xref: /linux/arch/arm64/kernel/cpufeature.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94 
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97 
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT	\
100 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103 				 COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107 
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111 
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113 
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116 
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118 
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124 
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130 
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136 
137 void dump_cpu_features(void)
138 {
139 	/* file-wide pr_fmt adds "CPU features: " prefix */
140 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142 
143 #define __ARM64_MAX_POSITIVE(reg, field)				\
144 		((reg##_##field##_SIGNED ?				\
145 		  BIT(reg##_##field##_WIDTH - 1) :			\
146 		  BIT(reg##_##field##_WIDTH)) - 1)
147 
148 #define __ARM64_MIN_NEGATIVE(reg, field)  BIT(reg##_##field##_WIDTH - 1)
149 
150 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value)		\
151 		.sys_reg = SYS_##reg,					\
152 		.field_pos = reg##_##field##_SHIFT,			\
153 		.field_width = reg##_##field##_WIDTH,			\
154 		.sign = reg##_##field##_SIGNED,				\
155 		.min_field_value = min_value,				\
156 		.max_field_value = max_value,
157 
158 /*
159  * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
160  * an implicit maximum that depends on the sign-ess of the field.
161  *
162  * An unsigned field will be capped at all ones, while a signed field
163  * will be limited to the positive half only.
164  */
165 #define ARM64_CPUID_FIELDS(reg, field, min_value)			\
166 	__ARM64_CPUID_FIELDS(reg, field,				\
167 			     SYS_FIELD_VALUE(reg, field, min_value),	\
168 			     __ARM64_MAX_POSITIVE(reg, field))
169 
170 /*
171  * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
172  * implicit minimal value to max_value. This should be used when
173  * matching a non-implemented property.
174  */
175 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value)			\
176 	__ARM64_CPUID_FIELDS(reg, field,				\
177 			     __ARM64_MIN_NEGATIVE(reg, field),		\
178 			     SYS_FIELD_VALUE(reg, field, max_value))
179 
180 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
181 	{						\
182 		.sign = SIGNED,				\
183 		.visible = VISIBLE,			\
184 		.strict = STRICT,			\
185 		.type = TYPE,				\
186 		.shift = SHIFT,				\
187 		.width = WIDTH,				\
188 		.safe_val = SAFE_VAL,			\
189 	}
190 
191 /* Define a feature with unsigned values */
192 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
193 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
194 
195 /* Define a feature with a signed value */
196 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
197 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
198 
199 #define ARM64_FTR_END					\
200 	{						\
201 		.width = 0,				\
202 	}
203 
204 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
205 
206 static bool __system_matches_cap(unsigned int n);
207 
208 /*
209  * NOTE: Any changes to the visibility of features should be kept in
210  * sync with the documentation of the CPU feature register ABI.
211  */
212 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
213 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
214 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
219 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
222 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
227 	ARM64_FTR_END,
228 };
229 
230 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
231 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
238 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
240 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
245 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
247 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
249 	ARM64_FTR_END,
250 };
251 
252 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
253 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
254 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
255 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
256 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
257 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
258 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
259 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
260 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
261 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
262 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
263 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
264 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
265 	ARM64_FTR_END,
266 };
267 
268 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
269 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
270 	ARM64_FTR_END,
271 };
272 
273 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
274 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
276 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
280 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
281 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
282 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
284 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
285 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
287 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
288 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
290 	ARM64_FTR_END,
291 };
292 
293 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
294 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
295 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
296 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
297 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
298 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
299 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
300 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
301 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
302 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
303 	ARM64_FTR_END,
304 };
305 
306 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
307 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
308 	ARM64_FTR_END,
309 };
310 
311 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
312 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
313 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
314 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
315 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
316 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
317 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
318 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
319 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
320 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
321 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
322 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
323 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
324 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
325 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
326 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
327 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
328 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
329 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
330 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
331 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
332 	ARM64_FTR_END,
333 };
334 
335 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
336 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
337 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
338 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
339 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
340 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
341 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
342 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
343 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
344 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
345 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
346 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
347 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
348 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
349 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
350 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
351 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
352 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
353 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
354 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
355 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
356 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
357 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
358 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
359 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
360 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
362 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
364 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
366 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
368 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
370 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
372 	ARM64_FTR_END,
373 };
374 
375 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
376 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
377 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
378 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
379 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
380 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
381 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
382 	ARM64_FTR_END,
383 };
384 
385 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
386 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
387 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
388 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
389 	/*
390 	 * Page size not being supported at Stage-2 is not fatal. You
391 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
392 	 * your favourite nesting hypervisor.
393 	 *
394 	 * There is a small corner case where the hypervisor explicitly
395 	 * advertises a given granule size at Stage-2 (value 2) on some
396 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
397 	 * vCPUs. Although this is not forbidden by the architecture, it
398 	 * indicates that the hypervisor is being silly (or buggy).
399 	 *
400 	 * We make no effort to cope with this and pretend that if these
401 	 * fields are inconsistent across vCPUs, then it isn't worth
402 	 * trying to bring KVM up.
403 	 */
404 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
405 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
406 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
407 	/*
408 	 * We already refuse to boot CPUs that don't support our configured
409 	 * page size, so we can only detect mismatches for a page size other
410 	 * than the one we're currently using. Unfortunately, SoCs like this
411 	 * exist in the wild so, even though we don't like it, we'll have to go
412 	 * along with it and treat them as non-strict.
413 	 */
414 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
415 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
416 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
417 
418 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
419 	/* Linux shouldn't care about secure memory */
420 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
421 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
422 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
423 	/*
424 	 * Differing PARange is fine as long as all peripherals and memory are mapped
425 	 * within the minimum PARange of all CPUs
426 	 */
427 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
428 	ARM64_FTR_END,
429 };
430 
431 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
432 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
433 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
434 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
435 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
436 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
437 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
438 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
439 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
440 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
441 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
442 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
443 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
444 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
445 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
446 	ARM64_FTR_END,
447 };
448 
449 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
450 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
451 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
453 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
454 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
455 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
456 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
457 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
459 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
460 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
461 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
462 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
463 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
464 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
465 	ARM64_FTR_END,
466 };
467 
468 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
469 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
470 		       FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
471 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
472 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
473 	ARM64_FTR_END,
474 };
475 
476 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
477 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
478 	ARM64_FTR_END,
479 };
480 
481 static const struct arm64_ftr_bits ftr_ctr[] = {
482 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
483 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
484 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
485 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
486 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
487 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
488 	/*
489 	 * Linux can handle differing I-cache policies. Userspace JITs will
490 	 * make use of *minLine.
491 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
492 	 */
493 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
494 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
495 	ARM64_FTR_END,
496 };
497 
498 static struct arm64_ftr_override __ro_after_init no_override = { };
499 
500 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
501 	.name		= "SYS_CTR_EL0",
502 	.ftr_bits	= ftr_ctr,
503 	.override	= &no_override,
504 };
505 
506 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
507 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
508 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
509 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
510 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
511 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
512 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
513 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
514 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
515 	ARM64_FTR_END,
516 };
517 
518 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
519 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
520 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
521 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
522 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
523 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
524 	/*
525 	 * We can instantiate multiple PMU instances with different levels
526 	 * of support.
527 	 */
528 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
529 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
530 	ARM64_FTR_END,
531 };
532 
533 static const struct arm64_ftr_bits ftr_mvfr0[] = {
534 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
535 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
536 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
537 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
538 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
539 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
540 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
541 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
542 	ARM64_FTR_END,
543 };
544 
545 static const struct arm64_ftr_bits ftr_mvfr1[] = {
546 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
547 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
548 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
549 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
550 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
551 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
552 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
553 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
554 	ARM64_FTR_END,
555 };
556 
557 static const struct arm64_ftr_bits ftr_mvfr2[] = {
558 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
559 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
560 	ARM64_FTR_END,
561 };
562 
563 static const struct arm64_ftr_bits ftr_dczid[] = {
564 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
565 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
566 	ARM64_FTR_END,
567 };
568 
569 static const struct arm64_ftr_bits ftr_gmid[] = {
570 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
571 	ARM64_FTR_END,
572 };
573 
574 static const struct arm64_ftr_bits ftr_id_isar0[] = {
575 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
576 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
577 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
578 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
579 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
580 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
581 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
582 	ARM64_FTR_END,
583 };
584 
585 static const struct arm64_ftr_bits ftr_id_isar5[] = {
586 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
587 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
588 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
589 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
590 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
591 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
592 	ARM64_FTR_END,
593 };
594 
595 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
596 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
597 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
598 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
599 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
600 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
601 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
602 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
603 
604 	/*
605 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
606 	 * external abort on speculative read. It is safe to assume that an
607 	 * SError might be generated than it will not be. Hence it has been
608 	 * classified as FTR_HIGHER_SAFE.
609 	 */
610 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
611 	ARM64_FTR_END,
612 };
613 
614 static const struct arm64_ftr_bits ftr_id_isar4[] = {
615 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
616 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
617 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
618 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
619 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
620 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
621 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
622 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
623 	ARM64_FTR_END,
624 };
625 
626 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
627 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
628 	ARM64_FTR_END,
629 };
630 
631 static const struct arm64_ftr_bits ftr_id_isar6[] = {
632 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
633 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
634 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
635 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
636 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
637 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
638 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
639 	ARM64_FTR_END,
640 };
641 
642 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
643 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
644 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
645 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
646 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
647 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
648 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
649 	ARM64_FTR_END,
650 };
651 
652 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
653 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
654 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
655 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
656 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
657 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
658 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
659 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
660 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
661 	ARM64_FTR_END,
662 };
663 
664 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
665 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
666 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
667 	ARM64_FTR_END,
668 };
669 
670 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
671 	/* [31:28] TraceFilt */
672 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
673 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
674 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
675 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
676 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
677 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
678 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
679 	ARM64_FTR_END,
680 };
681 
682 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
683 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
684 	ARM64_FTR_END,
685 };
686 
687 /*
688  * Common ftr bits for a 32bit register with all hidden, strict
689  * attributes, with 4bit feature fields and a default safe value of
690  * 0. Covers the following 32bit registers:
691  * id_isar[1-3], id_mmfr[1-3]
692  */
693 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
694 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
695 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
696 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
697 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
698 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
699 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
700 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
701 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
702 	ARM64_FTR_END,
703 };
704 
705 /* Table for a single 32bit feature value */
706 static const struct arm64_ftr_bits ftr_single32[] = {
707 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
708 	ARM64_FTR_END,
709 };
710 
711 static const struct arm64_ftr_bits ftr_raz[] = {
712 	ARM64_FTR_END,
713 };
714 
715 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
716 		.sys_id = id,					\
717 		.reg = 	&(struct arm64_ftr_reg){		\
718 			.name = id_str,				\
719 			.override = (ovr),			\
720 			.ftr_bits = &((table)[0]),		\
721 	}}
722 
723 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
724 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
725 
726 #define ARM64_FTR_REG(id, table)		\
727 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
728 
729 struct arm64_ftr_override id_aa64mmfr0_override;
730 struct arm64_ftr_override id_aa64mmfr1_override;
731 struct arm64_ftr_override id_aa64mmfr2_override;
732 struct arm64_ftr_override id_aa64pfr0_override;
733 struct arm64_ftr_override id_aa64pfr1_override;
734 struct arm64_ftr_override id_aa64zfr0_override;
735 struct arm64_ftr_override id_aa64smfr0_override;
736 struct arm64_ftr_override id_aa64isar1_override;
737 struct arm64_ftr_override id_aa64isar2_override;
738 
739 struct arm64_ftr_override arm64_sw_feature_override;
740 
741 static const struct __ftr_reg_entry {
742 	u32			sys_id;
743 	struct arm64_ftr_reg 	*reg;
744 } arm64_ftr_regs[] = {
745 
746 	/* Op1 = 0, CRn = 0, CRm = 1 */
747 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
748 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
749 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
750 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
751 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
752 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
753 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
754 
755 	/* Op1 = 0, CRn = 0, CRm = 2 */
756 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
757 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
758 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
759 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
760 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
761 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
762 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
763 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
764 
765 	/* Op1 = 0, CRn = 0, CRm = 3 */
766 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
767 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
768 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
769 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
770 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
771 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
772 
773 	/* Op1 = 0, CRn = 0, CRm = 4 */
774 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
775 			       &id_aa64pfr0_override),
776 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
777 			       &id_aa64pfr1_override),
778 	ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
779 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
780 			       &id_aa64zfr0_override),
781 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
782 			       &id_aa64smfr0_override),
783 	ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
784 
785 	/* Op1 = 0, CRn = 0, CRm = 5 */
786 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
787 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
788 
789 	/* Op1 = 0, CRn = 0, CRm = 6 */
790 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
791 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
792 			       &id_aa64isar1_override),
793 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
794 			       &id_aa64isar2_override),
795 	ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
796 
797 	/* Op1 = 0, CRn = 0, CRm = 7 */
798 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
799 			       &id_aa64mmfr0_override),
800 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
801 			       &id_aa64mmfr1_override),
802 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
803 			       &id_aa64mmfr2_override),
804 	ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
805 	ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
806 
807 	/* Op1 = 1, CRn = 0, CRm = 0 */
808 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
809 
810 	/* Op1 = 3, CRn = 0, CRm = 0 */
811 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
812 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
813 
814 	/* Op1 = 3, CRn = 14, CRm = 0 */
815 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
816 };
817 
818 static int search_cmp_ftr_reg(const void *id, const void *regp)
819 {
820 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
821 }
822 
823 /*
824  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
825  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
826  * ascending order of sys_id, we use binary search to find a matching
827  * entry.
