xref: /linux/arch/arm64/kernel/cpufeature.c (revision bdce82e960d1205d118662f575cec39379984e34)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94 
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97 
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT	\
100 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103 				 COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107 
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111 
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113 
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116 
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118 
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124 
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130 
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136 
137 void dump_cpu_features(void)
138 {
139 	/* file-wide pr_fmt adds "CPU features: " prefix */
140 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142 
143 #define ARM64_CPUID_FIELDS(reg, field, min_value)			\
144 		.sys_reg = SYS_##reg,							\
145 		.field_pos = reg##_##field##_SHIFT,						\
146 		.field_width = reg##_##field##_WIDTH,						\
147 		.sign = reg##_##field##_SIGNED,							\
148 		.min_field_value = reg##_##field##_##min_value,
149 
150 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
151 	{						\
152 		.sign = SIGNED,				\
153 		.visible = VISIBLE,			\
154 		.strict = STRICT,			\
155 		.type = TYPE,				\
156 		.shift = SHIFT,				\
157 		.width = WIDTH,				\
158 		.safe_val = SAFE_VAL,			\
159 	}
160 
161 /* Define a feature with unsigned values */
162 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
164 
165 /* Define a feature with a signed value */
166 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
167 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
168 
169 #define ARM64_FTR_END					\
170 	{						\
171 		.width = 0,				\
172 	}
173 
174 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
175 
176 static bool __system_matches_cap(unsigned int n);
177 
178 /*
179  * NOTE: Any changes to the visibility of features should be kept in
180  * sync with the documentation of the CPU feature register ABI.
181  */
182 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
183 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
184 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
185 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
189 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
190 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
191 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
192 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
193 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
194 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
197 	ARM64_FTR_END,
198 };
199 
200 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
201 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
203 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
204 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
206 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
207 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
208 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
209 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
210 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
211 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
212 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
213 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
214 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
215 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
217 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
219 	ARM64_FTR_END,
220 };
221 
222 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
227 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
229 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
230 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
231 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
234 	ARM64_FTR_END,
235 };
236 
237 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
238 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
245 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
248 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
249 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
251 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
252 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
253 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
254 	ARM64_FTR_END,
255 };
256 
257 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
258 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
259 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
260 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
261 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
262 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
263 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
264 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
265 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
266 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
267 	ARM64_FTR_END,
268 };
269 
270 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
271 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
272 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
273 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
274 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
278 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
279 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
281 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
283 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
285 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
287 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
288 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
289 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
290 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
291 	ARM64_FTR_END,
292 };
293 
294 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
295 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
296 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
297 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
298 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
299 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
300 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
301 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
302 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
303 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
304 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
305 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
306 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
307 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
308 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
309 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
311 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
313 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
315 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
316 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
317 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
318 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
319 	ARM64_FTR_END,
320 };
321 
322 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
323 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
324 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
325 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
326 	/*
327 	 * Page size not being supported at Stage-2 is not fatal. You
328 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
329 	 * your favourite nesting hypervisor.
330 	 *
331 	 * There is a small corner case where the hypervisor explicitly
332 	 * advertises a given granule size at Stage-2 (value 2) on some
333 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
334 	 * vCPUs. Although this is not forbidden by the architecture, it
335 	 * indicates that the hypervisor is being silly (or buggy).
336 	 *
337 	 * We make no effort to cope with this and pretend that if these
338 	 * fields are inconsistent across vCPUs, then it isn't worth
339 	 * trying to bring KVM up.
340 	 */
341 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
342 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
343 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
344 	/*
345 	 * We already refuse to boot CPUs that don't support our configured
346 	 * page size, so we can only detect mismatches for a page size other
347 	 * than the one we're currently using. Unfortunately, SoCs like this
348 	 * exist in the wild so, even though we don't like it, we'll have to go
349 	 * along with it and treat them as non-strict.
350 	 */
351 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
352 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
353 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
354 
355 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
356 	/* Linux shouldn't care about secure memory */
357 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
358 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
359 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
360 	/*
361 	 * Differing PARange is fine as long as all peripherals and memory are mapped
362 	 * within the minimum PARange of all CPUs
363 	 */
364 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
365 	ARM64_FTR_END,
366 };
367 
368 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
369 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
370 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
371 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
372 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
373 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
374 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
375 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
376 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
377 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
378 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
379 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
380 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
381 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
382 	ARM64_FTR_END,
383 };
384 
385 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
386 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
387 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
388 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
389 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
390 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
391 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
392 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
393 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
394 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
395 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
396 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
397 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
398 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
399 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
400 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
401 	ARM64_FTR_END,
402 };
403 
404 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
405 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
406 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
407 	ARM64_FTR_END,
408 };
409 
410 static const struct arm64_ftr_bits ftr_ctr[] = {
411 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
412 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
413 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
414 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
415 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
416 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
417 	/*
418 	 * Linux can handle differing I-cache policies. Userspace JITs will
419 	 * make use of *minLine.
420 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
421 	 */
422 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
423 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
424 	ARM64_FTR_END,
425 };
426 
427 static struct arm64_ftr_override __ro_after_init no_override = { };
428 
429 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
430 	.name		= "SYS_CTR_EL0",
431 	.ftr_bits	= ftr_ctr,
432 	.override	= &no_override,
433 };
434 
435 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
436 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
437 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
438 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
439 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
440 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
441 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
442 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
443 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
444 	ARM64_FTR_END,
445 };
446 
447 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
448 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
449 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
450 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
451 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
453 	/*
454 	 * We can instantiate multiple PMU instances with different levels
455 	 * of support.
456 	 */
457 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
459 	ARM64_FTR_END,
460 };
461 
462 static const struct arm64_ftr_bits ftr_mvfr0[] = {
463 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
464 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
465 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
466 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
467 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
468 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
469 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
470 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
471 	ARM64_FTR_END,
472 };
473 
474 static const struct arm64_ftr_bits ftr_mvfr1[] = {
475 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
476 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
477 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
478 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
479 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
480 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
481 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
482 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
483 	ARM64_FTR_END,
484 };
485 
486 static const struct arm64_ftr_bits ftr_mvfr2[] = {
487 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
488 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
489 	ARM64_FTR_END,
490 };
491 
492 static const struct arm64_ftr_bits ftr_dczid[] = {
493 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
494 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
495 	ARM64_FTR_END,
496 };
497 
498 static const struct arm64_ftr_bits ftr_gmid[] = {
499 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
500 	ARM64_FTR_END,
501 };
502 
503 static const struct arm64_ftr_bits ftr_id_isar0[] = {
504 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
505 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
506 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
507 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
508 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
509 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
510 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
511 	ARM64_FTR_END,
512 };
513 
514 static const struct arm64_ftr_bits ftr_id_isar5[] = {
515 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
516 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
517 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
518 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
519 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
520 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
521 	ARM64_FTR_END,
522 };
523 
524 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
525 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
526 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
527 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
528 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
529 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
530 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
531 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
532 
533 	/*
534 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
535 	 * external abort on speculative read. It is safe to assume that an
536 	 * SError might be generated than it will not be. Hence it has been
537 	 * classified as FTR_HIGHER_SAFE.
538 	 */
539 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
540 	ARM64_FTR_END,
541 };
542 
543 static const struct arm64_ftr_bits ftr_id_isar4[] = {
544 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
545 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
546 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
547 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
548 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
549 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
550 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
551 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
552 	ARM64_FTR_END,
553 };
554 
555 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
556 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
557 	ARM64_FTR_END,
558 };
559 
560 static const struct arm64_ftr_bits ftr_id_isar6[] = {
561 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
562 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
563 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
564 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
565 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
566 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
567 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
568 	ARM64_FTR_END,
569 };
570 
571 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
572 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
573 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
574 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
575 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
576 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
577 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
578 	ARM64_FTR_END,
579 };
580 
581 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
582 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
583 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
584 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
585 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
586 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
587 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
588 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
589 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
590 	ARM64_FTR_END,
591 };
592 
593 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
594 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
595 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
596 	ARM64_FTR_END,
597 };
598 
599 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
600 	/* [31:28] TraceFilt */
601 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
602 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
603 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
604 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
605 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
606 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
607 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
608 	ARM64_FTR_END,
609 };
610 
611 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
612 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
613 	ARM64_FTR_END,
614 };
615 
616 /*
617  * Common ftr bits for a 32bit register with all hidden, strict
618  * attributes, with 4bit feature fields and a default safe value of
619  * 0. Covers the following 32bit registers:
620  * id_isar[1-3], id_mmfr[1-3]
621  */
622 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
623 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
624 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
625 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
626 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
627 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
628 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
629 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
630 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
631 	ARM64_FTR_END,
632 };
633 
634 /* Table for a single 32bit feature value */
635 static const struct arm64_ftr_bits ftr_single32[] = {
636 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
637 	ARM64_FTR_END,
638 };
639 
640 static const struct arm64_ftr_bits ftr_raz[] = {
641 	ARM64_FTR_END,
642 };
643 
644 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
645 		.sys_id = id,					\
646 		.reg = 	&(struct arm64_ftr_reg){		\
647 			.name = id_str,				\
648 			.override = (ovr),			\
649 			.ftr_bits = &((table)[0]),		\
650 	}}
651 
652 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
653 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
654 
655 #define ARM64_FTR_REG(id, table)		\
656 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
657 
658 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
659 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
660 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
661 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
662 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
663 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
664 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
665 
666 struct arm64_ftr_override arm64_sw_feature_override;
667 
668 static const struct __ftr_reg_entry {
669 	u32			sys_id;
670 	struct arm64_ftr_reg 	*reg;
671 } arm64_ftr_regs[] = {
672 
673 	/* Op1 = 0, CRn = 0, CRm = 1 */
674 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
675 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
676 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
677 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
678 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
679 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
680 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
681 
682 	/* Op1 = 0, CRn = 0, CRm = 2 */
683 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
684 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
685 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
686 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
687 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
688 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
689 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
690 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
691 
692 	/* Op1 = 0, CRn = 0, CRm = 3 */
693 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
694 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
695 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
696 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
697 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
698 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
699 
700 	/* Op1 = 0, CRn = 0, CRm = 4 */
701 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
702 			       &id_aa64pfr0_override),
703 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
704 			       &id_aa64pfr1_override),
705 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
706 			       &id_aa64zfr0_override),
707 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
708 			       &id_aa64smfr0_override),
709 
710 	/* Op1 = 0, CRn = 0, CRm = 5 */
711 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
712 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
713 
714 	/* Op1 = 0, CRn = 0, CRm = 6 */
715 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
716 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
717 			       &id_aa64isar1_override),
718 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
719 			       &id_aa64isar2_override),
720 
721 	/* Op1 = 0, CRn = 0, CRm = 7 */
722 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
723 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
724 			       &id_aa64mmfr1_override),
725 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
726 	ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
727 
728 	/* Op1 = 1, CRn = 0, CRm = 0 */
729 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
730 
731 	/* Op1 = 3, CRn = 0, CRm = 0 */
732 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
733 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
734 
735 	/* Op1 = 3, CRn = 14, CRm = 0 */
736 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
737 };
738 
739 static int search_cmp_ftr_reg(const void *id, const void *regp)
740 {
741 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
742 }
743 
744 /*
745  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
746  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
747  * ascending order of sys_id, we use binary search to find a matching
748  * entry.
