instruction encodings for System register accesses,
1184  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1185  */
1186 static inline bool __attribute_const__ is_emulated(u32 id)
1187 {
1188 	return (sys_reg_Op0(id) == 0x3 &&
1189 		sys_reg_CRn(id) == 0x0 &&
1190 		sys_reg_Op1(id) == 0x0 &&
1191 		(sys_reg_CRm(id) == 0 ||
1192 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1193 }
1194 
1195 /*
1196  * With CRm == 0, reg should be one of :
1197  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1198  */
1199 static inline int emulate_id_reg(u32 id, u64 *valp)
1200 {
1201 	switch (id) {
1202 	case SYS_MIDR_EL1:
1203 		*valp = read_cpuid_id();
1204 		break;
1205 	case SYS_MPIDR_EL1:
1206 		*valp = SYS_MPIDR_SAFE_VAL;
1207 		break;
1208 	case SYS_REVIDR_EL1:
1209 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1210 		*valp = 0;
1211 		break;
1212 	default:
1213 		return -EINVAL;
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 static int emulate_sys_reg(u32 id, u64 *valp)
1220 {
1221 	struct arm64_ftr_reg *regp;
1222 
1223 	if (!is_emulated(id))
1224 		return -EINVAL;
1225 
1226 	if (sys_reg_CRm(id) == 0)
1227 		return emulate_id_reg(id, valp);
1228 
1229 	regp = get_arm64_ftr_reg(id);
1230 	if (regp)
1231 		*valp = arm64_ftr_reg_user_value(regp);
1232 	else
1233 		/*
1234 		 * The untracked registers are either IMPLEMENTATION DEFINED
1235 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1236 		 */
1237 		*valp = 0;
1238 	return 0;
1239 }
1240 
1241 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1242 {
1243 	int rc;
1244 	u32 sys_reg, dst;
1245 	u64 val;
1246 
1247 	/*
1248 	 * sys_reg values are defined as used in mrs/msr instruction.
1249 	 * shift the imm value to get the encoding.
1250 	 */
1251 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1252 	rc = emulate_sys_reg(sys_reg, &val);
1253 	if (!rc) {
1254 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1255 		pt_regs_write_reg(regs, dst, val);
1256 		regs->pc += 4;
1257 	}
1258 
1259 	return rc;
1260 }
1261 
1262 static struct undef_hook mrs_hook = {
1263 	.instr_mask = 0xfff00000,
1264 	.instr_val  = 0xd5300000,
1265 	.pstate_mask = COMPAT_PSR_MODE_MASK,
1266 	.pstate_val = PSR_MODE_EL0t,
1267 	.fn = emulate_mrs,
1268 };
1269 
1270 static int __init enable_mrs_emulation(void)
1271 {
1272 	register_undef_hook(&mrs_hook);
1273 	return 0;
1274 }
1275 
1276 late_initcall(enable_mrs_emulation);
1277