828  *
829  * returns - Upon success,  matching ftr_reg entry for id.
830  *         - NULL on failure. It is upto the caller to decide
831  *	     the impact of a failure.
832  */
833 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
834 {
835 	const struct __ftr_reg_entry *ret;
836 
837 	ret = bsearch((const void *)(unsigned long)sys_id,
838 			arm64_ftr_regs,
839 			ARRAY_SIZE(arm64_ftr_regs),
840 			sizeof(arm64_ftr_regs[0]),
841 			search_cmp_ftr_reg);
842 	if (ret)
843 		return ret->reg;
844 	return NULL;
845 }
846 
847 /*
848  * get_arm64_ftr_reg - Looks up a feature register entry using
849  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
850  *
851  * returns - Upon success,  matching ftr_reg entry for id.
852  *         - NULL on failure but with an WARN_ON().
853  */
854 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
855 {
856 	struct arm64_ftr_reg *reg;
857 
858 	reg = get_arm64_ftr_reg_nowarn(sys_id);
859 
860 	/*
861 	 * Requesting a non-existent register search is an error. Warn
862 	 * and let the caller handle it.
863 	 */
864 	WARN_ON(!reg);
865 	return reg;
866 }
867 
868 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
869 			       s64 ftr_val)
870 {
871 	u64 mask = arm64_ftr_mask(ftrp);
872 
873 	reg &= ~mask;
874 	reg |= (ftr_val << ftrp->shift) & mask;
875 	return reg;
876 }
877 
878 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
879 				s64 cur)
880 {
881 	s64 ret = 0;
882 
883 	switch (ftrp->type) {
884 	case FTR_EXACT:
885 		ret = ftrp->safe_val;
886 		break;
887 	case FTR_LOWER_SAFE:
888 		ret = min(new, cur);
889 		break;
890 	case FTR_HIGHER_OR_ZERO_SAFE:
891 		if (!cur || !new)
892 			break;
893 		fallthrough;
894 	case FTR_HIGHER_SAFE:
895 		ret = max(new, cur);
896 		break;
897 	default:
898 		BUG();
899 	}
900 
901 	return ret;
902 }
903 
904 static void __init sort_ftr_regs(void)
905 {
906 	unsigned int i;
907 
908 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
909 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
910 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
911 		unsigned int j = 0;
912 
913 		/*
914 		 * Features here must be sorted in descending order with respect
915 		 * to their shift values and should not overlap with each other.
916 		 */
917 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
918 			unsigned int width = ftr_reg->ftr_bits[j].width;
919 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
920 			unsigned int prev_shift;
921 
922 			WARN((shift  + width) > 64,
923 				"%s has invalid feature at shift %d\n",
924 				ftr_reg->name, shift);
925 
926 			/*
927 			 * Skip the first feature. There is nothing to
928 			 * compare against for now.
929 			 */
930 			if (j == 0)
931 				continue;
932 
933 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
934 			WARN((shift + width) > prev_shift,
935 				"%s has feature overlap at shift %d\n",
936 				ftr_reg->name, shift);
937 		}
938 
939 		/*
940 		 * Skip the first register. There is nothing to
941 		 * compare against for now.
942 		 */
943 		if (i == 0)
944 			continue;
945 		/*
946 		 * Registers here must be sorted in ascending order with respect
947 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
948 		 * to work correctly.
949 		 */
950 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
951 	}
952 }
953 
954 /*
955  * Initialise the CPU feature register from Boot CPU values.
956  * Also initiliases the strict_mask for the register.
957  * Any bits that are not covered by an arm64_ftr_bits entry are considered
958  * RES0 for the system-wide value, and must strictly match.
959  */
960 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
961 {
962 	u64 val = 0;
963 	u64 strict_mask = ~0x0ULL;
964 	u64 user_mask = 0;
965 	u64 valid_mask = 0;
966 
967 	const struct arm64_ftr_bits *ftrp;
968 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
969 
970 	if (!reg)
971 		return;
972 
973 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
974 		u64 ftr_mask = arm64_ftr_mask(ftrp);
975 		s64 ftr_new = arm64_ftr_value(ftrp, new);
976 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
977 
978 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
979 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
980 			char *str = NULL;
981 
982 			if (ftr_ovr != tmp) {
983 				/* Unsafe, remove the override */
984 				reg->override->mask &= ~ftr_mask;
985 				reg->override->val &= ~ftr_mask;
986 				tmp = ftr_ovr;
987 				str = "ignoring override";
988 			} else if (ftr_new != tmp) {
989 				/* Override was valid */
990 				ftr_new = tmp;
991 				str = "forced";
992 			} else if (ftr_ovr == tmp) {
993 				/* Override was the safe value */
994 				str = "already set";
995 			}
996 
997 			if (str)
998 				pr_warn("%s[%d:%d]: %s to %llx\n",
999 					reg->name,
1000 					ftrp->shift + ftrp->width - 1,
1001 					ftrp->shift, str,
1002 					tmp & (BIT(ftrp->width) - 1));
1003 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1004 			reg->override->val &= ~ftr_mask;
1005 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
1006 				reg->name,
1007 				ftrp->shift + ftrp->width - 1,
1008 				ftrp->shift);
1009 		}
1010 
1011 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
1012 
1013 		valid_mask |= ftr_mask;
1014 		if (!ftrp->strict)
1015 			strict_mask &= ~ftr_mask;
1016 		if (ftrp->visible)
1017 			user_mask |= ftr_mask;
1018 		else
1019 			reg->user_val = arm64_ftr_set_value(ftrp,
1020 							    reg->user_val,
1021 							    ftrp->safe_val);
1022 	}
1023 
1024 	val &= valid_mask;
1025 
1026 	reg->sys_val = val;
1027 	reg->strict_mask = strict_mask;
1028 	reg->user_mask = user_mask;
1029 }
1030 
1031 extern const struct arm64_cpu_capabilities arm64_errata[];
1032 static const struct arm64_cpu_capabilities arm64_features[];
1033 
1034 static void __init
1035 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1036 {
1037 	for (; caps->matches; caps++) {
1038 		if (WARN(caps->capability >= ARM64_NCAPS,
1039 			"Invalid capability %d\n", caps->capability))
1040 			continue;
1041 		if (WARN(cpucap_ptrs[caps->capability],
1042 			"Duplicate entry for capability %d\n",
1043 			caps->capability))
1044 			continue;
1045 		cpucap_ptrs[caps->capability] = caps;
1046 	}
1047 }
1048 
1049 static void __init init_cpucap_indirect_list(void)
1050 {
1051 	init_cpucap_indirect_list_from_array(arm64_features);
1052 	init_cpucap_indirect_list_from_array(arm64_errata);
1053 }
1054 
1055 static void __init setup_boot_cpu_capabilities(void);
1056 
1057 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1058 {
1059 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1060 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1061 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1062 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1063 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1064 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1065 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1066 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1067 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1068 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1069 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1070 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1071 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1072 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1073 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1074 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1075 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1076 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1077 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1078 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1079 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1080 }
1081 
1082 #ifdef CONFIG_ARM64_PSEUDO_NMI
1083 static bool enable_pseudo_nmi;
1084 
1085 static int __init early_enable_pseudo_nmi(char *p)
1086 {
1087 	return kstrtobool(p, &enable_pseudo_nmi);
1088 }
1089 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1090 
1091 static __init void detect_system_supports_pseudo_nmi(void)
1092 {
1093 	struct device_node *np;
1094 
1095 	if (!enable_pseudo_nmi)
1096 		return;
1097 
1098 	/*
1099 	 * Detect broken MediaTek firmware that doesn't properly save and
1100 	 * restore GIC priorities.
1101 	 */
1102 	np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1103 	if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1104 		pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1105 		enable_pseudo_nmi = false;
1106 	}
1107 	of_node_put(np);
1108 }
1109 #else /* CONFIG_ARM64_PSEUDO_NMI */
1110 static inline void detect_system_supports_pseudo_nmi(void) { }
1111 #endif
1112 
1113 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1114 {
1115 	/* Before we start using the tables, make sure it is sorted */
1116 	sort_ftr_regs();
1117 
1118 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1119 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1120 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1121 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1122 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1123 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1124 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1125 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1126 	init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1127 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1128 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1129 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1130 	init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1131 	init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1132 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1133 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1134 	init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1135 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1136 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1137 	init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1138 
1139 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1140 		init_32bit_cpu_features(&info->aarch32);
1141 
1142 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1143 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1144 		unsigned long cpacr = cpacr_save_enable_kernel_sve();
1145 
1146 		vec_init_vq_map(ARM64_VEC_SVE);
1147 
1148 		cpacr_restore(cpacr);
1149 	}
1150 
1151 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1152 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1153 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1154 
1155 		/*
1156 		 * We mask out SMPS since even if the hardware
1157 		 * supports priorities the kernel does not at present
1158 		 * and we block access to them.