749  *
750  * returns - Upon success,  matching ftr_reg entry for id.
751  *         - NULL on failure. It is upto the caller to decide
752  *	     the impact of a failure.
753  */
754 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
755 {
756 	const struct __ftr_reg_entry *ret;
757 
758 	ret = bsearch((const void *)(unsigned long)sys_id,
759 			arm64_ftr_regs,
760 			ARRAY_SIZE(arm64_ftr_regs),
761 			sizeof(arm64_ftr_regs[0]),
762 			search_cmp_ftr_reg);
763 	if (ret)
764 		return ret->reg;
765 	return NULL;
766 }
767 
768 /*
769  * get_arm64_ftr_reg - Looks up a feature register entry using
770  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
771  *
772  * returns - Upon success,  matching ftr_reg entry for id.
773  *         - NULL on failure but with an WARN_ON().
774  */
775 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
776 {
777 	struct arm64_ftr_reg *reg;
778 
779 	reg = get_arm64_ftr_reg_nowarn(sys_id);
780 
781 	/*
782 	 * Requesting a non-existent register search is an error. Warn
783 	 * and let the caller handle it.
784 	 */
785 	WARN_ON(!reg);
786 	return reg;
787 }
788 
789 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
790 			       s64 ftr_val)
791 {
792 	u64 mask = arm64_ftr_mask(ftrp);
793 
794 	reg &= ~mask;
795 	reg |= (ftr_val << ftrp->shift) & mask;
796 	return reg;
797 }
798 
799 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
800 				s64 cur)
801 {
802 	s64 ret = 0;
803 
804 	switch (ftrp->type) {
805 	case FTR_EXACT:
806 		ret = ftrp->safe_val;
807 		break;
808 	case FTR_LOWER_SAFE:
809 		ret = min(new, cur);
810 		break;
811 	case FTR_HIGHER_OR_ZERO_SAFE:
812 		if (!cur || !new)
813 			break;
814 		fallthrough;
815 	case FTR_HIGHER_SAFE:
816 		ret = max(new, cur);
817 		break;
818 	default:
819 		BUG();
820 	}
821 
822 	return ret;
823 }
824 
825 static void __init sort_ftr_regs(void)
826 {
827 	unsigned int i;
828 
829 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
830 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
831 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
832 		unsigned int j = 0;
833 
834 		/*
835 		 * Features here must be sorted in descending order with respect
836 		 * to their shift values and should not overlap with each other.
837 		 */
838 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
839 			unsigned int width = ftr_reg->ftr_bits[j].width;
840 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
841 			unsigned int prev_shift;
842 
843 			WARN((shift  + width) > 64,
844 				"%s has invalid feature at shift %d\n",
845 				ftr_reg->name, shift);
846 
847 			/*
848 			 * Skip the first feature. There is nothing to
849 			 * compare against for now.
850 			 */
851 			if (j == 0)
852 				continue;
853 
854 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
855 			WARN((shift + width) > prev_shift,
856 				"%s has feature overlap at shift %d\n",
857 				ftr_reg->name, shift);
858 		}
859 
860 		/*
861 		 * Skip the first register. There is nothing to
862 		 * compare against for now.
863 		 */
864 		if (i == 0)
865 			continue;
866 		/*
867 		 * Registers here must be sorted in ascending order with respect
868 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
869 		 * to work correctly.
870 		 */
871 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
872 	}
873 }
874 
875 /*
876  * Initialise the CPU feature register from Boot CPU values.
877  * Also initiliases the strict_mask for the register.
878  * Any bits that are not covered by an arm64_ftr_bits entry are considered
879  * RES0 for the system-wide value, and must strictly match.
880  */
881 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
882 {
883 	u64 val = 0;
884 	u64 strict_mask = ~0x0ULL;
885 	u64 user_mask = 0;
886 	u64 valid_mask = 0;
887 
888 	const struct arm64_ftr_bits *ftrp;
889 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
890 
891 	if (!reg)
892 		return;
893 
894 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
895 		u64 ftr_mask = arm64_ftr_mask(ftrp);
896 		s64 ftr_new = arm64_ftr_value(ftrp, new);
897 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
898 
899 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
900 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
901 			char *str = NULL;
902 
903 			if (ftr_ovr != tmp) {
904 				/* Unsafe, remove the override */
905 				reg->override->mask &= ~ftr_mask;
906 				reg->override->val &= ~ftr_mask;
907 				tmp = ftr_ovr;
908 				str = "ignoring override";
909 			} else if (ftr_new != tmp) {
910 				/* Override was valid */
911 				ftr_new = tmp;
912 				str = "forced";
913 			} else if (ftr_ovr == tmp) {
914 				/* Override was the safe value */
915 				str = "already set";
916 			}
917 
918 			if (str)
919 				pr_warn("%s[%d:%d]: %s to %llx\n",
920 					reg->name,
921 					ftrp->shift + ftrp->width - 1,
922 					ftrp->shift, str, tmp);
923 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
924 			reg->override->val &= ~ftr_mask;
925 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
926 				reg->name,
927 				ftrp->shift + ftrp->width - 1,
928 				ftrp->shift);
929 		}
930 
931 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
932 
933 		valid_mask |= ftr_mask;
934 		if (!ftrp->strict)
935 			strict_mask &= ~ftr_mask;
936 		if (ftrp->visible)
937 			user_mask |= ftr_mask;
938 		else
939 			reg->user_val = arm64_ftr_set_value(ftrp,
940 							    reg->user_val,
941 							    ftrp->safe_val);
942 	}
943 
944 	val &= valid_mask;
945 
946 	reg->sys_val = val;
947 	reg->strict_mask = strict_mask;
948 	reg->user_mask = user_mask;
949 }
950 
951 extern const struct arm64_cpu_capabilities arm64_errata[];
952 static const struct arm64_cpu_capabilities arm64_features[];
953 
954 static void __init
955 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
956 {
957 	for (; caps->matches; caps++) {
958 		if (WARN(caps->capability >= ARM64_NCAPS,
959 			"Invalid capability %d\n", caps->capability))
960 			continue;
961 		if (WARN(cpucap_ptrs[caps->capability],
962 			"Duplicate entry for capability %d\n",
963 			caps->capability))
964 			continue;
965 		cpucap_ptrs[caps->capability] = caps;
966 	}
967 }
968 
969 static void __init init_cpucap_indirect_list(void)
970 {
971 	init_cpucap_indirect_list_from_array(arm64_features);
972 	init_cpucap_indirect_list_from_array(arm64_errata);
973 }
974 
975 static void __init setup_boot_cpu_capabilities(void);
976 
977 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
978 {
979 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
980 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
981 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
982 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
983 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
984 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
985 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
986 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
987 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
988 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
989 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
990 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
991 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
992 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
993 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
994 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
995 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
996 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
997 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
998 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
999 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1000 }
1001 
1002 #ifdef CONFIG_ARM64_PSEUDO_NMI
1003 static bool enable_pseudo_nmi;
1004 
1005 static int __init early_enable_pseudo_nmi(char *p)
1006 {
1007 	return kstrtobool(p, &enable_pseudo_nmi);
1008 }
1009 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1010 
1011 static __init void detect_system_supports_pseudo_nmi(void)
1012 {
1013 	struct device_node *np;
1014 
1015 	if (!enable_pseudo_nmi)
1016 		return;
1017 
1018 	/*
1019 	 * Detect broken MediaTek firmware that doesn't properly save and
1020 	 * restore GIC priorities.
1021 	 */
1022 	np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1023 	if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1024 		pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1025 		enable_pseudo_nmi = false;
1026 	}
1027 	of_node_put(np);
1028 }
1029 #else /* CONFIG_ARM64_PSEUDO_NMI */
1030 static inline void detect_system_supports_pseudo_nmi(void) { }
1031 #endif
1032 
1033 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1034 {
1035 	/* Before we start using the tables, make sure it is sorted */
1036 	sort_ftr_regs();
1037 
1038 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1039 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1040 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1041 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1042 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1043 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1044 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1045 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1046 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1047 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1048 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1049 	init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1050 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1051 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1052 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1053 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1054 
1055 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1056 		init_32bit_cpu_features(&info->aarch32);
1057 
1058 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1059 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1060 		unsigned long cpacr = cpacr_save_enable_kernel_sve();
1061 
1062 		vec_init_vq_map(ARM64_VEC_SVE);
1063 
1064 		cpacr_restore(cpacr);
1065 	}
1066 
1067 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1068 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1069 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1070 
1071 		/*
1072 		 * We mask out SMPS since even if the hardware
1073 		 * supports priorities the kernel does not at present
1074 		 * and we block access to them.
1075 		 */
1076 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1077 		vec_init_vq_map(ARM64_VEC_SME);
1078 
1079 		cpacr_restore(cpacr);
1080 	}
1081 
1082 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1083 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1084 }
1085 
1086 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1087 {
1088 	const struct arm64_ftr_bits *ftrp;
1089 
1090 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1091 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1092 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1093 
1094 		if (ftr_cur == ftr_new)
1095 			continue;
1096 		/* Find a safe value */
1097 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1098 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1099 	}
1100 
1101 }
1102 
1103 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1104 {
1105 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1106 
1107 	if (!regp)
1108 		return 0;
1109 
1110 	update_cpu_ftr_reg(regp, val);
1111 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1112 		return 0;
1113 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1114 			regp->name, boot, cpu, val);
1115 	return 1;
1116 }
1117 
1118 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1119 {
1120 	const struct arm64_ftr_bits *ftrp;
1121 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1122 
1123 	if (!regp)
1124 		return;
1125 
1126 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1127 		if (ftrp->shift == field) {
1128 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1129 			break;
1130 		}
1131 	}
1132 
1133 	/* Bogus field? */
1134 	WARN_ON(!ftrp->width);
1135 }
1136 
1137 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1138 					 struct cpuinfo_arm64 *boot)
1139 {
1140 	static bool boot_cpu_32bit_regs_overridden = false;
1141 
1142 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1143 		return;
1144 
1145 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1146 		return;
1147 
1148 	boot->aarch32 = info->aarch32;
1149 	init_32bit_cpu_features(&boot->aarch32);
1150 	boot_cpu_32bit_regs_overridden = true;
1151 }
1152 
1153 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1154 				     struct cpuinfo_32bit *boot)
1155 {
1156 	int taint = 0;
1157 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1158 
1159 	/*
1160 	 * If we don't have AArch32 at EL1, then relax the strictness of
1161 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1162 	 */
1163 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1164 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1165 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1166 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1167 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1168 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1169 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1170 	}
1171 
1172 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1173 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1174 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1175 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1176 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1177 				      info->reg_id_isar0, boot->reg_id_isar0);
1178 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1179 				      info->reg_id_isar1, boot->reg_id_isar1);
1180 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1181 				      info->reg_id_isar2, boot->reg_id_isar2);
1182 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1183 				      info->reg_id_isar3, boot->reg_id_isar3);
1184 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1185 				      info->reg_id_isar4, boot->reg_id_isar4);
1186 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1187 				      info->reg_id_isar5, boot->reg_id_isar5);
1188 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1189 				      info->reg_id_isar6, boot->reg_id_isar6);
1190 
1191 	/*
1192 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1193 	 * ACTLR formats could differ across CPUs and therefore would have to
1194 	 * be trapped for virtualization anyway.