1159 		 */
1160 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1161 		vec_init_vq_map(ARM64_VEC_SME);
1162 
1163 		cpacr_restore(cpacr);
1164 	}
1165 
1166 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1167 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1168 }
1169 
1170 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1171 {
1172 	const struct arm64_ftr_bits *ftrp;
1173 
1174 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1175 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1176 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1177 
1178 		if (ftr_cur == ftr_new)
1179 			continue;
1180 		/* Find a safe value */
1181 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1182 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1183 	}
1184 
1185 }
1186 
1187 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1188 {
1189 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1190 
1191 	if (!regp)
1192 		return 0;
1193 
1194 	update_cpu_ftr_reg(regp, val);
1195 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1196 		return 0;
1197 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1198 			regp->name, boot, cpu, val);
1199 	return 1;
1200 }
1201 
1202 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1203 {
1204 	const struct arm64_ftr_bits *ftrp;
1205 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1206 
1207 	if (!regp)
1208 		return;
1209 
1210 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1211 		if (ftrp->shift == field) {
1212 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1213 			break;
1214 		}
1215 	}
1216 
1217 	/* Bogus field? */
1218 	WARN_ON(!ftrp->width);
1219 }
1220 
1221 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1222 					 struct cpuinfo_arm64 *boot)
1223 {
1224 	static bool boot_cpu_32bit_regs_overridden = false;
1225 
1226 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1227 		return;
1228 
1229 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1230 		return;
1231 
1232 	boot->aarch32 = info->aarch32;
1233 	init_32bit_cpu_features(&boot->aarch32);
1234 	boot_cpu_32bit_regs_overridden = true;
1235 }
1236 
1237 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1238 				     struct cpuinfo_32bit *boot)
1239 {
1240 	int taint = 0;
1241 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1242 
1243 	/*
1244 	 * If we don't have AArch32 at EL1, then relax the strictness of
1245 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1246 	 */
1247 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1248 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1249 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1250 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1251 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1252 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1253 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1254 	}
1255 
1256 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1257 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1258 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1259 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1260 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1261 				      info->reg_id_isar0, boot->reg_id_isar0);
1262 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1263 				      info->reg_id_isar1, boot->reg_id_isar1);
1264 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1265 				      info->reg_id_isar2, boot->reg_id_isar2);
1266 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1267 				      info->reg_id_isar3, boot->reg_id_isar3);
1268 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1269 				      info->reg_id_isar4, boot->reg_id_isar4);
1270 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1271 				      info->reg_id_isar5, boot->reg_id_isar5);
1272 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1273 				      info->reg_id_isar6, boot->reg_id_isar6);
1274 
1275 	/*
1276 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1277 	 * ACTLR formats could differ across CPUs and therefore would have to
1278 	 * be trapped for virtualization anyway.
1279 	 */
1280 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1281 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1282 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1283 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1284 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1285 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1286 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1287 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1288 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1289 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1290 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1291 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1292 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1293 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1294 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1295 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1296 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1297 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1298 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1299 				      info->reg_mvfr0, boot->reg_mvfr0);
1300 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1301 				      info->reg_mvfr1, boot->reg_mvfr1);
1302 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1303 				      info->reg_mvfr2, boot->reg_mvfr2);
1304 
1305 	return taint;
1306 }
1307 
1308 /*
1309  * Update system wide CPU feature registers with the values from a
1310  * non-boot CPU. Also performs SANITY checks to make sure that there
1311  * aren't any insane variations from that of the boot CPU.
1312  */
1313 void update_cpu_features(int cpu,
1314 			 struct cpuinfo_arm64 *info,
1315 			 struct cpuinfo_arm64 *boot)
1316 {
1317 	int taint = 0;
1318 
1319 	/*
1320 	 * The kernel can handle differing I-cache policies, but otherwise
1321 	 * caches should look identical. Userspace JITs will make use of
1322 	 * *minLine.
1323 	 */
1324 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1325 				      info->reg_ctr, boot->reg_ctr);
1326 
1327 	/*
1328 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1329 	 * could result in too much or too little memory being zeroed if a
1330 	 * process is preempted and migrated between CPUs.
1331 	 */
1332 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1333 				      info->reg_dczid, boot->reg_dczid);
1334 
1335 	/* If different, timekeeping will be broken (especially with KVM) */
1336 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1337 				      info->reg_cntfrq, boot->reg_cntfrq);
1338 
1339 	/*
1340 	 * The kernel uses self-hosted debug features and expects CPUs to
1341 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1342 	 * and BRPs to be identical.
1343 	 * ID_AA64DFR1 is currently RES0.
1344 	 */
1345 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1346 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1347 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1348 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1349 	/*
1350 	 * Even in big.LITTLE, processors should be identical instruction-set
1351 	 * wise.
1352 	 */
1353 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1354 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1355 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1356 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1357 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1358 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1359 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1360 				      info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1361 
1362 	/*
1363 	 * Differing PARange support is fine as long as all peripherals and
1364 	 * memory are mapped within the minimum PARange of all CPUs.
1365 	 * Linux should not care about secure memory.
1366 	 */
1367 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1368 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1369 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1370 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1371 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1372 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1373 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1374 				      info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1375 
1376 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1377 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1378 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1379 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1380 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1381 				      info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1382 
1383 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1384 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1385 
1386 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1387 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1388 
1389 	taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1390 				      info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1391 
1392 	/* Probe vector lengths */
1393 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1394 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1395 		if (!system_capabilities_finalized()) {
1396 			unsigned long cpacr = cpacr_save_enable_kernel_sve();
1397 
1398 			vec_update_vq_map(ARM64_VEC_SVE);
1399 
1400 			cpacr_restore(cpacr);
1401 		}
1402 	}
1403 
1404 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1405 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1406 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1407 
1408 		/*
1409 		 * We mask out SMPS since even if the hardware
1410 		 * supports priorities the kernel does not at present
1411 		 * and we block access to them.
1412 		 */
1413 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1414 
1415 		/* Probe vector lengths */
1416 		if (!system_capabilities_finalized())
1417 			vec_update_vq_map(ARM64_VEC_SME);
1418 
1419 		cpacr_restore(cpacr);
1420 	}
1421 
1422 	/*
1423 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1424 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1425 	 * value is the same on all CPUs.
1426 	 */
1427 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1428 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1429 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1430 					      info->reg_gmid, boot->reg_gmid);
1431 	}
1432 
1433 	/*
1434 	 * If we don't have AArch32 at all then skip the checks entirely
1435 	 * as the register values may be UNKNOWN and we're not going to be
1436 	 * using them for anything.
1437 	 *
1438 	 * This relies on a sanitised view of the AArch64 ID registers
1439 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1440 	 */
1441 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1442 		lazy_init_32bit_cpu_features(info, boot);
1443 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1444 						   &boot->aarch32);
1445 	}
1446 
1447 	/*
1448 	 * Mismatched CPU features are a recipe for disaster. Don't even
1449 	 * pretend to support them.
1450 	 */
1451 	if (taint) {
1452 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1453 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1454 	}
1455 }
1456 
1457 u64 read_sanitised_ftr_reg(u32 id)
1458 {
1459 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1460 
1461 	if (!regp)
1462 		return 0;
1463 	return regp->sys_val;
1464 }
1465 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1466 
1467 #define read_sysreg_case(r)	\
1468 	case r:		val = read_sysreg_s(r); break;
1469 
1470 /*
1471  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1472  * Read the system register on the current CPU
1473  */
1474 u64 __read_sysreg_by_encoding(u32 sys_id)
1475 {
1476 	struct arm64_ftr_reg *regp;
1477 	u64 val;
1478 
1479 	switch (sys_id) {
1480 	read_sysreg_case(SYS_ID_PFR0_EL1);
1481 	read_sysreg_case(SYS_ID_PFR1_EL1);
1482 	read_sysreg_case(SYS_ID_PFR2_EL1);
1483 	read_sysreg_case(SYS_ID_DFR0_EL1);
1484 	read_sysreg_case(SYS_ID_DFR1_EL1);
1485 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1486 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1487 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1488 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1489 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1490 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1491 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1492 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1493 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1494 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1495 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1496 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1497 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1498 	read_sysreg_case(SYS_MVFR0_EL1);
1499 	read_sysreg_case(SYS_MVFR1_EL1);
1500 	read_sysreg_case(SYS_MVFR2_EL1);
1501 
1502 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1503 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1504 	read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1505 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1506 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1507 	read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1508 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1509 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1510 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1511 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1512 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1513 	read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1514 	read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1515 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1516 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1517 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1518 	read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1519 
1520 	read_sysreg_case(SYS_CNTFRQ_EL0);
1521 	read_sysreg_case(SYS_CTR_EL0);
1522 	read_sysreg_case(SYS_DCZID_EL0);
1523 
1524 	default:
1525 		BUG();
1526 		return 0;
1527 	}
1528 
1529 	regp  = get_arm64_ftr_reg(sys_id);
1530 	if (regp) {
1531 		val &= ~regp->override->mask;
1532 		val |= (regp->override->val & regp->override->mask);
1533 	}
1534 
1535 	return val;
1536 }
1537 
1538 #include <linux/irqchip/arm-gic-v3.h>
1539 
1540 static bool
1541 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1542 {
1543 	return true;
1544 }
1545 
1546 static bool
1547 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1548 {
1549 	int val, min, max;
1550 	u64 tmp;
1551 
1552 	val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1553 						entry->field_width,
1554 						entry->sign);
1555 
1556 	tmp = entry->min_field_value;
1557 	tmp <<= entry->field_pos;
1558 
1559 	min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1560 						entry->field_width,
1561 						entry->sign);
1562 
1563 	tmp = entry->max_field_value;
1564 	tmp <<= entry->field_pos;
1565 
1566 	max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1567 						entry->field_width,
1568 						entry->sign);
1569 
1570 	return val >= min && val <= max;
1571 }
1572 
1573 static u64
1574 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1575 {
1576 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1577 	if (scope == SCOPE_SYSTEM)
1578 		return read_sanitised_ftr_reg(entry->sys_reg);
1579 	else
1580 		return __read_sysreg_by_encoding(entry->sys_reg);
1581 }
1582 
1583 static bool
1584 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1585 {
1586 	int mask;
1587 	struct arm64_ftr_reg *regp;
1588 	u64 val = read_scoped_sysreg(entry, scope);
1589 
1590 	regp = get_arm64_ftr_reg(entry->sys_reg);
1591 	if (!regp)
1592 		return false;
1593 
1594 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1595 							  entry->field_pos,
1596 							  entry->field_width);
1597 	if (!mask)
1598 		return false;
1599 
1600 	return feature_matches(val, entry);
1601 }
1602 
1603 static bool
1604 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1605 {
1606 	u64 val = read_scoped_sysreg(entry, scope);
1607 	return feature_matches(val, entry);
1608 }
1609 
1610 const struct cpumask *system_32bit_el0_cpumask(void)
1611 {
1612 	if (!system_supports_32bit_el0())
1613 		return cpu_none_mask;
1614 
1615 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1616 		return cpu_32bit_el0_mask;
1617 
1618 	return cpu_possible_mask;
1619 }
1620 
1621 static int __init parse_32bit_el0_param(char *str)
1622 {
1623 	allow_mismatched_32bit_el0 = true;
1624 	return 0;
1625 }
1626 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1627 
1628 static ssize_t aarch32_el0_show(struct device *dev,
1629 				struct device_attribute *attr, char *buf)
1630 {
1631 	const struct cpumask *mask = system_32bit_el0_cpumask();
1632 
1633 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1634 }
1635 static const DEVICE_ATTR_RO(aarch32_el0);
1636 
1637 static int __init aarch32_el0_sysfs_init(void)
1638 {
1639 	struct device *dev_root;
1640 	int ret = 0;
1641 
1642 	if (!allow_mismatched_32bit_el0)
1643 		return 0;
1644 
1645 	dev_root = bus_get_dev_root(&cpu_subsys);
1646 	if (dev_root) {
1647 		ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1648 		put_device(dev_root);
1649 	}
1650 	return ret;
1651 }
1652 device_initcall(aarch32_el0_sysfs_init);
1653 
1654 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1655 {
1656 	if (!has_cpuid_feature(entry, scope))
1657 		return allow_mismatched_32bit_el0;
1658 
1659 	if (scope == SCOPE_SYSTEM)
1660 		pr_info("detected: 32-bit EL0 Support\n");
1661 
1662 	return true;
1663 }
1664 
1665 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1666 {
1667 	bool has_sre;
1668 
1669 	if (!has_cpuid_feature(entry, scope))
1670 		return false;
1671 
1672 	has_sre = gic_enable_sre();
1673 	if (!has_sre)
1674 		pr_warn_once("%s present but disabled by higher exception level\n",
1675 			     entry->desc);
1676 
1677 	return has_sre;
1678 }
1679 
1680 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1681 			  int scope)
1682 {
1683 	u64 ctr;
1684 
1685 	if (scope == SCOPE_SYSTEM)
1686 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1687 	else
1688 		ctr = read_cpuid_effective_cachetype();
1689 
1690 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1691 }
1692 
1693 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1694 {
1695 	/*
1696 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1697 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1698 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1699 	 * value.