1195 	 */
1196 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1197 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1198 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1199 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1200 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1201 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1202 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1203 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1204 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1205 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1206 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1207 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1208 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1209 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1210 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1211 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1212 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1213 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1214 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1215 				      info->reg_mvfr0, boot->reg_mvfr0);
1216 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1217 				      info->reg_mvfr1, boot->reg_mvfr1);
1218 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1219 				      info->reg_mvfr2, boot->reg_mvfr2);
1220 
1221 	return taint;
1222 }
1223 
1224 /*
1225  * Update system wide CPU feature registers with the values from a
1226  * non-boot CPU. Also performs SANITY checks to make sure that there
1227  * aren't any insane variations from that of the boot CPU.
1228  */
1229 void update_cpu_features(int cpu,
1230 			 struct cpuinfo_arm64 *info,
1231 			 struct cpuinfo_arm64 *boot)
1232 {
1233 	int taint = 0;
1234 
1235 	/*
1236 	 * The kernel can handle differing I-cache policies, but otherwise
1237 	 * caches should look identical. Userspace JITs will make use of
1238 	 * *minLine.
1239 	 */
1240 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1241 				      info->reg_ctr, boot->reg_ctr);
1242 
1243 	/*
1244 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1245 	 * could result in too much or too little memory being zeroed if a
1246 	 * process is preempted and migrated between CPUs.
1247 	 */
1248 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1249 				      info->reg_dczid, boot->reg_dczid);
1250 
1251 	/* If different, timekeeping will be broken (especially with KVM) */
1252 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1253 				      info->reg_cntfrq, boot->reg_cntfrq);
1254 
1255 	/*
1256 	 * The kernel uses self-hosted debug features and expects CPUs to
1257 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1258 	 * and BRPs to be identical.
1259 	 * ID_AA64DFR1 is currently RES0.
1260 	 */
1261 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1262 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1263 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1264 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1265 	/*
1266 	 * Even in big.LITTLE, processors should be identical instruction-set
1267 	 * wise.
1268 	 */
1269 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1270 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1271 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1272 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1273 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1274 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1275 
1276 	/*
1277 	 * Differing PARange support is fine as long as all peripherals and
1278 	 * memory are mapped within the minimum PARange of all CPUs.
1279 	 * Linux should not care about secure memory.
1280 	 */
1281 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1282 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1283 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1284 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1285 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1286 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1287 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1288 				      info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1289 
1290 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1291 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1292 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1293 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1294 
1295 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1296 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1297 
1298 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1299 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1300 
1301 	/* Probe vector lengths */
1302 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1303 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1304 		if (!system_capabilities_finalized()) {
1305 			unsigned long cpacr = cpacr_save_enable_kernel_sve();
1306 
1307 			vec_update_vq_map(ARM64_VEC_SVE);
1308 
1309 			cpacr_restore(cpacr);
1310 		}
1311 	}
1312 
1313 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1314 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1315 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1316 
1317 		/*
1318 		 * We mask out SMPS since even if the hardware
1319 		 * supports priorities the kernel does not at present
1320 		 * and we block access to them.
1321 		 */
1322 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1323 
1324 		/* Probe vector lengths */
1325 		if (!system_capabilities_finalized())
1326 			vec_update_vq_map(ARM64_VEC_SME);
1327 
1328 		cpacr_restore(cpacr);
1329 	}
1330 
1331 	/*
1332 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1333 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1334 	 * value is the same on all CPUs.
1335 	 */
1336 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1337 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1338 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1339 					      info->reg_gmid, boot->reg_gmid);
1340 	}
1341 
1342 	/*
1343 	 * If we don't have AArch32 at all then skip the checks entirely
1344 	 * as the register values may be UNKNOWN and we're not going to be
1345 	 * using them for anything.
1346 	 *
1347 	 * This relies on a sanitised view of the AArch64 ID registers
1348 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1349 	 */
1350 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1351 		lazy_init_32bit_cpu_features(info, boot);
1352 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1353 						   &boot->aarch32);
1354 	}
1355 
1356 	/*
1357 	 * Mismatched CPU features are a recipe for disaster. Don't even
1358 	 * pretend to support them.
1359 	 */
1360 	if (taint) {
1361 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1362 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1363 	}
1364 }
1365 
1366 u64 read_sanitised_ftr_reg(u32 id)
1367 {
1368 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1369 
1370 	if (!regp)
1371 		return 0;
1372 	return regp->sys_val;
1373 }
1374 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1375 
1376 #define read_sysreg_case(r)	\
1377 	case r:		val = read_sysreg_s(r); break;
1378 
1379 /*
1380  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1381  * Read the system register on the current CPU
1382  */
1383 u64 __read_sysreg_by_encoding(u32 sys_id)
1384 {
1385 	struct arm64_ftr_reg *regp;
1386 	u64 val;
1387 
1388 	switch (sys_id) {
1389 	read_sysreg_case(SYS_ID_PFR0_EL1);
1390 	read_sysreg_case(SYS_ID_PFR1_EL1);
1391 	read_sysreg_case(SYS_ID_PFR2_EL1);
1392 	read_sysreg_case(SYS_ID_DFR0_EL1);
1393 	read_sysreg_case(SYS_ID_DFR1_EL1);
1394 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1395 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1396 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1397 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1398 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1399 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1400 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1401 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1402 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1403 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1404 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1405 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1406 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1407 	read_sysreg_case(SYS_MVFR0_EL1);
1408 	read_sysreg_case(SYS_MVFR1_EL1);
1409 	read_sysreg_case(SYS_MVFR2_EL1);
1410 
1411 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1412 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1413 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1414 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1415 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1416 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1417 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1418 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1419 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1420 	read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1421 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1422 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1423 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1424 
1425 	read_sysreg_case(SYS_CNTFRQ_EL0);
1426 	read_sysreg_case(SYS_CTR_EL0);
1427 	read_sysreg_case(SYS_DCZID_EL0);
1428 
1429 	default:
1430 		BUG();
1431 		return 0;
1432 	}
1433 
1434 	regp  = get_arm64_ftr_reg(sys_id);
1435 	if (regp) {
1436 		val &= ~regp->override->mask;
1437 		val |= (regp->override->val & regp->override->mask);
1438 	}
1439 
1440 	return val;
1441 }
1442 
1443 #include <linux/irqchip/arm-gic-v3.h>
1444 
1445 static bool
1446 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1447 {
1448 	return true;
1449 }
1450 
1451 static bool
1452 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1453 {
1454 	int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1455 						    entry->field_width,
1456 						    entry->sign);
1457 
1458 	return val >= entry->min_field_value;
1459 }
1460 
1461 static u64
1462 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1463 {
1464 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1465 	if (scope == SCOPE_SYSTEM)
1466 		return read_sanitised_ftr_reg(entry->sys_reg);
1467 	else
1468 		return __read_sysreg_by_encoding(entry->sys_reg);
1469 }
1470 
1471 static bool
1472 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1473 {
1474 	int mask;
1475 	struct arm64_ftr_reg *regp;
1476 	u64 val = read_scoped_sysreg(entry, scope);
1477 
1478 	regp = get_arm64_ftr_reg(entry->sys_reg);
1479 	if (!regp)
1480 		return false;
1481 
1482 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1483 							  entry->field_pos,
1484 							  entry->field_width);
1485 	if (!mask)
1486 		return false;
1487 
1488 	return feature_matches(val, entry);
1489 }
1490 
1491 static bool
1492 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1493 {
1494 	u64 val = read_scoped_sysreg(entry, scope);
1495 	return feature_matches(val, entry);
1496 }
1497 
1498 const struct cpumask *system_32bit_el0_cpumask(void)
1499 {
1500 	if (!system_supports_32bit_el0())
1501 		return cpu_none_mask;
1502 
1503 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1504 		return cpu_32bit_el0_mask;
1505 
1506 	return cpu_possible_mask;
1507 }
1508 
1509 static int __init parse_32bit_el0_param(char *str)
1510 {
1511 	allow_mismatched_32bit_el0 = true;
1512 	return 0;
1513 }
1514 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1515 
1516 static ssize_t aarch32_el0_show(struct device *dev,
1517 				struct device_attribute *attr, char *buf)
1518 {
1519 	const struct cpumask *mask = system_32bit_el0_cpumask();
1520 
1521 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1522 }
1523 static const DEVICE_ATTR_RO(aarch32_el0);
1524 
1525 static int __init aarch32_el0_sysfs_init(void)
1526 {
1527 	struct device *dev_root;
1528 	int ret = 0;
1529 
1530 	if (!allow_mismatched_32bit_el0)
1531 		return 0;
1532 
1533 	dev_root = bus_get_dev_root(&cpu_subsys);
1534 	if (dev_root) {
1535 		ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1536 		put_device(dev_root);
1537 	}
1538 	return ret;
1539 }
1540 device_initcall(aarch32_el0_sysfs_init);
1541 
1542 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1543 {
1544 	if (!has_cpuid_feature(entry, scope))
1545 		return allow_mismatched_32bit_el0;
1546 
1547 	if (scope == SCOPE_SYSTEM)
1548 		pr_info("detected: 32-bit EL0 Support\n");
1549 
1550 	return true;
1551 }
1552 
1553 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1554 {
1555 	bool has_sre;
1556 
1557 	if (!has_cpuid_feature(entry, scope))
1558 		return false;
1559 
1560 	has_sre = gic_enable_sre();
1561 	if (!has_sre)
1562 		pr_warn_once("%s present but disabled by higher exception level\n",
1563 			     entry->desc);
1564 
1565 	return has_sre;
1566 }
1567 
1568 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1569 			  int scope)
1570 {
1571 	u64 ctr;
1572 
1573 	if (scope == SCOPE_SYSTEM)
1574 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1575 	else
1576 		ctr = read_cpuid_effective_cachetype();
1577 
1578 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1579 }
1580 
1581 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1582 {
1583 	/*
1584 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1585 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1586 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1587 	 * value.
1588 	 */
1589 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1590 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1591 }
1592 
1593 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1594 			  int scope)
1595 {
1596 	u64 ctr;
1597 
1598 	if (scope == SCOPE_SYSTEM)
1599 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1600 	else
1601 		ctr = read_cpuid_cachetype();
1602 
1603 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1604 }
1605 
1606 static bool __maybe_unused
1607 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1608 {
1609 	/*
1610 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1611 	 * may share TLB entries with a CPU stuck in the crashed
1612 	 * kernel.