1700 	 */
1701 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1702 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1703 }
1704 
1705 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1706 			  int scope)
1707 {
1708 	u64 ctr;
1709 
1710 	if (scope == SCOPE_SYSTEM)
1711 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1712 	else
1713 		ctr = read_cpuid_cachetype();
1714 
1715 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1716 }
1717 
1718 static bool __maybe_unused
1719 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1720 {
1721 	/*
1722 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1723 	 * may share TLB entries with a CPU stuck in the crashed
1724 	 * kernel.
1725 	 */
1726 	if (is_kdump_kernel())
1727 		return false;
1728 
1729 	if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1730 		return false;
1731 
1732 	return has_cpuid_feature(entry, scope);
1733 }
1734 
1735 static bool __meltdown_safe = true;
1736 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1737 
1738 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1739 				int scope)
1740 {
1741 	/* List of CPUs that are not vulnerable and don't need KPTI */
1742 	static const struct midr_range kpti_safe_list[] = {
1743 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1744 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1745 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1746 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1747 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1748 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1749 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1750 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1751 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1752 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1753 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1754 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1755 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1756 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1757 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1758 		{ /* sentinel */ }
1759 	};
1760 	char const *str = "kpti command line option";
1761 	bool meltdown_safe;
1762 
1763 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1764 
1765 	/* Defer to CPU feature registers */
1766 	if (has_cpuid_feature(entry, scope))
1767 		meltdown_safe = true;
1768 
1769 	if (!meltdown_safe)
1770 		__meltdown_safe = false;
1771 
1772 	/*
1773 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1774 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1775 	 * ends as well as you might imagine. Don't even try. We cannot rely
1776 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1777 	 * because cpucap detection order may change. However, since we know
1778 	 * affected CPUs are always in a homogeneous configuration, it is
1779 	 * safe to rely on this_cpu_has_cap() here.
1780 	 */
1781 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1782 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1783 		__kpti_forced = -1;
1784 	}
1785 
1786 	/* Useful for KASLR robustness */
1787 	if (kaslr_enabled() && kaslr_requires_kpti()) {
1788 		if (!__kpti_forced) {
1789 			str = "KASLR";
1790 			__kpti_forced = 1;
1791 		}
1792 	}
1793 
1794 	if (cpu_mitigations_off() && !__kpti_forced) {
1795 		str = "mitigations=off";
1796 		__kpti_forced = -1;
1797 	}
1798 
1799 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1800 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1801 		return false;
1802 	}
1803 
1804 	/* Forced? */
1805 	if (__kpti_forced) {
1806 		pr_info_once("kernel page table isolation forced %s by %s\n",
1807 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1808 		return __kpti_forced > 0;
1809 	}
1810 
1811 	return !meltdown_safe;
1812 }
1813 
1814 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1815 {
1816 	/*
1817 	 * Although the Apple M2 family appears to support NV1, the
1818 	 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1819 	 * that it doesn't support NV1 at all.
1820 	 */
1821 	static const struct midr_range nv1_ni_list[] = {
1822 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1823 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1824 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1825 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1826 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1827 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1828 		{}
1829 	};
1830 
1831 	return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1832 		!(has_cpuid_feature(entry, scope) ||
1833 		  is_midr_in_range_list(read_cpuid_id(), nv1_ni_list)));
1834 }
1835 
1836 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1837 static bool has_lpa2_at_stage1(u64 mmfr0)
1838 {
1839 	unsigned int tgran;
1840 
1841 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1842 					ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1843 	return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1844 }
1845 
1846 static bool has_lpa2_at_stage2(u64 mmfr0)
1847 {
1848 	unsigned int tgran;
1849 
1850 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1851 					ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1852 	return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1853 }
1854 
1855 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1856 {
1857 	u64 mmfr0;
1858 
1859 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1860 	return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1861 }
1862 #else
1863 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1864 {
1865 	return false;
1866 }
1867 #endif
1868 
1869 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1870 #define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1871 
1872 extern
1873 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1874 			     phys_addr_t size, pgprot_t prot,
1875 			     phys_addr_t (*pgtable_alloc)(int), int flags);
1876 
1877 static phys_addr_t __initdata kpti_ng_temp_alloc;
1878 
1879 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1880 {
1881 	kpti_ng_temp_alloc -= PAGE_SIZE;
1882 	return kpti_ng_temp_alloc;
1883 }
1884 
1885 static int __init __kpti_install_ng_mappings(void *__unused)
1886 {
1887 	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1888 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1889 	kpti_remap_fn *remap_fn;
1890 
1891 	int cpu = smp_processor_id();
1892 	int levels = CONFIG_PGTABLE_LEVELS;
1893 	int order = order_base_2(levels);
1894 	u64 kpti_ng_temp_pgd_pa = 0;
1895 	pgd_t *kpti_ng_temp_pgd;
1896 	u64 alloc = 0;
1897 
1898 	if (levels == 5 && !pgtable_l5_enabled())
1899 		levels = 4;
1900 	else if (levels == 4 && !pgtable_l4_enabled())
1901 		levels = 3;
1902 
1903 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1904 
1905 	if (!cpu) {
1906 		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1907 		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1908 		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1909 
1910 		//
1911 		// Create a minimal page table hierarchy that permits us to map
1912 		// the swapper page tables temporarily as we traverse them.
1913 		//
1914 		// The physical pages are laid out as follows:
1915 		//
1916 		// +--------+-/-------+-/------ +-/------ +-\\\--------+
1917 		// :  PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[]  :
1918 		// +--------+-\-------+-\------ +-\------ +-///--------+
1919 		//      ^
1920 		// The first page is mapped into this hierarchy at a PMD_SHIFT
1921 		// aligned virtual address, so that we can manipulate the PTE
1922 		// level entries while the mapping is active. The first entry
1923 		// covers the PTE[] page itself, the remaining entries are free
1924 		// to be used as a ad-hoc fixmap.
1925 		//
1926 		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1927 					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1928 					kpti_ng_pgd_alloc, 0);
1929 	}
1930 
1931 	cpu_install_idmap();
1932 	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1933 	cpu_uninstall_idmap();
1934 
1935 	if (!cpu) {
1936 		free_pages(alloc, order);
1937 		arm64_use_ng_mappings = true;
1938 	}
1939 
1940 	return 0;
1941 }
1942 
1943 static void __init kpti_install_ng_mappings(void)
1944 {
1945 	/* Check whether KPTI is going to be used */
1946 	if (!arm64_kernel_unmapped_at_el0())
1947 		return;
1948 
1949 	/*
1950 	 * We don't need to rewrite the page-tables if either we've done
1951 	 * it already or we have KASLR enabled and therefore have not
1952 	 * created any global mappings at all.
1953 	 */
1954 	if (arm64_use_ng_mappings)
1955 		return;
1956 
1957 	stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1958 }
1959 
1960 #else
1961 static inline void kpti_install_ng_mappings(void)
1962 {
1963 }
1964 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1965 
1966 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1967 {
1968 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1969 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1970 
1971 		__this_cpu_write(this_cpu_vector, v);
1972 	}
1973 
1974 }
1975 
1976 static int __init parse_kpti(char *str)
1977 {
1978 	bool enabled;
1979 	int ret = kstrtobool(str, &enabled);
1980 
1981 	if (ret)
1982 		return ret;
1983 
1984 	__kpti_forced = enabled ? 1 : -1;
1985 	return 0;
1986 }
1987 early_param("kpti", parse_kpti);
1988 
1989 #ifdef CONFIG_ARM64_HW_AFDBM
1990 static struct cpumask dbm_cpus __read_mostly;
1991 
1992 static inline void __cpu_enable_hw_dbm(void)
1993 {
1994 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1995 
1996 	write_sysreg(tcr, tcr_el1);
1997 	isb();
1998 	local_flush_tlb_all();
1999 }
2000 
2001 static bool cpu_has_broken_dbm(void)
2002 {
2003 	/* List of CPUs which have broken DBM support. */
2004 	static const struct midr_range cpus[] = {
2005 #ifdef CONFIG_ARM64_ERRATUM_1024718
2006 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2007 		/* Kryo4xx Silver (rdpe => r1p0) */
2008 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2009 #endif
2010 #ifdef CONFIG_ARM64_ERRATUM_2051678
2011 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2012 #endif
2013 		{},
2014 	};
2015 
2016 	return is_midr_in_range_list(read_cpuid_id(), cpus);
2017 }
2018 
2019 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2020 {
2021 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2022 	       !cpu_has_broken_dbm();
2023 }
2024 
2025 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2026 {
2027 	if (cpu_can_use_dbm(cap)) {
2028 		__cpu_enable_hw_dbm();
2029 		cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2030 	}
2031 }
2032 
2033 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2034 		       int __unused)
2035 {
2036 	/*
2037 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
2038 	 * run a mix of CPUs with and without the feature. So, we
2039 	 * unconditionally enable the capability to allow any late CPU
2040 	 * to use the feature. We only enable the control bits on the
2041 	 * CPU, if it is supported.
2042 	 */
2043 
2044 	return true;
2045 }
2046 
2047 #endif
2048 
2049 #ifdef CONFIG_ARM64_AMU_EXTN
2050 
2051 /*
2052  * The "amu_cpus" cpumask only signals that the CPU implementation for the
2053  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2054  * information regarding all the events that it supports. When a CPU bit is
2055  * set in the cpumask, the user of this feature can only rely on the presence
2056  * of the 4 fixed counters for that CPU. But this does not guarantee that the
2057  * counters are enabled or access to these counters is enabled by code
2058  * executed at higher exception levels (firmware).
2059  */
2060 static struct cpumask amu_cpus __read_mostly;
2061 
2062 bool cpu_has_amu_feat(int cpu)
2063 {
2064 	return cpumask_test_cpu(cpu, &amu_cpus);
2065 }
2066 
2067 int get_cpu_with_amu_feat(void)
2068 {
2069 	return cpumask_any(&amu_cpus);
2070 }
2071 
2072 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2073 {
2074 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2075 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2076 
2077 		/* 0 reference values signal broken/disabled counters */
2078 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2079 			update_freq_counters_refs();
2080 	}
2081 }
2082 
2083 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2084 		    int __unused)
2085 {
2086 	/*
2087 	 * The AMU extension is a non-conflicting feature: the kernel can
2088 	 * safely run a mix of CPUs with and without support for the
2089 	 * activity monitors extension. Therefore, unconditionally enable
2090 	 * the capability to allow any late CPU to use the feature.
2091 	 *
2092 	 * With this feature unconditionally enabled, the cpu_enable
2093 	 * function will be called for all CPUs that match the criteria,
2094 	 * including secondary and hotplugged, marking this feature as
2095 	 * present on that respective CPU. The enable function will also
2096 	 * print a detection message.