1613 	 */
1614 	if (is_kdump_kernel())
1615 		return false;
1616 
1617 	if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1618 		return false;
1619 
1620 	return has_cpuid_feature(entry, scope);
1621 }
1622 
1623 /*
1624  * This check is triggered during the early boot before the cpufeature
1625  * is initialised. Checking the status on the local CPU allows the boot
1626  * CPU to detect the need for non-global mappings and thus avoiding a
1627  * pagetable re-write after all the CPUs are booted. This check will be
1628  * anyway run on individual CPUs, allowing us to get the consistent
1629  * state once the SMP CPUs are up and thus make the switch to non-global
1630  * mappings if required.
1631  */
1632 bool kaslr_requires_kpti(void)
1633 {
1634 	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1635 		return false;
1636 
1637 	/*
1638 	 * E0PD does a similar job to KPTI so can be used instead
1639 	 * where available.
1640 	 */
1641 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1642 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1643 		if (cpuid_feature_extract_unsigned_field(mmfr2,
1644 						ID_AA64MMFR2_EL1_E0PD_SHIFT))
1645 			return false;
1646 	}
1647 
1648 	/*
1649 	 * Systems affected by Cavium erratum 24756 are incompatible
1650 	 * with KPTI.
1651 	 */
1652 	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1653 		extern const struct midr_range cavium_erratum_27456_cpus[];
1654 
1655 		if (is_midr_in_range_list(read_cpuid_id(),
1656 					  cavium_erratum_27456_cpus))
1657 			return false;
1658 	}
1659 
1660 	return kaslr_enabled();
1661 }
1662 
1663 static bool __meltdown_safe = true;
1664 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1665 
1666 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1667 				int scope)
1668 {
1669 	/* List of CPUs that are not vulnerable and don't need KPTI */
1670 	static const struct midr_range kpti_safe_list[] = {
1671 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1672 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1673 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1674 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1675 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1676 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1677 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1678 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1679 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1680 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1681 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1682 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1683 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1684 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1685 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1686 		{ /* sentinel */ }
1687 	};
1688 	char const *str = "kpti command line option";
1689 	bool meltdown_safe;
1690 
1691 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1692 
1693 	/* Defer to CPU feature registers */
1694 	if (has_cpuid_feature(entry, scope))
1695 		meltdown_safe = true;
1696 
1697 	if (!meltdown_safe)
1698 		__meltdown_safe = false;
1699 
1700 	/*
1701 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1702 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1703 	 * ends as well as you might imagine. Don't even try. We cannot rely
1704 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1705 	 * because cpucap detection order may change. However, since we know
1706 	 * affected CPUs are always in a homogeneous configuration, it is
1707 	 * safe to rely on this_cpu_has_cap() here.
1708 	 */
1709 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1710 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1711 		__kpti_forced = -1;
1712 	}
1713 
1714 	/* Useful for KASLR robustness */
1715 	if (kaslr_requires_kpti()) {
1716 		if (!__kpti_forced) {
1717 			str = "KASLR";
1718 			__kpti_forced = 1;
1719 		}
1720 	}
1721 
1722 	if (cpu_mitigations_off() && !__kpti_forced) {
1723 		str = "mitigations=off";
1724 		__kpti_forced = -1;
1725 	}
1726 
1727 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1728 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1729 		return false;
1730 	}
1731 
1732 	/* Forced? */
1733 	if (__kpti_forced) {
1734 		pr_info_once("kernel page table isolation forced %s by %s\n",
1735 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1736 		return __kpti_forced > 0;
1737 	}
1738 
1739 	return !meltdown_safe;
1740 }
1741 
1742 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1743 static bool has_lpa2_at_stage1(u64 mmfr0)
1744 {
1745 	unsigned int tgran;
1746 
1747 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1748 					ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1749 	return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1750 }
1751 
1752 static bool has_lpa2_at_stage2(u64 mmfr0)
1753 {
1754 	unsigned int tgran;
1755 
1756 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1757 					ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1758 	return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1759 }
1760 
1761 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1762 {
1763 	u64 mmfr0;
1764 
1765 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1766 	return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1767 }
1768 #else
1769 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1770 {
1771 	return false;
1772 }
1773 #endif
1774 
1775 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1776 #define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1777 
1778 extern
1779 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1780 			     phys_addr_t size, pgprot_t prot,
1781 			     phys_addr_t (*pgtable_alloc)(int), int flags);
1782 
1783 static phys_addr_t __initdata kpti_ng_temp_alloc;
1784 
1785 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1786 {
1787 	kpti_ng_temp_alloc -= PAGE_SIZE;
1788 	return kpti_ng_temp_alloc;
1789 }
1790 
1791 static int __init __kpti_install_ng_mappings(void *__unused)
1792 {
1793 	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1794 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1795 	kpti_remap_fn *remap_fn;
1796 
1797 	int cpu = smp_processor_id();
1798 	int levels = CONFIG_PGTABLE_LEVELS;
1799 	int order = order_base_2(levels);
1800 	u64 kpti_ng_temp_pgd_pa = 0;
1801 	pgd_t *kpti_ng_temp_pgd;
1802 	u64 alloc = 0;
1803 
1804 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1805 
1806 	if (!cpu) {
1807 		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1808 		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1809 		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1810 
1811 		//
1812 		// Create a minimal page table hierarchy that permits us to map
1813 		// the swapper page tables temporarily as we traverse them.
1814 		//
1815 		// The physical pages are laid out as follows:
1816 		//
1817 		// +--------+-/-------+-/------ +-\\--------+
1818 		// :  PTE[] : | PMD[] : | PUD[] : || PGD[]  :
1819 		// +--------+-\-------+-\------ +-//--------+
1820 		//      ^
1821 		// The first page is mapped into this hierarchy at a PMD_SHIFT
1822 		// aligned virtual address, so that we can manipulate the PTE
1823 		// level entries while the mapping is active. The first entry
1824 		// covers the PTE[] page itself, the remaining entries are free
1825 		// to be used as a ad-hoc fixmap.
1826 		//
1827 		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1828 					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1829 					kpti_ng_pgd_alloc, 0);
1830 	}
1831 
1832 	cpu_install_idmap();
1833 	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1834 	cpu_uninstall_idmap();
1835 
1836 	if (!cpu) {
1837 		free_pages(alloc, order);
1838 		arm64_use_ng_mappings = true;
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 static void __init kpti_install_ng_mappings(void)
1845 {
1846 	/* Check whether KPTI is going to be used */
1847 	if (!arm64_kernel_unmapped_at_el0())
1848 		return;
1849 
1850 	/*
1851 	 * We don't need to rewrite the page-tables if either we've done
1852 	 * it already or we have KASLR enabled and therefore have not
1853 	 * created any global mappings at all.
1854 	 */
1855 	if (arm64_use_ng_mappings)
1856 		return;
1857 
1858 	stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1859 }
1860 
1861 #else
1862 static inline void kpti_install_ng_mappings(void)
1863 {
1864 }
1865 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1866 
1867 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1868 {
1869 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1870 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1871 
1872 		__this_cpu_write(this_cpu_vector, v);
1873 	}
1874 
1875 }
1876 
1877 static int __init parse_kpti(char *str)
1878 {
1879 	bool enabled;
1880 	int ret = kstrtobool(str, &enabled);
1881 
1882 	if (ret)
1883 		return ret;
1884 
1885 	__kpti_forced = enabled ? 1 : -1;
1886 	return 0;
1887 }
1888 early_param("kpti", parse_kpti);
1889 
1890 #ifdef CONFIG_ARM64_HW_AFDBM
1891 static struct cpumask dbm_cpus __read_mostly;
1892 
1893 static inline void __cpu_enable_hw_dbm(void)
1894 {
1895 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1896 
1897 	write_sysreg(tcr, tcr_el1);
1898 	isb();
1899 	local_flush_tlb_all();
1900 }
1901 
1902 static bool cpu_has_broken_dbm(void)
1903 {
1904 	/* List of CPUs which have broken DBM support. */
1905 	static const struct midr_range cpus[] = {
1906 #ifdef CONFIG_ARM64_ERRATUM_1024718
1907 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1908 		/* Kryo4xx Silver (rdpe => r1p0) */
1909 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1910 #endif
1911 #ifdef CONFIG_ARM64_ERRATUM_2051678
1912 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1913 #endif
1914 		{},
1915 	};
1916 
1917 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1918 }
1919 
1920 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1921 {
1922 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1923 	       !cpu_has_broken_dbm();
1924 }
1925 
1926 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1927 {
1928 	if (cpu_can_use_dbm(cap)) {
1929 		__cpu_enable_hw_dbm();
1930 		cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
1931 	}
1932 }
1933 
1934 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1935 		       int __unused)
1936 {
1937 	/*
1938 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1939 	 * run a mix of CPUs with and without the feature. So, we
1940 	 * unconditionally enable the capability to allow any late CPU
1941 	 * to use the feature. We only enable the control bits on the
1942 	 * CPU, if it is supported.
1943 	 */
1944 
1945 	return true;
1946 }
1947 
1948 #endif
1949 
1950 #ifdef CONFIG_ARM64_AMU_EXTN
1951 
1952 /*
1953  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1954  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1955  * information regarding all the events that it supports. When a CPU bit is
1956  * set in the cpumask, the user of this feature can only rely on the presence
1957  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1958  * counters are enabled or access to these counters is enabled by code
1959  * executed at higher exception levels (firmware).
1960  */
1961 static struct cpumask amu_cpus __read_mostly;
1962 
1963 bool cpu_has_amu_feat(int cpu)
1964 {
1965 	return cpumask_test_cpu(cpu, &amu_cpus);
1966 }
1967 
1968 int get_cpu_with_amu_feat(void)
1969 {
1970 	return cpumask_any(&amu_cpus);
1971 }
1972 
1973 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1974 {
1975 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1976 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1977 
1978 		/* 0 reference values signal broken/disabled counters */
1979 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1980 			update_freq_counters_refs();
1981 	}
1982 }
1983 
1984 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1985 		    int __unused)
1986 {
1987 	/*
1988 	 * The AMU extension is a non-conflicting feature: the kernel can
1989 	 * safely run a mix of CPUs with and without support for the
1990 	 * activity monitors extension. Therefore, unconditionally enable
1991 	 * the capability to allow any late CPU to use the feature.
1992 	 *
1993 	 * With this feature unconditionally enabled, the cpu_enable
1994 	 * function will be called for all CPUs that match the criteria,
1995 	 * including secondary and hotplugged, marking this feature as
1996 	 * present on that respective CPU. The enable function will also
1997 	 * print a detection message.
1998 	 */
1999 
2000 	return true;
2001 }
2002 #else
2003 int get_cpu_with_amu_feat(void)
2004 {
2005 	return nr_cpu_ids;
2006 }
2007 #endif
2008 
2009 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2010 {
2011 	return is_kernel_in_hyp_mode();
2012 }
2013 
2014 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2015 {
2016 	/*
2017 	 * Copy register values that aren't redirected by hardware.
2018 	 *
2019 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2020 	 * this value to tpidr_el2 before we patch the code. Once we've done
2021 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2022 	 * do anything here.