2097 	 */
2098 
2099 	return true;
2100 }
2101 #else
2102 int get_cpu_with_amu_feat(void)
2103 {
2104 	return nr_cpu_ids;
2105 }
2106 #endif
2107 
2108 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2109 {
2110 	return is_kernel_in_hyp_mode();
2111 }
2112 
2113 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2114 {
2115 	/*
2116 	 * Copy register values that aren't redirected by hardware.
2117 	 *
2118 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2119 	 * this value to tpidr_el2 before we patch the code. Once we've done
2120 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2121 	 * do anything here.
2122 	 */
2123 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2124 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2125 }
2126 
2127 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2128 				    int scope)
2129 {
2130 	if (kvm_get_mode() != KVM_MODE_NV)
2131 		return false;
2132 
2133 	if (!has_cpuid_feature(cap, scope)) {
2134 		pr_warn("unavailable: %s\n", cap->desc);
2135 		return false;
2136 	}
2137 
2138 	return true;
2139 }
2140 
2141 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2142 			  int __unused)
2143 {
2144 	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2145 }
2146 
2147 #ifdef CONFIG_ARM64_PAN
2148 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2149 {
2150 	/*
2151 	 * We modify PSTATE. This won't work from irq context as the PSTATE
2152 	 * is discarded once we return from the exception.
2153 	 */
2154 	WARN_ON_ONCE(in_interrupt());
2155 
2156 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2157 	set_pstate_pan(1);
2158 }
2159 #endif /* CONFIG_ARM64_PAN */
2160 
2161 #ifdef CONFIG_ARM64_RAS_EXTN
2162 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2163 {
2164 	/* Firmware may have left a deferred SError in this register. */
2165 	write_sysreg_s(0, SYS_DISR_EL1);
2166 }
2167 #endif /* CONFIG_ARM64_RAS_EXTN */
2168 
2169 #ifdef CONFIG_ARM64_PTR_AUTH
2170 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2171 {
2172 	int boot_val, sec_val;
2173 
2174 	/* We don't expect to be called with SCOPE_SYSTEM */
2175 	WARN_ON(scope == SCOPE_SYSTEM);
2176 	/*
2177 	 * The ptr-auth feature levels are not intercompatible with lower
2178 	 * levels. Hence we must match ptr-auth feature level of the secondary
2179 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2180 	 * from the sanitised register whereas direct register read is done for
2181 	 * the secondary CPUs.
2182 	 * The sanitised feature state is guaranteed to match that of the
2183 	 * boot CPU as a mismatched secondary CPU is parked before it gets
2184 	 * a chance to update the state, with the capability.
2185 	 */
2186 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2187 					       entry->field_pos, entry->sign);
2188 	if (scope & SCOPE_BOOT_CPU)
2189 		return boot_val >= entry->min_field_value;
2190 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2191 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2192 					      entry->field_pos, entry->sign);
2193 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2194 }
2195 
2196 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2197 				     int scope)
2198 {
2199 	bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2200 	bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2201 	bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2202 
2203 	return apa || apa3 || api;
2204 }
2205 
2206 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2207 			     int __unused)
2208 {
2209 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2210 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2211 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2212 
2213 	return gpa || gpa3 || gpi;
2214 }
2215 #endif /* CONFIG_ARM64_PTR_AUTH */
2216 
2217 #ifdef CONFIG_ARM64_E0PD
2218 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2219 {
2220 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2221 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2222 }
2223 #endif /* CONFIG_ARM64_E0PD */
2224 
2225 #ifdef CONFIG_ARM64_PSEUDO_NMI
2226 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2227 				   int scope)
2228 {
2229 	/*
2230 	 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2231 	 * feature, so will be detected earlier.
2232 	 */
2233 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2234 	if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2235 		return false;
2236 
2237 	return enable_pseudo_nmi;
2238 }
2239 
2240 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2241 				      int scope)
2242 {
2243 	/*
2244 	 * If we're not using priority masking then we won't be poking PMR_EL1,
2245 	 * and there's no need to relax synchronization of writes to it, and
2246 	 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2247 	 * that.
2248 	 *
2249 	 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2250 	 * feature, so will be detected earlier.
2251 	 */
2252 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2253 	if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2254 		return false;
2255 
2256 	/*
2257 	 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2258 	 * hint for interrupt distribution, a DSB is not necessary when
2259 	 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2260 	 *
2261 	 * Linux itself doesn't use 1:N distribution, so has no need to
2262 	 * set PMHE. The only reason to have it set is if EL3 requires it
2263 	 * (and we can't change it).
2264 	 */
2265 	return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2266 }
2267 #endif
2268 
2269 #ifdef CONFIG_ARM64_BTI
2270 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2271 {
2272 	/*
2273 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2274 	 * function entry points using BR is a requirement for
2275 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2276 	 * So, be strict and forbid other BRs using other registers to
2277 	 * jump onto a PACIxSP instruction:
2278 	 */
2279 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2280 	isb();
2281 }
2282 #endif /* CONFIG_ARM64_BTI */
2283 
2284 #ifdef CONFIG_ARM64_MTE
2285 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2286 {
2287 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2288 
2289 	mte_cpu_setup();
2290 
2291 	/*
2292 	 * Clear the tags in the zero page. This needs to be done via the
2293 	 * linear map which has the Tagged attribute.
2294 	 */
2295 	if (try_page_mte_tagging(ZERO_PAGE(0))) {
2296 		mte_clear_page_tags(lm_alias(empty_zero_page));
2297 		set_page_mte_tagged(ZERO_PAGE(0));
2298 	}
2299 
2300 	kasan_init_hw_tags_cpu();
2301 }
2302 #endif /* CONFIG_ARM64_MTE */
2303 
2304 static void user_feature_fixup(void)
2305 {
2306 	if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2307 		struct arm64_ftr_reg *regp;
2308 
2309 		regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2310 		if (regp)
2311 			regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2312 	}
2313 
2314 	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2315 		struct arm64_ftr_reg *regp;
2316 
2317 		regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2318 		if (regp)
2319 			regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2320 	}
2321 }
2322 
2323 static void elf_hwcap_fixup(void)
2324 {
2325 #ifdef CONFIG_COMPAT
2326 	if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2327 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2328 #endif /* CONFIG_COMPAT */
2329 }
2330 
2331 #ifdef CONFIG_KVM
2332 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2333 {
2334 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2335 }
2336 #endif /* CONFIG_KVM */
2337 
2338 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2339 {
2340 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2341 }
2342 
2343 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2344 {
2345 	set_pstate_dit(1);
2346 }
2347 
2348 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2349 {
2350 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2351 }
2352 
2353 #ifdef CONFIG_ARM64_POE
2354 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2355 {
2356 	sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1x_E0POE);
2357 	sysreg_clear_set(CPACR_EL1, 0, CPACR_ELx_E0POE);
2358 }
2359 #endif
2360 
2361 /* Internal helper functions to match cpu capability type */
2362 static bool
2363 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2364 {
2365 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2366 }
2367 
2368 static bool
2369 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2370 {
2371 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2372 }
2373 
2374 static bool
2375 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2376 {
2377 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2378 }
2379 
2380 static const struct arm64_cpu_capabilities arm64_features[] = {
2381 	{
2382 		.capability = ARM64_ALWAYS_BOOT,
2383 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2384 		.matches = has_always,
2385 	},
2386 	{
2387 		.capability = ARM64_ALWAYS_SYSTEM,
2388 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2389 		.matches = has_always,
2390 	},
2391 	{
2392 		.desc = "GIC system register CPU interface",
2393 		.capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2394 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2395 		.matches = has_useable_gicv3_cpuif,
2396 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2397 	},
2398 	{
2399 		.desc = "Enhanced Counter Virtualization",
2400 		.capability = ARM64_HAS_ECV,
2401 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2402 		.matches = has_cpuid_feature,
2403 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2404 	},
2405 	{
2406 		.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2407 		.capability = ARM64_HAS_ECV_CNTPOFF,
2408 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2409 		.matches = has_cpuid_feature,
2410 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2411 	},
2412 #ifdef CONFIG_ARM64_PAN
2413 	{
2414 		.desc = "Privileged Access Never",
2415 		.capability = ARM64_HAS_PAN,
2416 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2417 		.matches = has_cpuid_feature,
2418 		.cpu_enable = cpu_enable_pan,
2419 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2420 	},
2421 #endif /* CONFIG_ARM64_PAN */
2422 #ifdef CONFIG_ARM64_EPAN
2423 	{
2424 		.desc = "Enhanced Privileged Access Never",
2425 		.capability = ARM64_HAS_EPAN,
2426 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2427 		.matches = has_cpuid_feature,
2428 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2429 	},
2430 #endif /* CONFIG_ARM64_EPAN */
2431 #ifdef CONFIG_ARM64_LSE_ATOMICS
2432 	{
2433 		.desc = "LSE atomic instructions",
2434 		.capability = ARM64_HAS_LSE_ATOMICS,
2435 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2436 		.matches = has_cpuid_feature,
2437 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2438 	},
2439 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2440 	{
2441 		.desc = "Virtualization Host Extensions",
2442 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2443 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2444 		.matches = runs_at_el2,
2445 		.cpu_enable = cpu_copy_el2regs,
2446 	},
2447 	{
2448 		.desc = "Nested Virtualization Support",
2449 		.capability = ARM64_HAS_NESTED_VIRT,
2450 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2451 		.matches = has_nested_virt_support,
2452 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2453 	},
2454 	{
2455 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2456 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2457 		.matches = has_32bit_el0,
2458 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2459 	},
2460 #ifdef CONFIG_KVM
2461 	{
2462 		.desc = "32-bit EL1 Support",
2463 		.capability = ARM64_HAS_32BIT_EL1,
2464 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2465 		.matches = has_cpuid_feature,
2466 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2467 	},
2468 	{
2469 		.desc = "Protected KVM",
2470 		.capability = ARM64_KVM_PROTECTED_MODE,
2471 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2472 		.matches = is_kvm_protected_mode,
2473 	},
2474 	{
2475 		.desc = "HCRX_EL2 register",
2476 		.capability = ARM64_HAS_HCX,
2477 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2478 		.matches = has_cpuid_feature,
2479 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2480 	},
2481 #endif
2482 	{
2483 		.desc = "Kernel page table isolation (KPTI)",
2484 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2485 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2486 		.cpu_enable = cpu_enable_kpti,
2487 		.matches = unmap_kernel_at_el0,
2488 		/*
2489 		 * The ID feature fields below are used to indicate that
2490 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2491 		 * more details.
2492 		 */
2493 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2494 	},
2495 	{
2496 		.capability = ARM64_HAS_FPSIMD,
2497 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2498 		.matches = has_cpuid_feature,
2499 		.cpu_enable = cpu_enable_fpsimd,
2500 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2501 	},
2502 #ifdef CONFIG_ARM64_PMEM
2503 	{
2504 		.desc = "Data cache clean to Point of Persistence",
2505 		.capability = ARM64_HAS_DCPOP,
2506 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2507 		.matches = has_cpuid_feature,
2508 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2509 	},
2510 	{
2511 		.desc = "Data cache clean to Point of Deep Persistence",
2512 		.capability = ARM64_HAS_DCPODP,
2513 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2514 		.matches = has_cpuid_feature,
2515 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2516 	},
2517 #endif
2518 #ifdef CONFIG_ARM64_SVE
2519 	{
2520 		.desc = "Scalable Vector Extension",
2521 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2522 		.capability = ARM64_SVE,
2523 		.cpu_enable = cpu_enable_sve,
2524 		.matches = has_cpuid_feature,
2525 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2526 	},
2527 #endif /* CONFIG_ARM64_SVE */
2528 #ifdef CONFIG_ARM64_RAS_EXTN
2529 	{
2530 		.desc = "RAS Extension Support",
2531 		.capability = ARM64_HAS_RAS_EXTN,
2532 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2533 		.matches = has_cpuid_feature,
2534 		.cpu_enable = cpu_clear_disr,
2535 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2536 	},
2537 #endif /* CONFIG_ARM64_RAS_EXTN */
2538 #ifdef CONFIG_ARM64_AMU_EXTN
2539 	{
2540 		.desc = "Activity Monitors Unit (AMU)",
2541 		.capability = ARM64_HAS_AMU_EXTN,
2542 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2543 		.matches = has_amu,
2544 		.cpu_enable = cpu_amu_enable,
2545 		.cpus = &amu_cpus,
2546 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2547 	},
2548 #endif /* CONFIG_ARM64_AMU_EXTN */
2549 	{
2550 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2551 		.capability = ARM64_HAS_CACHE_IDC,
2552 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2553 		.matches = has_cache_idc,
2554 		.cpu_enable = cpu_emulate_effective_ctr,
2555 	},
2556 	{
2557 		.desc = "Instruction cache invalidation not required for I/D coherence",
2558 		.capability = ARM64_HAS_CACHE_DIC,
2559 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2560 		.matches = has_cache_dic,
2561 	},
2562 	{
2563 		.desc = "Stage-2 Force Write-Back",
2564 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2565 		.capability = ARM64_HAS_STAGE2_FWB,
2566 		.matches = has_cpuid_feature,
2567 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2568 	},
2569 	{
2570 		.desc = "ARMv8.4 Translation Table Level",
2571 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2572 		.capability = ARM64_HAS_ARMv8_4_TTL,
2573 		.matches = has_cpuid_feature,
2574 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2575 	},
2576 	{
2577 		.desc = "TLB range maintenance instructions",
2578 		.capability = ARM64_HAS_TLB_RANGE,
2579 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2580 		.matches = has_cpuid_feature,
2581 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2582 	},
2583 #ifdef CONFIG_ARM64_HW_AFDBM
2584 	{
2585 		.desc = "Hardware dirty bit management",
2586 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2587 		.capability = ARM64_HW_DBM,
2588 		.matches = has_hw_dbm,
2589 		.cpu_enable = cpu_enable_hw_dbm,
2590 		.cpus = &dbm_cpus,
2591 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2592 	},
2593 #endif
2594 	{
2595 		.desc = "CRC32 instructions",
2596 		.capability = ARM64_HAS_CRC32,
2597 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2598 		.matches = has_cpuid_feature,
2599 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2600 	},
2601 	{
2602 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2603 		.capability = ARM64_SSBS,
2604 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2605 		.matches = has_cpuid_feature,
2606 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2607 	},
2608 #ifdef CONFIG_ARM64_CNP
2609 	{
2610 		.desc = "Common not Private translations",
2611 		.capability = ARM64_HAS_CNP,
2612 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2613 		.matches = has_useable_cnp,
2614 		.cpu_enable = cpu_enable_cnp,
2615 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2616 	},
2617 #endif
2618 	{
2619 		.desc = "Speculation barrier (SB)",
2620 		.capability = ARM64_HAS_SB,
2621 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2622 		.matches = has_cpuid_feature,
2623 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2624 	},
2625 #ifdef CONFIG_ARM64_PTR_AUTH
2626 	{
2627 		.desc = "Address authentication (architected QARMA5 algorithm)",
2628 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2629 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2630 		.matches = has_address_auth_cpucap,
2631 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2632 	},
2633 	{
2634 		.desc = "Address authentication (architected QARMA3 algorithm)",
2635 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2636 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2637 		.matches = has_address_auth_cpucap,
2638 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2639 	},
2640 	{
2641 		.desc = "Address authentication (IMP DEF algorithm)",
2642 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2643 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2644 		.matches = has_address_auth_cpucap,
2645 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2646 	},
2647 	{
2648 		.capability = ARM64_HAS_ADDRESS_AUTH,
2649 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2650 		.matches = has_address_auth_metacap,
2651 	},
2652 	{
2653 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2654 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2655 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2656 		.matches = has_cpuid_feature,
2657 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2658 	},
2659 	{
2660 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2661 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2662 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2663 		.matches = has_cpuid_feature,
2664 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2665 	},
2666 	{
2667 		.desc = "Generic authentication (IMP DEF algorithm)",
2668 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2669 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2670 		.matches = has_cpuid_feature,
2671 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2672 	},
2673 	{
2674 		.capability = ARM64_HAS_GENERIC_AUTH,
2675 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2676 		.matches = has_generic_auth,
2677 	},
2678 #endif /* CONFIG_ARM64_PTR_AUTH */
2679 #ifdef CONFIG_ARM64_PSEUDO_NMI
2680 	{
2681 		/*
2682 		 * Depends on having GICv3
2683 		 */
2684 		.desc = "IRQ priority masking",
2685 		.capability = ARM64_HAS_GIC_PRIO_MASKING,
2686 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2687 		.matches = can_use_gic_priorities,
2688 	},
2689 	{
2690 		/*
2691 		 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2692 		 */
2693 		.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2694 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2695 		.matches = has_gic_prio_relaxed_sync,
2696 	},
2697 #endif
2698 #ifdef CONFIG_ARM64_E0PD
2699 	{
2700 		.desc = "E0PD",
2701 		.capability = ARM64_HAS_E0PD,
2702 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2703 		.cpu_enable = cpu_enable_e0pd,
2704 		.matches = has_cpuid_feature,
2705 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2706 	},
2707 #endif
2708 	{
2709 		.desc = "Random Number Generator",
2710 		.capability = ARM64_HAS_RNG,
2711 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2712 		.matches = has_cpuid_feature,
2713 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2714 	},
2715 #ifdef CONFIG_ARM64_BTI
2716 	{
2717 		.desc = "Branch Target Identification",
2718 		.capability = ARM64_BTI,
2719 #ifdef CONFIG_ARM64_BTI_KERNEL
2720 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2721 #else
2722 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2723 #endif
2724 		.matches = has_cpuid_feature,
2725 		.cpu_enable = bti_enable,
2726 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2727 	},
2728 #endif
2729 #ifdef CONFIG_ARM64_MTE
2730 	{
2731 		.desc = "Memory Tagging Extension",
2732 		.capability = ARM64_MTE,
2733 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2734 		.matches = has_cpuid_feature,
2735 		.cpu_enable = cpu_enable_mte,
2736 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2737 	},
2738 	{
2739 		.desc = "Asymmetric MTE Tag Check Fault",
2740 		.capability = ARM64_MTE_ASYMM,
2741 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2742 		.matches = has_cpuid_feature,
2743 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2744 	},
2745 #endif /* CONFIG_ARM64_MTE */
2746 	{
2747 		.desc = "RCpc load-acquire (LDAPR)",
2748 		.capability = ARM64_HAS_LDAPR,
2749 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2750 		.matches = has_cpuid_feature,
2751 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2752 	},
2753 	{
2754 		.desc = "Fine Grained Traps",
2755 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2756 		.capability = ARM64_HAS_FGT,
2757 		.matches = has_cpuid_feature,
2758 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2759 	},
2760 #ifdef CONFIG_ARM64_SME
2761 	{
2762 		.desc = "Scalable Matrix Extension",
2763 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2764 		.capability = ARM64_SME,
2765 		.matches = has_cpuid_feature,
2766 		.cpu_enable = cpu_enable_sme,
2767 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2768 	},
2769 	/* FA64 should be sorted after the base SME capability */
2770 	{
2771 		.desc = "FA64",
2772 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2773 		.capability = ARM64_SME_FA64,
2774 		.matches = has_cpuid_feature,
2775 		.cpu_enable = cpu_enable_fa64,
2776 		ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2777 	},
2778 	{
2779 		.desc = "SME2",
2780 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2781 		.capability = ARM64_SME2,
2782 		.matches = has_cpuid_feature,
2783 		.cpu_enable = cpu_enable_sme2,
2784 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2785 	},
2786 #endif /* CONFIG_ARM64_SME */
2787 	{
2788 		.desc = "WFx with timeout",
2789 		.capability = ARM64_HAS_WFXT,
2790 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2791 		.matches = has_cpuid_feature,
2792 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2793 	},
2794 	{
2795 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2796 		.capability = ARM64_HAS_TIDCP1,
2797 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2798 		.matches = has_cpuid_feature,
2799 		.cpu_enable = cpu_trap_el0_impdef,
2800 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2801 	},
2802 	{
2803 		.desc = "Data independent timing control (DIT)",
2804 		.capability = ARM64_HAS_DIT,
2805 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2806 		.matches = has_cpuid_feature,
2807 		.cpu_enable = cpu_enable_dit,
2808 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2809 	},
2810 	{
2811 		.desc = "Memory Copy and Memory Set instructions",
2812 		.capability = ARM64_HAS_MOPS,
2813 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2814 		.matches = has_cpuid_feature,
2815 		.cpu_enable = cpu_enable_mops,
2816 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2817 	},
2818 	{
2819 		.capability = ARM64_HAS_TCR2,
2820 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2821 		.matches = has_cpuid_feature,
2822 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2823 	},
2824 	{
2825 		.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2826 		.capability = ARM64_HAS_S1PIE,
2827 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2828 		.matches = has_cpuid_feature,
2829 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2830 	},
2831 	{
2832 		.desc = "VHE for hypervisor only",
2833 		.capability = ARM64_KVM_HVHE,
2834 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2835 		.matches = hvhe_possible,
2836 	},
2837 	{
2838 		.desc = "Enhanced Virtualization Traps",
2839 		.capability = ARM64_HAS_EVT,
2840 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2841 		.matches = has_cpuid_feature,
2842 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2843 	},
2844 	{
2845 		.desc = "52-bit Virtual Addressing for KVM (LPA2)",
2846 		.capability = ARM64_HAS_LPA2,
2847 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2848 		.matches = has_lpa2,
2849 	},
2850 	{
2851 		.desc = "FPMR",
2852 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2853 		.capability = ARM64_HAS_FPMR,
2854 		.matches = has_cpuid_feature,
2855 		.cpu_enable = cpu_enable_fpmr,
2856 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2857 	},
2858 #ifdef CONFIG_ARM64_VA_BITS_52
2859 	{
2860 		.capability = ARM64_HAS_VA52,
2861 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2862 		.matches = has_cpuid_feature,
2863 #ifdef CONFIG_ARM64_64K_PAGES
2864 		.desc = "52-bit Virtual Addressing (LVA)",
2865 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
2866 #else
2867 		.desc = "52-bit Virtual Addressing (LPA2)",
2868 #ifdef CONFIG_ARM64_4K_PAGES
2869 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
2870 #else
2871 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
2872 #endif
2873 #endif
2874 	},
2875 #endif
2876 	{
2877 		.desc = "NV1",
2878 		.capability = ARM64_HAS_HCR_NV1,
2879 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2880 		.matches = has_nv1,
2881 		ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
2882 	},
2883 #ifdef CONFIG_ARM64_POE
2884 	{
2885 		.desc = "Stage-1 Permission Overlay Extension (S1POE)",
2886 		.capability = ARM64_HAS_S1POE,
2887 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2888 		.matches = has_cpuid_feature,
2889 		.cpu_enable = cpu_enable_poe,
2890 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
2891 	},
2892 #endif
2893 	{},
2894 };
2895 
2896 #define HWCAP_CPUID_MATCH(reg, field, min_value)			\
2897 		.matches = has_user_cpuid_feature,			\
2898 		ARM64_CPUID_FIELDS(reg, field, min_value)
2899 
2900 #define __HWCAP_CAP(name, cap_type, cap)					\
2901 		.desc = name,							\
2902 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2903 		.hwcap_type = cap_type,						\
2904 		.hwcap = cap,							\
2905 
2906 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)		\
2907 	{									\
2908 		__HWCAP_CAP(#cap, cap_type, cap)				\
2909 		HWCAP_CPUID_MATCH(reg, field, min_value) 		\
2910 	}
2911 
2912 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2913 	{									\
2914 		__HWCAP_CAP(#cap, cap_type, cap)				\
2915 		.matches = cpucap_multi_entry_cap_matches,			\
2916 		.match_list = list,						\
2917 	}
2918 
2919 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2920 	{									\
2921 		__HWCAP_CAP(#cap, cap_type, cap)				\
2922 		.matches = match,						\
2923 	}
2924 
2925 #ifdef CONFIG_ARM64_PTR_AUTH
2926 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2927 	{
2928 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2929 	},
2930 	{
2931 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2932 	},
2933 	{
2934 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2935 	},
2936 	{},
2937 };
2938 
2939 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2940 	{
2941 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2942 	},
2943 	{
2944 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2945 	},
2946 	{
2947 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2948 	},
2949 	{},
2950 };
2951 #endif
2952 
2953 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2954 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2955 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2956 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2957 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2958 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2959 	HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2960 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2961 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
2962 	HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2963 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2964 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2965 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2966 	HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2967 	HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2968 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2969 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2970 	HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2971 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2972 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2973 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2974 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2975 	HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2976 	HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
2977 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2978 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2979 	HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2980 	HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2981 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2982 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2983 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
2984 	HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2985 	HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2986 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2987 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2988 	HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2989 	HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2990 	HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
2991 	HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
2992 	HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2993 #ifdef CONFIG_ARM64_SVE
2994 	HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2995 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2996 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2997 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2998 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2999 	HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3000 	HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3001 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3002 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3003 	HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3004 	HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3005 	HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3006 	HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3007 	HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3008 #endif
3009 	HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3010 #ifdef CONFIG_ARM64_BTI
3011 	HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3012 #endif
3013 #ifdef CONFIG_ARM64_PTR_AUTH
3014 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3015 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3016 #endif
3017 #ifdef CONFIG_ARM64_MTE
3018 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3019 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3020 #endif /* CONFIG_ARM64_MTE */
3021 	HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3022 	HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3023 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3024 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3025 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3026 	HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3027 	HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3028 	HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3029 #ifdef CONFIG_ARM64_SME
3030 	HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3031 	HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3032 	HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3033 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3034 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3035 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3036 	HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3037 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3038 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3039 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3040 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3041 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3042 	HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3043 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3044 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3045 	HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3046 	HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3047 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3048 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3049 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3050 #endif /* CONFIG_ARM64_SME */
3051 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3052 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3053 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3054 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3055 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3056 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3057 #ifdef CONFIG_ARM64_POE
3058 	HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3059 #endif
3060 	{},
3061 };
3062 
3063 #ifdef CONFIG_COMPAT
3064 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3065 {
3066 	/*
3067 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3068 	 * in line with that of arm32 as in vfp_init(). We make sure that the
3069 	 * check is future proof, by making sure value is non-zero.