2023 	 */
2024 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2025 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2026 }
2027 
2028 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2029 				    int scope)
2030 {
2031 	if (kvm_get_mode() != KVM_MODE_NV)
2032 		return false;
2033 
2034 	if (!has_cpuid_feature(cap, scope)) {
2035 		pr_warn("unavailable: %s\n", cap->desc);
2036 		return false;
2037 	}
2038 
2039 	return true;
2040 }
2041 
2042 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2043 			  int __unused)
2044 {
2045 	u64 val;
2046 
2047 	val = read_sysreg(id_aa64mmfr1_el1);
2048 	if (!cpuid_feature_extract_unsigned_field(val, ID_AA64MMFR1_EL1_VH_SHIFT))
2049 		return false;
2050 
2051 	val = arm64_sw_feature_override.val & arm64_sw_feature_override.mask;
2052 	return cpuid_feature_extract_unsigned_field(val, ARM64_SW_FEATURE_OVERRIDE_HVHE);
2053 }
2054 
2055 #ifdef CONFIG_ARM64_PAN
2056 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2057 {
2058 	/*
2059 	 * We modify PSTATE. This won't work from irq context as the PSTATE
2060 	 * is discarded once we return from the exception.
2061 	 */
2062 	WARN_ON_ONCE(in_interrupt());
2063 
2064 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2065 	set_pstate_pan(1);
2066 }
2067 #endif /* CONFIG_ARM64_PAN */
2068 
2069 #ifdef CONFIG_ARM64_RAS_EXTN
2070 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2071 {
2072 	/* Firmware may have left a deferred SError in this register. */
2073 	write_sysreg_s(0, SYS_DISR_EL1);
2074 }
2075 #endif /* CONFIG_ARM64_RAS_EXTN */
2076 
2077 #ifdef CONFIG_ARM64_PTR_AUTH
2078 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2079 {
2080 	int boot_val, sec_val;
2081 
2082 	/* We don't expect to be called with SCOPE_SYSTEM */
2083 	WARN_ON(scope == SCOPE_SYSTEM);
2084 	/*
2085 	 * The ptr-auth feature levels are not intercompatible with lower
2086 	 * levels. Hence we must match ptr-auth feature level of the secondary
2087 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2088 	 * from the sanitised register whereas direct register read is done for
2089 	 * the secondary CPUs.
2090 	 * The sanitised feature state is guaranteed to match that of the
2091 	 * boot CPU as a mismatched secondary CPU is parked before it gets
2092 	 * a chance to update the state, with the capability.
2093 	 */
2094 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2095 					       entry->field_pos, entry->sign);
2096 	if (scope & SCOPE_BOOT_CPU)
2097 		return boot_val >= entry->min_field_value;
2098 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2099 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2100 					      entry->field_pos, entry->sign);
2101 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2102 }
2103 
2104 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2105 				     int scope)
2106 {
2107 	bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2108 	bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2109 	bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2110 
2111 	return apa || apa3 || api;
2112 }
2113 
2114 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2115 			     int __unused)
2116 {
2117 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2118 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2119 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2120 
2121 	return gpa || gpa3 || gpi;
2122 }
2123 #endif /* CONFIG_ARM64_PTR_AUTH */
2124 
2125 #ifdef CONFIG_ARM64_E0PD
2126 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2127 {
2128 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2129 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2130 }
2131 #endif /* CONFIG_ARM64_E0PD */
2132 
2133 #ifdef CONFIG_ARM64_PSEUDO_NMI
2134 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2135 				   int scope)
2136 {
2137 	/*
2138 	 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2139 	 * feature, so will be detected earlier.
2140 	 */
2141 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2142 	if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2143 		return false;
2144 
2145 	return enable_pseudo_nmi;
2146 }
2147 
2148 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2149 				      int scope)
2150 {
2151 	/*
2152 	 * If we're not using priority masking then we won't be poking PMR_EL1,
2153 	 * and there's no need to relax synchronization of writes to it, and
2154 	 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2155 	 * that.
2156 	 *
2157 	 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2158 	 * feature, so will be detected earlier.
2159 	 */
2160 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2161 	if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2162 		return false;
2163 
2164 	/*
2165 	 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2166 	 * hint for interrupt distribution, a DSB is not necessary when
2167 	 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2168 	 *
2169 	 * Linux itself doesn't use 1:N distribution, so has no need to
2170 	 * set PMHE. The only reason to have it set is if EL3 requires it
2171 	 * (and we can't change it).
2172 	 */
2173 	return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2174 }
2175 #endif
2176 
2177 #ifdef CONFIG_ARM64_BTI
2178 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2179 {
2180 	/*
2181 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2182 	 * function entry points using BR is a requirement for
2183 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2184 	 * So, be strict and forbid other BRs using other registers to
2185 	 * jump onto a PACIxSP instruction:
2186 	 */
2187 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2188 	isb();
2189 }
2190 #endif /* CONFIG_ARM64_BTI */
2191 
2192 #ifdef CONFIG_ARM64_MTE
2193 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2194 {
2195 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2196 
2197 	mte_cpu_setup();
2198 
2199 	/*
2200 	 * Clear the tags in the zero page. This needs to be done via the
2201 	 * linear map which has the Tagged attribute.
2202 	 */
2203 	if (try_page_mte_tagging(ZERO_PAGE(0))) {
2204 		mte_clear_page_tags(lm_alias(empty_zero_page));
2205 		set_page_mte_tagged(ZERO_PAGE(0));
2206 	}
2207 
2208 	kasan_init_hw_tags_cpu();
2209 }
2210 #endif /* CONFIG_ARM64_MTE */
2211 
2212 static void user_feature_fixup(void)
2213 {
2214 	if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2215 		struct arm64_ftr_reg *regp;
2216 
2217 		regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2218 		if (regp)
2219 			regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2220 	}
2221 }
2222 
2223 static void elf_hwcap_fixup(void)
2224 {
2225 #ifdef CONFIG_COMPAT
2226 	if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2227 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2228 #endif /* CONFIG_COMPAT */
2229 }
2230 
2231 #ifdef CONFIG_KVM
2232 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2233 {
2234 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2235 }
2236 #endif /* CONFIG_KVM */
2237 
2238 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2239 {
2240 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2241 }
2242 
2243 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2244 {
2245 	set_pstate_dit(1);
2246 }
2247 
2248 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2249 {
2250 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2251 }
2252 
2253 /* Internal helper functions to match cpu capability type */
2254 static bool
2255 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2256 {
2257 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2258 }
2259 
2260 static bool
2261 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2262 {
2263 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2264 }
2265 
2266 static bool
2267 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2268 {
2269 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2270 }
2271 
2272 static const struct arm64_cpu_capabilities arm64_features[] = {
2273 	{
2274 		.capability = ARM64_ALWAYS_BOOT,
2275 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2276 		.matches = has_always,
2277 	},
2278 	{
2279 		.capability = ARM64_ALWAYS_SYSTEM,
2280 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2281 		.matches = has_always,
2282 	},
2283 	{
2284 		.desc = "GIC system register CPU interface",
2285 		.capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2286 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2287 		.matches = has_useable_gicv3_cpuif,
2288 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2289 	},
2290 	{
2291 		.desc = "Enhanced Counter Virtualization",
2292 		.capability = ARM64_HAS_ECV,
2293 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2294 		.matches = has_cpuid_feature,
2295 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2296 	},
2297 	{
2298 		.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2299 		.capability = ARM64_HAS_ECV_CNTPOFF,
2300 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2301 		.matches = has_cpuid_feature,
2302 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2303 	},
2304 #ifdef CONFIG_ARM64_PAN
2305 	{
2306 		.desc = "Privileged Access Never",
2307 		.capability = ARM64_HAS_PAN,
2308 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2309 		.matches = has_cpuid_feature,
2310 		.cpu_enable = cpu_enable_pan,
2311 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2312 	},
2313 #endif /* CONFIG_ARM64_PAN */
2314 #ifdef CONFIG_ARM64_EPAN
2315 	{
2316 		.desc = "Enhanced Privileged Access Never",
2317 		.capability = ARM64_HAS_EPAN,
2318 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2319 		.matches = has_cpuid_feature,
2320 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2321 	},
2322 #endif /* CONFIG_ARM64_EPAN */
2323 #ifdef CONFIG_ARM64_LSE_ATOMICS
2324 	{
2325 		.desc = "LSE atomic instructions",
2326 		.capability = ARM64_HAS_LSE_ATOMICS,
2327 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2328 		.matches = has_cpuid_feature,
2329 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2330 	},
2331 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2332 	{
2333 		.desc = "Virtualization Host Extensions",
2334 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2335 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2336 		.matches = runs_at_el2,
2337 		.cpu_enable = cpu_copy_el2regs,
2338 	},
2339 	{
2340 		.desc = "Nested Virtualization Support",
2341 		.capability = ARM64_HAS_NESTED_VIRT,
2342 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2343 		.matches = has_nested_virt_support,
2344 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2345 	},
2346 	{
2347 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2348 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2349 		.matches = has_32bit_el0,
2350 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2351 	},
2352 #ifdef CONFIG_KVM
2353 	{
2354 		.desc = "32-bit EL1 Support",
2355 		.capability = ARM64_HAS_32BIT_EL1,
2356 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2357 		.matches = has_cpuid_feature,
2358 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2359 	},
2360 	{
2361 		.desc = "Protected KVM",
2362 		.capability = ARM64_KVM_PROTECTED_MODE,
2363 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2364 		.matches = is_kvm_protected_mode,
2365 	},
2366 	{
2367 		.desc = "HCRX_EL2 register",
2368 		.capability = ARM64_HAS_HCX,
2369 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2370 		.matches = has_cpuid_feature,
2371 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2372 	},
2373 #endif
2374 	{
2375 		.desc = "Kernel page table isolation (KPTI)",
2376 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2377 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2378 		.cpu_enable = cpu_enable_kpti,
2379 		.matches = unmap_kernel_at_el0,
2380 		/*
2381 		 * The ID feature fields below are used to indicate that
2382 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2383 		 * more details.