3070 	 */
3071 	u32 mvfr1;
3072 
3073 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3074 	if (scope == SCOPE_SYSTEM)
3075 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3076 	else
3077 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3078 
3079 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3080 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3081 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3082 }
3083 #endif
3084 
3085 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3086 #ifdef CONFIG_COMPAT
3087 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3088 	HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3089 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3090 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3091 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3092 	HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3093 	HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3094 	HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3095 	HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3096 	HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3097 	HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3098 	HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3099 	HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3100 	HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3101 	HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3102 	HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3103 	HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3104 	HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3105 #endif
3106 	{},
3107 };
3108 
3109 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3110 {
3111 	switch (cap->hwcap_type) {
3112 	case CAP_HWCAP:
3113 		cpu_set_feature(cap->hwcap);
3114 		break;
3115 #ifdef CONFIG_COMPAT
3116 	case CAP_COMPAT_HWCAP:
3117 		compat_elf_hwcap |= (u32)cap->hwcap;
3118 		break;
3119 	case CAP_COMPAT_HWCAP2:
3120 		compat_elf_hwcap2 |= (u32)cap->hwcap;
3121 		break;
3122 #endif
3123 	default:
3124 		WARN_ON(1);
3125 		break;
3126 	}
3127 }
3128 
3129 /* Check if we have a particular HWCAP enabled */
3130 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3131 {
3132 	bool rc;
3133 
3134 	switch (cap->hwcap_type) {
3135 	case CAP_HWCAP:
3136 		rc = cpu_have_feature(cap->hwcap);
3137 		break;
3138 #ifdef CONFIG_COMPAT
3139 	case CAP_COMPAT_HWCAP:
3140 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3141 		break;
3142 	case CAP_COMPAT_HWCAP2:
3143 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3144 		break;
3145 #endif
3146 	default:
3147 		WARN_ON(1);
3148 		rc = false;
3149 	}
3150 
3151 	return rc;
3152 }
3153 
3154 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3155 {
3156 	/* We support emulation of accesses to CPU ID feature registers */
3157 	cpu_set_named_feature(CPUID);
3158 	for (; hwcaps->matches; hwcaps++)
3159 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3160 			cap_set_elf_hwcap(hwcaps);
3161 }
3162 
3163 static void update_cpu_capabilities(u16 scope_mask)
3164 {
3165 	int i;
3166 	const struct arm64_cpu_capabilities *caps;
3167 
3168 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3169 	for (i = 0; i < ARM64_NCAPS; i++) {
3170 		caps = cpucap_ptrs[i];
3171 		if (!caps || !(caps->type & scope_mask) ||
3172 		    cpus_have_cap(caps->capability) ||
3173 		    !caps->matches(caps, cpucap_default_scope(caps)))
3174 			continue;
3175 
3176 		if (caps->desc && !caps->cpus)
3177 			pr_info("detected: %s\n", caps->desc);
3178 
3179 		__set_bit(caps->capability, system_cpucaps);
3180 
3181 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3182 			set_bit(caps->capability, boot_cpucaps);
3183 	}
3184 }
3185 
3186 /*
3187  * Enable all the available capabilities on this CPU. The capabilities
3188  * with BOOT_CPU scope are handled separately and hence skipped here.
3189  */
3190 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3191 {
3192 	int i;
3193 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3194 
3195 	for_each_available_cap(i) {
3196 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3197 
3198 		if (WARN_ON(!cap))
3199 			continue;
3200 
3201 		if (!(cap->type & non_boot_scope))
3202 			continue;
3203 
3204 		if (cap->cpu_enable)
3205 			cap->cpu_enable(cap);
3206 	}
3207 	return 0;
3208 }
3209 
3210 /*
3211  * Run through the enabled capabilities and enable() it on all active
3212  * CPUs
3213  */
3214 static void __init enable_cpu_capabilities(u16 scope_mask)
3215 {
3216 	int i;
3217 	const struct arm64_cpu_capabilities *caps;
3218 	bool boot_scope;
3219 
3220 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3221 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3222 
3223 	for (i = 0; i < ARM64_NCAPS; i++) {
3224 		caps = cpucap_ptrs[i];
3225 		if (!caps || !(caps->type & scope_mask) ||
3226 		    !cpus_have_cap(caps->capability))
3227 			continue;
3228 
3229 		if (boot_scope && caps->cpu_enable)
3230 			/*
3231 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3232 			 * before any secondary CPU boots. Thus, each secondary
3233 			 * will enable the capability as appropriate via
3234 			 * check_local_cpu_capabilities(). The only exception is
3235 			 * the boot CPU, for which the capability must be
3236 			 * enabled here. This approach avoids costly
3237 			 * stop_machine() calls for this case.
3238 			 */
3239 			caps->cpu_enable(caps);
3240 	}
3241 
3242 	/*
3243 	 * For all non-boot scope capabilities, use stop_machine()
3244 	 * as it schedules the work allowing us to modify PSTATE,
3245 	 * instead of on_each_cpu() which uses an IPI, giving us a
3246 	 * PSTATE that disappears when we return.
3247 	 */
3248 	if (!boot_scope)
3249 		stop_machine(cpu_enable_non_boot_scope_capabilities,
3250 			     NULL, cpu_online_mask);
3251 }
3252 
3253 /*
3254  * Run through the list of capabilities to check for conflicts.
3255  * If the system has already detected a capability, take necessary
3256  * action on this CPU.
3257  */
3258 static void verify_local_cpu_caps(u16 scope_mask)
3259 {
3260 	int i;
3261 	bool cpu_has_cap, system_has_cap;
3262 	const struct arm64_cpu_capabilities *caps;
3263 
3264 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3265 
3266 	for (i = 0; i < ARM64_NCAPS; i++) {
3267 		caps = cpucap_ptrs[i];
3268 		if (!caps || !(caps->type & scope_mask))
3269 			continue;
3270 
3271 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3272 		system_has_cap = cpus_have_cap(caps->capability);
3273 
3274 		if (system_has_cap) {
3275 			/*
3276 			 * Check if the new CPU misses an advertised feature,
3277 			 * which is not safe to miss.
3278 			 */
3279 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3280 				break;
3281 			/*
3282 			 * We have to issue cpu_enable() irrespective of
3283 			 * whether the CPU has it or not, as it is enabeld
3284 			 * system wide. It is upto the call back to take
3285 			 * appropriate action on this CPU.
3286 			 */
3287 			if (caps->cpu_enable)
3288 				caps->cpu_enable(caps);
3289 		} else {
3290 			/*
3291 			 * Check if the CPU has this capability if it isn't
3292 			 * safe to have when the system doesn't.
3293 			 */
3294 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3295 				break;
3296 		}
3297 	}
3298 
3299 	if (i < ARM64_NCAPS) {
3300 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3301 			smp_processor_id(), caps->capability,
3302 			caps->desc, system_has_cap, cpu_has_cap);
3303 
3304 		if (cpucap_panic_on_conflict(caps))
3305 			cpu_panic_kernel();
3306 		else
3307 			cpu_die_early();
3308 	}
3309 }
3310 
3311 /*
3312  * Check for CPU features that are used in early boot
3313  * based on the Boot CPU value.
3314  */
3315 static void check_early_cpu_features(void)
3316 {
3317 	verify_cpu_asid_bits();
3318 
3319 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3320 }
3321 
3322 static void
3323 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3324 {
3325 
3326 	for (; caps->matches; caps++)
3327 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3328 			pr_crit("CPU%d: missing HWCAP: %s\n",
3329 					smp_processor_id(), caps->desc);
3330 			cpu_die_early();
3331 		}
3332 }
3333 
3334 static void verify_local_elf_hwcaps(void)
3335 {
3336 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3337 
3338 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3339 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3340 }
3341 
3342 static void verify_sve_features(void)
3343 {
3344 	unsigned long cpacr = cpacr_save_enable_kernel_sve();
3345 
3346 	if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3347 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3348 			smp_processor_id());
3349 		cpu_die_early();
3350 	}
3351 
3352 	cpacr_restore(cpacr);
3353 }
3354 
3355 static void verify_sme_features(void)
3356 {
3357 	unsigned long cpacr = cpacr_save_enable_kernel_sme();
3358 
3359 	if (vec_verify_vq_map(ARM64_VEC_SME)) {
3360 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3361 			smp_processor_id());
3362 		cpu_die_early();
3363 	}
3364 
3365 	cpacr_restore(cpacr);
3366 }
3367 
3368 static void verify_hyp_capabilities(void)
3369 {
3370 	u64 safe_mmfr1, mmfr0, mmfr1;
3371 	int parange, ipa_max;
3372 	unsigned int safe_vmid_bits, vmid_bits;
3373 
3374 	if (!IS_ENABLED(CONFIG_KVM))
3375 		return;
3376 
3377 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3378 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3379 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3380 
3381 	/* Verify VMID bits */
3382 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3383 	vmid_bits = get_vmid_bits(mmfr1);
3384 	if (vmid_bits < safe_vmid_bits) {
3385 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3386 		cpu_die_early();
3387 	}
3388 
3389 	/* Verify IPA range */
3390 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3391 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3392 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3393 	if (ipa_max < get_kvm_ipa_limit()) {
3394 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3395 		cpu_die_early();
3396 	}
3397 }
3398 
3399 /*
3400  * Run through the enabled system capabilities and enable() it on this CPU.