2384 		 */
2385 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2386 	},
2387 	{
2388 		.capability = ARM64_HAS_FPSIMD,
2389 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2390 		.matches = has_cpuid_feature,
2391 		.cpu_enable = cpu_enable_fpsimd,
2392 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2393 	},
2394 #ifdef CONFIG_ARM64_PMEM
2395 	{
2396 		.desc = "Data cache clean to Point of Persistence",
2397 		.capability = ARM64_HAS_DCPOP,
2398 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2399 		.matches = has_cpuid_feature,
2400 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2401 	},
2402 	{
2403 		.desc = "Data cache clean to Point of Deep Persistence",
2404 		.capability = ARM64_HAS_DCPODP,
2405 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2406 		.matches = has_cpuid_feature,
2407 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2408 	},
2409 #endif
2410 #ifdef CONFIG_ARM64_SVE
2411 	{
2412 		.desc = "Scalable Vector Extension",
2413 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2414 		.capability = ARM64_SVE,
2415 		.cpu_enable = cpu_enable_sve,
2416 		.matches = has_cpuid_feature,
2417 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2418 	},
2419 #endif /* CONFIG_ARM64_SVE */
2420 #ifdef CONFIG_ARM64_RAS_EXTN
2421 	{
2422 		.desc = "RAS Extension Support",
2423 		.capability = ARM64_HAS_RAS_EXTN,
2424 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2425 		.matches = has_cpuid_feature,
2426 		.cpu_enable = cpu_clear_disr,
2427 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2428 	},
2429 #endif /* CONFIG_ARM64_RAS_EXTN */
2430 #ifdef CONFIG_ARM64_AMU_EXTN
2431 	{
2432 		.desc = "Activity Monitors Unit (AMU)",
2433 		.capability = ARM64_HAS_AMU_EXTN,
2434 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2435 		.matches = has_amu,
2436 		.cpu_enable = cpu_amu_enable,
2437 		.cpus = &amu_cpus,
2438 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2439 	},
2440 #endif /* CONFIG_ARM64_AMU_EXTN */
2441 	{
2442 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2443 		.capability = ARM64_HAS_CACHE_IDC,
2444 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2445 		.matches = has_cache_idc,
2446 		.cpu_enable = cpu_emulate_effective_ctr,
2447 	},
2448 	{
2449 		.desc = "Instruction cache invalidation not required for I/D coherence",
2450 		.capability = ARM64_HAS_CACHE_DIC,
2451 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2452 		.matches = has_cache_dic,
2453 	},
2454 	{
2455 		.desc = "Stage-2 Force Write-Back",
2456 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2457 		.capability = ARM64_HAS_STAGE2_FWB,
2458 		.matches = has_cpuid_feature,
2459 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2460 	},
2461 	{
2462 		.desc = "ARMv8.4 Translation Table Level",
2463 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2464 		.capability = ARM64_HAS_ARMv8_4_TTL,
2465 		.matches = has_cpuid_feature,
2466 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2467 	},
2468 	{
2469 		.desc = "TLB range maintenance instructions",
2470 		.capability = ARM64_HAS_TLB_RANGE,
2471 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2472 		.matches = has_cpuid_feature,
2473 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2474 	},
2475 #ifdef CONFIG_ARM64_HW_AFDBM
2476 	{
2477 		.desc = "Hardware dirty bit management",
2478 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2479 		.capability = ARM64_HW_DBM,
2480 		.matches = has_hw_dbm,
2481 		.cpu_enable = cpu_enable_hw_dbm,
2482 		.cpus = &dbm_cpus,
2483 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2484 	},
2485 #endif
2486 	{
2487 		.desc = "CRC32 instructions",
2488 		.capability = ARM64_HAS_CRC32,
2489 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2490 		.matches = has_cpuid_feature,
2491 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2492 	},
2493 	{
2494 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2495 		.capability = ARM64_SSBS,
2496 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2497 		.matches = has_cpuid_feature,
2498 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2499 	},
2500 #ifdef CONFIG_ARM64_CNP
2501 	{
2502 		.desc = "Common not Private translations",
2503 		.capability = ARM64_HAS_CNP,
2504 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2505 		.matches = has_useable_cnp,
2506 		.cpu_enable = cpu_enable_cnp,
2507 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2508 	},
2509 #endif
2510 	{
2511 		.desc = "Speculation barrier (SB)",
2512 		.capability = ARM64_HAS_SB,
2513 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2514 		.matches = has_cpuid_feature,
2515 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2516 	},
2517 #ifdef CONFIG_ARM64_PTR_AUTH
2518 	{
2519 		.desc = "Address authentication (architected QARMA5 algorithm)",
2520 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2521 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2522 		.matches = has_address_auth_cpucap,
2523 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2524 	},
2525 	{
2526 		.desc = "Address authentication (architected QARMA3 algorithm)",
2527 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2528 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2529 		.matches = has_address_auth_cpucap,
2530 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2531 	},
2532 	{
2533 		.desc = "Address authentication (IMP DEF algorithm)",
2534 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2535 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2536 		.matches = has_address_auth_cpucap,
2537 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2538 	},
2539 	{
2540 		.capability = ARM64_HAS_ADDRESS_AUTH,
2541 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2542 		.matches = has_address_auth_metacap,
2543 	},
2544 	{
2545 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2546 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2547 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2548 		.matches = has_cpuid_feature,
2549 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2550 	},
2551 	{
2552 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2553 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2554 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2555 		.matches = has_cpuid_feature,
2556 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2557 	},
2558 	{
2559 		.desc = "Generic authentication (IMP DEF algorithm)",
2560 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2561 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2562 		.matches = has_cpuid_feature,
2563 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2564 	},
2565 	{
2566 		.capability = ARM64_HAS_GENERIC_AUTH,
2567 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2568 		.matches = has_generic_auth,
2569 	},
2570 #endif /* CONFIG_ARM64_PTR_AUTH */
2571 #ifdef CONFIG_ARM64_PSEUDO_NMI
2572 	{
2573 		/*
2574 		 * Depends on having GICv3
2575 		 */
2576 		.desc = "IRQ priority masking",
2577 		.capability = ARM64_HAS_GIC_PRIO_MASKING,
2578 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2579 		.matches = can_use_gic_priorities,
2580 	},
2581 	{
2582 		/*
2583 		 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2584 		 */
2585 		.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2586 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2587 		.matches = has_gic_prio_relaxed_sync,
2588 	},
2589 #endif
2590 #ifdef CONFIG_ARM64_E0PD
2591 	{
2592 		.desc = "E0PD",
2593 		.capability = ARM64_HAS_E0PD,
2594 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2595 		.cpu_enable = cpu_enable_e0pd,
2596 		.matches = has_cpuid_feature,
2597 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2598 	},
2599 #endif
2600 	{
2601 		.desc = "Random Number Generator",
2602 		.capability = ARM64_HAS_RNG,
2603 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2604 		.matches = has_cpuid_feature,
2605 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2606 	},
2607 #ifdef CONFIG_ARM64_BTI
2608 	{
2609 		.desc = "Branch Target Identification",
2610 		.capability = ARM64_BTI,
2611 #ifdef CONFIG_ARM64_BTI_KERNEL
2612 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2613 #else
2614 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2615 #endif
2616 		.matches = has_cpuid_feature,
2617 		.cpu_enable = bti_enable,
2618 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2619 	},
2620 #endif
2621 #ifdef CONFIG_ARM64_MTE
2622 	{
2623 		.desc = "Memory Tagging Extension",
2624 		.capability = ARM64_MTE,
2625 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2626 		.matches = has_cpuid_feature,
2627 		.cpu_enable = cpu_enable_mte,
2628 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2629 	},
2630 	{
2631 		.desc = "Asymmetric MTE Tag Check Fault",
2632 		.capability = ARM64_MTE_ASYMM,
2633 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2634 		.matches = has_cpuid_feature,
2635 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2636 	},
2637 #endif /* CONFIG_ARM64_MTE */
2638 	{
2639 		.desc = "RCpc load-acquire (LDAPR)",
2640 		.capability = ARM64_HAS_LDAPR,
2641 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2642 		.matches = has_cpuid_feature,
2643 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2644 	},
2645 	{
2646 		.desc = "Fine Grained Traps",
2647 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2648 		.capability = ARM64_HAS_FGT,
2649 		.matches = has_cpuid_feature,
2650 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2651 	},
2652 #ifdef CONFIG_ARM64_SME
2653 	{
2654 		.desc = "Scalable Matrix Extension",
2655 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2656 		.capability = ARM64_SME,
2657 		.matches = has_cpuid_feature,
2658 		.cpu_enable = cpu_enable_sme,
2659 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2660 	},
2661 	/* FA64 should be sorted after the base SME capability */
2662 	{
2663 		.desc = "FA64",
2664 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2665 		.capability = ARM64_SME_FA64,
2666 		.matches = has_cpuid_feature,
2667 		.cpu_enable = cpu_enable_fa64,
2668 		ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2669 	},
2670 	{
2671 		.desc = "SME2",
2672 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2673 		.capability = ARM64_SME2,
2674 		.matches = has_cpuid_feature,
2675 		.cpu_enable = cpu_enable_sme2,
2676 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2677 	},
2678 #endif /* CONFIG_ARM64_SME */
2679 	{
2680 		.desc = "WFx with timeout",
2681 		.capability = ARM64_HAS_WFXT,
2682 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2683 		.matches = has_cpuid_feature,
2684 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2685 	},
2686 	{
2687 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2688 		.capability = ARM64_HAS_TIDCP1,
2689 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2690 		.matches = has_cpuid_feature,
2691 		.cpu_enable = cpu_trap_el0_impdef,
2692 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2693 	},
2694 	{
2695 		.desc = "Data independent timing control (DIT)",
2696 		.capability = ARM64_HAS_DIT,
2697 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2698 		.matches = has_cpuid_feature,
2699 		.cpu_enable = cpu_enable_dit,
2700 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2701 	},
2702 	{
2703 		.desc = "Memory Copy and Memory Set instructions",
2704 		.capability = ARM64_HAS_MOPS,
2705 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2706 		.matches = has_cpuid_feature,
2707 		.cpu_enable = cpu_enable_mops,
2708 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2709 	},
2710 	{
2711 		.capability = ARM64_HAS_TCR2,
2712 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2713 		.matches = has_cpuid_feature,
2714 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2715 	},
2716 	{
2717 		.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2718 		.capability = ARM64_HAS_S1PIE,
2719 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2720 		.matches = has_cpuid_feature,
2721 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2722 	},
2723 	{
2724 		.desc = "VHE for hypervisor only",
2725 		.capability = ARM64_KVM_HVHE,
2726 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2727 		.matches = hvhe_possible,
2728 	},
2729 	{
2730 		.desc = "Enhanced Virtualization Traps",
2731 		.capability = ARM64_HAS_EVT,
2732 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2733 		.matches = has_cpuid_feature,
2734 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2735 	},
2736 	{
2737 		.desc = "52-bit Virtual Addressing for KVM (LPA2)",
2738 		.capability = ARM64_HAS_LPA2,
2739 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2740 		.matches = has_lpa2,
2741 	},
2742 	{},
2743 };
2744 
2745 #define HWCAP_CPUID_MATCH(reg, field, min_value)			\
2746 		.matches = has_user_cpuid_feature,			\
2747 		ARM64_CPUID_FIELDS(reg, field, min_value)
2748 
2749 #define __HWCAP_CAP(name, cap_type, cap)					\
2750 		.desc = name,							\
2751 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2752 		.hwcap_type = cap_type,						\
2753 		.hwcap = cap,							\
2754 
2755 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)		\
2756 	{									\
2757 		__HWCAP_CAP(#cap, cap_type, cap)				\
2758 		HWCAP_CPUID_MATCH(reg, field, min_value) 		\
2759 	}
2760 
2761 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2762 	{									\
2763 		__HWCAP_CAP(#cap, cap_type, cap)				\
2764 		.matches = cpucap_multi_entry_cap_matches,			\
2765 		.match_list = list,						\
2766 	}
2767 
2768 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2769 	{									\
2770 		__HWCAP_CAP(#cap, cap_type, cap)				\
2771 		.matches = match,						\
2772 	}
2773 
2774 #ifdef CONFIG_ARM64_PTR_AUTH
2775 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2776 	{
2777 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2778 	},
2779 	{
2780 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2781 	},
2782 	{
2783 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2784 	},
2785 	{},
2786 };
2787 
2788 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2789 	{
2790 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2791 	},
2792 	{
2793 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2794 	},
2795 	{
2796 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2797 	},
2798 	{},
2799 };
2800 #endif
2801 
2802 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2803 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2804 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2805 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2806 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2807 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2808 	HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2809 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2810 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
2811 	HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2812 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2813 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2814 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2815 	HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2816 	HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2817 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2818 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2819 	HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2820 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2821 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2822 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2823 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2824 	HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2825 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2826 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2827 	HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2828 	HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2829 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2830 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2831 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
2832 	HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2833 	HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2834 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2835 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2836 	HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2837 	HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2838 	HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2839 #ifdef CONFIG_ARM64_SVE
2840 	HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2841 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2842 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2843 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2844 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2845 	HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2846 	HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
2847 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2848 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2849 	HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2850 	HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2851 	HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2852 	HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2853 	HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2854 #endif
2855 	HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2856 #ifdef CONFIG_ARM64_BTI
2857 	HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2858 #endif
2859 #ifdef CONFIG_ARM64_PTR_AUTH
2860 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2861 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2862 #endif
2863 #ifdef CONFIG_ARM64_MTE
2864 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2865 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2866 #endif /* CONFIG_ARM64_MTE */
2867 	HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
2868 	HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
2869 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2870 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2871 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2872 	HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2873 	HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
2874 	HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
2875 #ifdef CONFIG_ARM64_SME
2876 	HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2877 	HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2878 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
2879 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
2880 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2881 	HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2882 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
2883 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
2884 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
2885 	HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2886 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2887 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2888 	HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
2889 	HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2890 #endif /* CONFIG_ARM64_SME */
2891 	{},
2892 };
2893 
2894 #ifdef CONFIG_COMPAT
2895 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2896 {
2897 	/*
2898 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2899 	 * in line with that of arm32 as in vfp_init(). We make sure that the
2900 	 * check is future proof, by making sure value is non-zero.
2901 	 */
2902 	u32 mvfr1;
2903 
2904 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2905 	if (scope == SCOPE_SYSTEM)
2906 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2907 	else
2908 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2909 
2910 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
2911 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
2912 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
2913 }
2914 #endif
2915 
2916 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2917 #ifdef CONFIG_COMPAT
2918 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2919 	HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2920 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2921 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2922 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2923 	HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
2924 	HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
2925 	HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2926 	HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2927 	HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2928 	HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2929 	HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2930 	HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
2931 	HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
2932 	HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
2933 	HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
2934 	HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
2935 	HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
2936 #endif
2937 	{},
2938 };
2939 
2940 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2941 {
2942 	switch (cap->hwcap_type) {
2943 	case CAP_HWCAP:
2944 		cpu_set_feature(cap->hwcap);
2945 		break;
2946 #ifdef CONFIG_COMPAT
2947 	case CAP_COMPAT_HWCAP:
2948 		compat_elf_hwcap |= (u32)cap->hwcap;
2949 		break;
2950 	case CAP_COMPAT_HWCAP2:
2951 		compat_elf_hwcap2 |= (u32)cap->hwcap;
2952 		break;
2953 #endif
2954 	default:
2955 		WARN_ON(1);
2956 		break;
2957 	}
2958 }
2959 
2960 /* Check if we have a particular HWCAP enabled */
2961 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2962 {
2963 	bool rc;
2964 
2965 	switch (cap->hwcap_type) {
2966 	case CAP_HWCAP:
2967 		rc = cpu_have_feature(cap->hwcap);
2968 		break;
2969 #ifdef CONFIG_COMPAT
2970 	case CAP_COMPAT_HWCAP:
2971 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2972 		break;
2973 	case CAP_COMPAT_HWCAP2:
2974 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2975 		break;
2976 #endif
2977 	default:
2978 		WARN_ON(1);
2979 		rc = false;
2980 	}
2981 
2982 	return rc;
2983 }
2984 
2985 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2986 {
2987 	/* We support emulation of accesses to CPU ID feature registers */
2988 	cpu_set_named_feature(CPUID);
2989 	for (; hwcaps->matches; hwcaps++)
2990 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2991 			cap_set_elf_hwcap(hwcaps);
2992 }
2993 
2994 static void update_cpu_capabilities(u16 scope_mask)
2995 {
2996 	int i;
2997 	const struct arm64_cpu_capabilities *caps;
2998 
2999 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3000 	for (i = 0; i < ARM64_NCAPS; i++) {
3001 		caps = cpucap_ptrs[i];
3002 		if (!caps || !(caps->type & scope_mask) ||
3003 		    cpus_have_cap(caps->capability) ||
3004 		    !caps->matches(caps, cpucap_default_scope(caps)))
3005 			continue;
3006 
3007 		if (caps->desc && !caps->cpus)
3008 			pr_info("detected: %s\n", caps->desc);
3009 
3010 		__set_bit(caps->capability, system_cpucaps);
3011 
3012 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3013 			set_bit(caps->capability, boot_cpucaps);
3014 	}
3015 }
3016 
3017 /*
3018  * Enable all the available capabilities on this CPU. The capabilities
3019  * with BOOT_CPU scope are handled separately and hence skipped here.
3020  */
3021 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3022 {
3023 	int i;
3024 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3025 
3026 	for_each_available_cap(i) {
3027 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3028 
3029 		if (WARN_ON(!cap))
3030 			continue;
3031 
3032 		if (!(cap->type & non_boot_scope))
3033 			continue;
3034 
3035 		if (cap->cpu_enable)
3036 			cap->cpu_enable(cap);
3037 	}
3038 	return 0;
3039 }
3040 
3041 /*
3042  * Run through the enabled capabilities and enable() it on all active
3043  * CPUs
3044  */
3045 static void __init enable_cpu_capabilities(u16 scope_mask)
3046 {
3047 	int i;
3048 	const struct arm64_cpu_capabilities *caps;
3049 	bool boot_scope;
3050 
3051 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3052 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3053 
3054 	for (i = 0; i < ARM64_NCAPS; i++) {
3055 		unsigned int num;
3056 
3057 		caps = cpucap_ptrs[i];
3058 		if (!caps || !(caps->type & scope_mask))
3059 			continue;
3060 		num = caps->capability;
3061 		if (!cpus_have_cap(num))
3062 			continue;
3063 
3064 		if (boot_scope && caps->cpu_enable)
3065 			/*
3066 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3067 			 * before any secondary CPU boots. Thus, each secondary
3068 			 * will enable the capability as appropriate via
3069 			 * check_local_cpu_capabilities(). The only exception is
3070 			 * the boot CPU, for which the capability must be
3071 			 * enabled here. This approach avoids costly
3072 			 * stop_machine() calls for this case.
3073 			 */
3074 			caps->cpu_enable(caps);
3075 	}
3076 
3077 	/*
3078 	 * For all non-boot scope capabilities, use stop_machine()
3079 	 * as it schedules the work allowing us to modify PSTATE,
3080 	 * instead of on_each_cpu() which uses an IPI, giving us a
3081 	 * PSTATE that disappears when we return.
3082 	 */
3083 	if (!boot_scope)
3084 		stop_machine(cpu_enable_non_boot_scope_capabilities,
3085 			     NULL, cpu_online_mask);
3086 }
3087 
3088 /*
3089  * Run through the list of capabilities to check for conflicts.
3090  * If the system has already detected a capability, take necessary
3091  * action on this CPU.
3092  */
3093 static void verify_local_cpu_caps(u16 scope_mask)
3094 {
3095 	int i;
3096 	bool cpu_has_cap, system_has_cap;
3097 	const struct arm64_cpu_capabilities *caps;
3098 
3099 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3100 
3101 	for (i = 0; i < ARM64_NCAPS; i++) {
3102 		caps = cpucap_ptrs[i];
3103 		if (!caps || !(caps->type & scope_mask))
3104 			continue;
3105 
3106 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3107 		system_has_cap = cpus_have_cap(caps->capability);
3108 
3109 		if (system_has_cap) {
3110 			/*
3111 			 * Check if the new CPU misses an advertised feature,
3112 			 * which is not safe to miss.
3113 			 */
3114 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3115 				break;
3116 			/*
3117 			 * We have to issue cpu_enable() irrespective of
3118 			 * whether the CPU has it or not, as it is enabeld
3119 			 * system wide. It is upto the call back to take
3120 			 * appropriate action on this CPU.
3121 			 */
3122 			if (caps->cpu_enable)
3123 				caps->cpu_enable(caps);
3124 		} else {
3125 			/*
3126 			 * Check if the CPU has this capability if it isn't
3127 			 * safe to have when the system doesn't.
3128 			 */
3129 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3130 				break;
3131 		}
3132 	}
3133 
3134 	if (i < ARM64_NCAPS) {
3135 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3136 			smp_processor_id(), caps->capability,
3137 			caps->desc, system_has_cap, cpu_has_cap);
3138 
3139 		if (cpucap_panic_on_conflict(caps))
3140 			cpu_panic_kernel();
3141 		else
3142 			cpu_die_early();
3143 	}
3144 }
3145 
3146 /*
3147  * Check for CPU features that are used in early boot
3148  * based on the Boot CPU value.
3149  */
3150 static void check_early_cpu_features(void)
3151 {
3152 	verify_cpu_asid_bits();
3153 
3154 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3155 }
3156 
3157 static void
3158 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3159 {
3160 
3161 	for (; caps->matches; caps++)
3162 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3163 			pr_crit("CPU%d: missing HWCAP: %s\n",
3164 					smp_processor_id(), caps->desc);
3165 			cpu_die_early();
3166 		}
3167 }
3168 
3169 static void verify_local_elf_hwcaps(void)
3170 {
3171 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3172 
3173 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3174 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3175 }
3176 
3177 static void verify_sve_features(void)
3178 {
3179 	unsigned long cpacr = cpacr_save_enable_kernel_sve();
3180 
3181 	if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3182 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3183 			smp_processor_id());
3184 		cpu_die_early();
3185 	}
3186 
3187 	cpacr_restore(cpacr);
3188 }
3189 
3190 static void verify_sme_features(void)
3191 {
3192 	unsigned long cpacr = cpacr_save_enable_kernel_sme();
3193 
3194 	if (vec_verify_vq_map(ARM64_VEC_SME)) {
3195 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3196 			smp_processor_id());
3197 		cpu_die_early();
3198 	}
3199 
3200 	cpacr_restore(cpacr);
3201 }
3202 
3203 static void verify_hyp_capabilities(void)
3204 {
3205 	u64 safe_mmfr1, mmfr0, mmfr1;
3206 	int parange, ipa_max;
3207 	unsigned int safe_vmid_bits, vmid_bits;
3208 
3209 	if (!IS_ENABLED(CONFIG_KVM))
3210 		return;
3211 
3212 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3213 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3214 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3215 
3216 	/* Verify VMID bits */
3217 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3218 	vmid_bits = get_vmid_bits(mmfr1);
3219 	if (vmid_bits < safe_vmid_bits) {
3220 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3221 		cpu_die_early();
3222 	}
3223 
3224 	/* Verify IPA range */
3225 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3226 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3227 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3228 	if (ipa_max < get_kvm_ipa_limit()) {
3229 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3230 		cpu_die_early();
3231 	}
3232 }
3233 
3234 /*
3235  * Run through the enabled system capabilities and enable() it on this CPU.
3236  * The capabilities were decided based on the available CPUs at the boot time.
3237  * Any new CPU should match the system wide status of the capability. If the
3238  * new CPU doesn't have a capability which the system now has enabled, we
3239  * cannot do anything to fix it up and could cause unexpected failures. So
3240  * we park the CPU.
3241  */
3242 static void verify_local_cpu_capabilities(void)
3243 {
3244 	/*
3245 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3246 	 * check_early_cpu_features(), as they need to be verified
3247 	 * on all secondary CPUs.
3248 	 */
3249 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3250 	verify_local_elf_hwcaps();
3251 
3252 	if (system_supports_sve())
3253 		verify_sve_features();
3254 
3255 	if (system_supports_sme())
3256 		verify_sme_features();
3257 
3258 	if (is_hyp_mode_available())
3259 		verify_hyp_capabilities();
3260 }
3261 
3262 void check_local_cpu_capabilities(void)
3263 {
3264 	/*
3265 	 * All secondary CPUs should conform to the early CPU features
3266 	 * in use by the kernel based on boot CPU.
3267 	 */
3268 	check_early_cpu_features();
3269 
3270 	/*
3271 	 * If we haven't finalised the system capabilities, this CPU gets
3272 	 * a chance to update the errata work arounds and local features.
3273 	 * Otherwise, this CPU should verify that it has all the system
3274 	 * advertised capabilities.
3275 	 */
3276 	if (!system_capabilities_finalized())
3277 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3278 	else
3279 		verify_local_cpu_capabilities();
3280 }
3281 
3282 bool this_cpu_has_cap(unsigned int n)
3283 {
3284 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3285 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3286 
3287 		if (cap)
3288 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3289 	}
3290 
3291 	return false;
3292 }
3293 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3294 
3295 /*
3296  * This helper function is used in a narrow window when,
3297  * - The system wide safe registers are set with all the SMP CPUs and,
3298  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3299  */
3300 static bool __maybe_unused __system_matches_cap(unsigned int n)
3301 {
3302 	if (n < ARM64_NCAPS) {
3303 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3304 
3305 		if (cap)
3306 			return cap->matches(cap, SCOPE_SYSTEM);
3307 	}
3308 	return false;
3309 }
3310 
3311 void cpu_set_feature(unsigned int num)
3312 {
3313 	set_bit(num, elf_hwcap);
3314 }
3315 
3316 bool cpu_have_feature(unsigned int num)
3317 {
3318 	return test_bit(num, elf_hwcap);
3319 }
3320 EXPORT_SYMBOL_GPL(cpu_have_feature);
3321 
3322 unsigned long cpu_get_elf_hwcap(void)
3323 {
3324 	/*
3325 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3326 	 * note that for userspace compatibility we guarantee that bits 62
3327 	 * and 63 will always be returned as 0.
3328 	 */
3329 	return elf_hwcap[0];
3330 }
3331 
3332 unsigned long cpu_get_elf_hwcap2(void)
3333 {
3334 	return elf_hwcap[1];
3335 }
3336 
3337 static void __init setup_boot_cpu_capabilities(void)
3338 {
3339 	/*
3340 	 * The boot CPU's feature register values have been recorded. Detect
3341 	 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3342 	 * patch alternatives for the available boot cpucaps.
3343 	 */
3344 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3345 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3346 	apply_boot_alternatives();
3347 }
3348 
3349 void __init setup_boot_cpu_features(void)
3350 {
3351 	/*
3352 	 * Initialize the indirect array of CPU capabilities pointers before we
3353 	 * handle the boot CPU.
3354 	 */
3355 	init_cpucap_indirect_list();
3356 
3357 	/*
3358 	 * Detect broken pseudo-NMI. Must be called _before_ the call to
3359 	 * setup_boot_cpu_capabilities() since it interacts with
3360 	 * can_use_gic_priorities().
3361 	 */
3362 	detect_system_supports_pseudo_nmi();
3363 
3364 	setup_boot_cpu_capabilities();
3365 }
3366 
3367 static void __init setup_system_capabilities(void)
3368 {
3369 	/*
3370 	 * The system-wide safe feature register values have been finalized.
3371 	 * Detect, enable, and patch alternatives for the available system
3372 	 * cpucaps.
3373 	 */
3374 	update_cpu_capabilities(SCOPE_SYSTEM);
3375 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3376 	apply_alternatives_all();
3377 
3378 	/*
3379 	 * Log any cpucaps with a cpumask as these aren't logged by
3380 	 * update_cpu_capabilities().
3381 	 */
3382 	for (int i = 0; i < ARM64_NCAPS; i++) {
3383 		const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3384 
3385 		if (caps && caps->cpus && caps->desc &&
3386 			cpumask_any(caps->cpus) < nr_cpu_ids)
3387 			pr_info("detected: %s on CPU%*pbl\n",
3388 				caps->desc, cpumask_pr_args(caps->cpus));
3389 	}
3390 
3391 	/*
3392 	 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3393 	 */
3394 	if (system_uses_ttbr0_pan())
3395 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3396 }
3397 
3398 void __init setup_system_features(void)
3399 {
3400 	setup_system_capabilities();
3401 
3402 	kpti_install_ng_mappings();
3403 
3404 	sve_setup();
3405 	sme_setup();
3406 
3407 	/*
3408 	 * Check for sane CTR_EL0.CWG value.
3409 	 */
3410 	if (!cache_type_cwg())
3411 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3412 			ARCH_DMA_MINALIGN);
3413 }
3414 
3415 void __init setup_user_features(void)
3416 {
3417 	user_feature_fixup();
3418 
3419 	setup_elf_hwcaps(arm64_elf_hwcaps);
3420 
3421 	if (system_supports_32bit_el0()) {
3422 		setup_elf_hwcaps(compat_elf_hwcaps);
3423 		elf_hwcap_fixup();
3424 	}
3425 
3426 	minsigstksz_setup();
3427 }
3428 
3429 static int enable_mismatched_32bit_el0(unsigned int cpu)
3430 {
3431 	/*
3432 	 * The first 32-bit-capable CPU we detected and so can no longer
3433 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3434 	 * a 32-bit-capable CPU.
3435 	 */
3436 	static int lucky_winner = -1;
3437 
3438 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3439 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3440 
3441 	if (cpu_32bit) {
3442 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3443 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3444 	}
3445 
3446 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3447 		return 0;
3448 
3449 	if (lucky_winner >= 0)
3450 		return 0;
3451 
3452 	/*
3453 	 * We've detected a mismatch. We need to keep one of our CPUs with
3454 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3455 	 * every CPU in the system for a 32-bit task.
3456 	 */
3457 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3458 							 cpu_active_mask);
3459 	get_cpu_device(lucky_winner)->offline_disabled = true;
3460 	setup_elf_hwcaps(compat_elf_hwcaps);
3461 	elf_hwcap_fixup();
3462 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3463 		cpu, lucky_winner);
3464 	return 0;
3465 }
3466 
3467 static int __init init_32bit_el0_mask(void)
3468 {
3469 	if (!allow_mismatched_32bit_el0)
3470 		return 0;
3471 
3472 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3473 		return -ENOMEM;
3474 
3475 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3476 				 "arm64/mismatched_32bit_el0:online",
3477 				 enable_mismatched_32bit_el0, NULL);
3478 }
3479 subsys_initcall_sync(init_32bit_el0_mask);
3480 
3481 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3482 {
3483 	cpu_enable_swapper_cnp();
3484 }
3485 
3486 /*
3487  * We emulate only the following system register space.
3488  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3489  * See Table C5-6 System instruction encodings for System register accesses,
3490  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3491  */
3492 static inline bool __attribute_const__ is_emulated(u32 id)
3493 {
3494 	return (sys_reg_Op0(id) == 0x3 &&
3495 		sys_reg_CRn(id) == 0x0 &&
3496 		sys_reg_Op1(id) == 0x0 &&
3497 		(sys_reg_CRm(id) == 0 ||
3498 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3499 }
3500 
3501 /*
3502  * With CRm == 0, reg should be one of :
3503  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3504  */
3505 static inline int emulate_id_reg(u32 id, u64 *valp)
3506 {
3507 	switch (id) {
3508 	case SYS_MIDR_EL1:
3509 		*valp = read_cpuid_id();
3510 		break;
3511 	case SYS_MPIDR_EL1:
3512 		*valp = SYS_MPIDR_SAFE_VAL;
3513 		break;
3514 	case SYS_REVIDR_EL1:
3515 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3516 		*valp = 0;
3517 		break;
3518 	default:
3519 		return -EINVAL;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 static int emulate_sys_reg(u32 id, u64 *valp)
3526 {
3527 	struct arm64_ftr_reg *regp;
3528 
3529 	if (!is_emulated(id))
3530 		return -EINVAL;
3531 
3532 	if (sys_reg_CRm(id) == 0)
3533 		return emulate_id_reg(id, valp);
3534 
3535 	regp = get_arm64_ftr_reg_nowarn(id);
3536 	if (regp)
3537 		*valp = arm64_ftr_reg_user_value(regp);
3538 	else
3539 		/*
3540 		 * The untracked registers are either IMPLEMENTATION DEFINED
3541 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3542 		 */
3543 		*valp = 0;
3544 	return 0;
3545 }
3546 
3547 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3548 {
3549 	int rc;
3550 	u64 val;
3551 
3552 	rc = emulate_sys_reg(sys_reg, &val);
3553 	if (!rc) {
3554 		pt_regs_write_reg(regs, rt, val);
3555 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3556 	}
3557 	return rc;
3558 }
3559 
3560 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3561 {
3562 	u32 sys_reg, rt;
3563 
3564 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3565 		return false;
3566 
3567 	/*
3568 	 * sys_reg values are defined as used in mrs/msr instruction.
3569 	 * shift the imm value to get the encoding.
3570 	 */
3571 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3572 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3573 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
3574 }
3575 
3576 enum mitigation_state arm64_get_meltdown_state(void)
3577 {
3578 	if (__meltdown_safe)
3579 		return SPECTRE_UNAFFECTED;
3580 
3581 	if (arm64_kernel_unmapped_at_el0())
3582 		return SPECTRE_MITIGATED;
3583 
3584 	return SPECTRE_VULNERABLE;
3585 }
3586 
3587 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3588 			  char *buf)
3589 {
3590 	switch (arm64_get_meltdown_state()) {
3591 	case SPECTRE_UNAFFECTED:
3592 		return sprintf(buf, "Not affected\n");
3593 
3594 	case SPECTRE_MITIGATED:
3595 		return sprintf(buf, "Mitigation: PTI\n");
3596 
3597 	default:
3598 		return sprintf(buf, "Vulnerable\n");
3599 	}
3600 }
3601