3401  * The capabilities were decided based on the available CPUs at the boot time.
3402  * Any new CPU should match the system wide status of the capability. If the
3403  * new CPU doesn't have a capability which the system now has enabled, we
3404  * cannot do anything to fix it up and could cause unexpected failures. So
3405  * we park the CPU.
3406  */
3407 static void verify_local_cpu_capabilities(void)
3408 {
3409 	/*
3410 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3411 	 * check_early_cpu_features(), as they need to be verified
3412 	 * on all secondary CPUs.
3413 	 */
3414 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3415 	verify_local_elf_hwcaps();
3416 
3417 	if (system_supports_sve())
3418 		verify_sve_features();
3419 
3420 	if (system_supports_sme())
3421 		verify_sme_features();
3422 
3423 	if (is_hyp_mode_available())
3424 		verify_hyp_capabilities();
3425 }
3426 
3427 void check_local_cpu_capabilities(void)
3428 {
3429 	/*
3430 	 * All secondary CPUs should conform to the early CPU features
3431 	 * in use by the kernel based on boot CPU.
3432 	 */
3433 	check_early_cpu_features();
3434 
3435 	/*
3436 	 * If we haven't finalised the system capabilities, this CPU gets
3437 	 * a chance to update the errata work arounds and local features.
3438 	 * Otherwise, this CPU should verify that it has all the system
3439 	 * advertised capabilities.
3440 	 */
3441 	if (!system_capabilities_finalized())
3442 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3443 	else
3444 		verify_local_cpu_capabilities();
3445 }
3446 
3447 bool this_cpu_has_cap(unsigned int n)
3448 {
3449 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3450 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3451 
3452 		if (cap)
3453 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3454 	}
3455 
3456 	return false;
3457 }
3458 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3459 
3460 /*
3461  * This helper function is used in a narrow window when,
3462  * - The system wide safe registers are set with all the SMP CPUs and,
3463  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3464  */
3465 static bool __maybe_unused __system_matches_cap(unsigned int n)
3466 {
3467 	if (n < ARM64_NCAPS) {
3468 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3469 
3470 		if (cap)
3471 			return cap->matches(cap, SCOPE_SYSTEM);
3472 	}
3473 	return false;
3474 }
3475 
3476 void cpu_set_feature(unsigned int num)
3477 {
3478 	set_bit(num, elf_hwcap);
3479 }
3480 
3481 bool cpu_have_feature(unsigned int num)
3482 {
3483 	return test_bit(num, elf_hwcap);
3484 }
3485 EXPORT_SYMBOL_GPL(cpu_have_feature);
3486 
3487 unsigned long cpu_get_elf_hwcap(void)
3488 {
3489 	/*
3490 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3491 	 * note that for userspace compatibility we guarantee that bits 62
3492 	 * and 63 will always be returned as 0.
3493 	 */
3494 	return elf_hwcap[0];
3495 }
3496 
3497 unsigned long cpu_get_elf_hwcap2(void)
3498 {
3499 	return elf_hwcap[1];
3500 }
3501 
3502 static void __init setup_boot_cpu_capabilities(void)
3503 {
3504 	/*
3505 	 * The boot CPU's feature register values have been recorded. Detect
3506 	 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3507 	 * patch alternatives for the available boot cpucaps.
3508 	 */
3509 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3510 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3511 	apply_boot_alternatives();
3512 }
3513 
3514 void __init setup_boot_cpu_features(void)
3515 {
3516 	/*
3517 	 * Initialize the indirect array of CPU capabilities pointers before we
3518 	 * handle the boot CPU.
3519 	 */
3520 	init_cpucap_indirect_list();
3521 
3522 	/*
3523 	 * Detect broken pseudo-NMI. Must be called _before_ the call to
3524 	 * setup_boot_cpu_capabilities() since it interacts with
3525 	 * can_use_gic_priorities().
3526 	 */
3527 	detect_system_supports_pseudo_nmi();
3528 
3529 	setup_boot_cpu_capabilities();
3530 }
3531 
3532 static void __init setup_system_capabilities(void)
3533 {
3534 	/*
3535 	 * The system-wide safe feature register values have been finalized.
3536 	 * Detect, enable, and patch alternatives for the available system
3537 	 * cpucaps.
3538 	 */
3539 	update_cpu_capabilities(SCOPE_SYSTEM);
3540 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3541 	apply_alternatives_all();
3542 
3543 	/*
3544 	 * Log any cpucaps with a cpumask as these aren't logged by
3545 	 * update_cpu_capabilities().
3546 	 */
3547 	for (int i = 0; i < ARM64_NCAPS; i++) {
3548 		const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3549 
3550 		if (caps && caps->cpus && caps->desc &&
3551 			cpumask_any(caps->cpus) < nr_cpu_ids)
3552 			pr_info("detected: %s on CPU%*pbl\n",
3553 				caps->desc, cpumask_pr_args(caps->cpus));
3554 	}
3555 
3556 	/*
3557 	 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3558 	 */
3559 	if (system_uses_ttbr0_pan())
3560 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3561 }
3562 
3563 void __init setup_system_features(void)
3564 {
3565 	setup_system_capabilities();
3566 
3567 	kpti_install_ng_mappings();
3568 
3569 	sve_setup();
3570 	sme_setup();
3571 
3572 	/*
3573 	 * Check for sane CTR_EL0.CWG value.
3574 	 */
3575 	if (!cache_type_cwg())
3576 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3577 			ARCH_DMA_MINALIGN);
3578 }
3579 
3580 void __init setup_user_features(void)
3581 {
3582 	user_feature_fixup();
3583 
3584 	setup_elf_hwcaps(arm64_elf_hwcaps);
3585 
3586 	if (system_supports_32bit_el0()) {
3587 		setup_elf_hwcaps(compat_elf_hwcaps);
3588 		elf_hwcap_fixup();
3589 	}
3590 
3591 	minsigstksz_setup();
3592 }
3593 
3594 static int enable_mismatched_32bit_el0(unsigned int cpu)
3595 {
3596 	/*
3597 	 * The first 32-bit-capable CPU we detected and so can no longer
3598 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3599 	 * a 32-bit-capable CPU.
3600 	 */
3601 	static int lucky_winner = -1;
3602 
3603 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3604 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3605 
3606 	if (cpu_32bit) {
3607 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3608 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3609 	}
3610 
3611 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3612 		return 0;
3613 
3614 	if (lucky_winner >= 0)
3615 		return 0;
3616 
3617 	/*
3618 	 * We've detected a mismatch. We need to keep one of our CPUs with
3619 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3620 	 * every CPU in the system for a 32-bit task.
3621 	 */
3622 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3623 							 cpu_active_mask);
3624 	get_cpu_device(lucky_winner)->offline_disabled = true;
3625 	setup_elf_hwcaps(compat_elf_hwcaps);
3626 	elf_hwcap_fixup();
3627 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3628 		cpu, lucky_winner);
3629 	return 0;
3630 }
3631 
3632 static int __init init_32bit_el0_mask(void)
3633 {
3634 	if (!allow_mismatched_32bit_el0)
3635 		return 0;
3636 
3637 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3638 		return -ENOMEM;
3639 
3640 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3641 				 "arm64/mismatched_32bit_el0:online",
3642 				 enable_mismatched_32bit_el0, NULL);
3643 }
3644 subsys_initcall_sync(init_32bit_el0_mask);
3645 
3646 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3647 {
3648 	cpu_enable_swapper_cnp();
3649 }
3650 
3651 /*
3652  * We emulate only the following system register space.
3653  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3654  * See Table C5-6 System instruction encodings for System register accesses,
3655  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3656  */
3657 static inline bool __attribute_const__ is_emulated(u32 id)
3658 {
3659 	return (sys_reg_Op0(id) == 0x3 &&
3660 		sys_reg_CRn(id) == 0x0 &&
3661 		sys_reg_Op1(id) == 0x0 &&
3662 		(sys_reg_CRm(id) == 0 ||
3663 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3664 }
3665 
3666 /*
3667  * With CRm == 0, reg should be one of :
3668  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3669  */
3670 static inline int emulate_id_reg(u32 id, u64 *valp)
3671 {
3672 	switch (id) {
3673 	case SYS_MIDR_EL1:
3674 		*valp = read_cpuid_id();
3675 		break;
3676 	case SYS_MPIDR_EL1:
3677 		*valp = SYS_MPIDR_SAFE_VAL;
3678 		break;
3679 	case SYS_REVIDR_EL1:
3680 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3681 		*valp = 0;
3682 		break;
3683 	default:
3684 		return -EINVAL;
3685 	}
3686 
3687 	return 0;
3688 }
3689 
3690 static int emulate_sys_reg(u32 id, u64 *valp)
3691 {
3692 	struct arm64_ftr_reg *regp;
3693 
3694 	if (!is_emulated(id))
3695 		return -EINVAL;
3696 
3697 	if (sys_reg_CRm(id) == 0)
3698 		return emulate_id_reg(id, valp);
3699 
3700 	regp = get_arm64_ftr_reg_nowarn(id);
3701 	if (regp)
3702 		*valp = arm64_ftr_reg_user_value(regp);
3703 	else
3704 		/*
3705 		 * The untracked registers are either IMPLEMENTATION DEFINED
3706 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3707 		 */
3708 		*valp = 0;
3709 	return 0;
3710 }
3711 
3712 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3713 {
3714 	int rc;
3715 	u64 val;
3716 
3717 	rc = emulate_sys_reg(sys_reg, &val);
3718 	if (!rc) {
3719 		pt_regs_write_reg(regs, rt, val);
3720 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3721 	}
3722 	return rc;
3723 }
3724 
3725 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3726 {
3727 	u32 sys_reg, rt;
3728 
3729 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3730 		return false;
3731 
3732 	/*
3733 	 * sys_reg values are defined as used in mrs/msr instruction.
3734 	 * shift the imm value to get the encoding.
3735 	 */
3736 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3737 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3738 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
3739 }
3740 
3741 enum mitigation_state arm64_get_meltdown_state(void)
3742 {
3743 	if (__meltdown_safe)
3744 		return SPECTRE_UNAFFECTED;
3745 
3746 	if (arm64_kernel_unmapped_at_el0())
3747 		return SPECTRE_MITIGATED;
3748 
3749 	return SPECTRE_VULNERABLE;
3750 }
3751 
3752 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3753 			  char *buf)
3754 {
3755 	switch (arm64_get_meltdown_state()) {
3756 	case SPECTRE_UNAFFECTED:
3757 		return sprintf(buf, "Not affected\n");
3758 
3759 	case SPECTRE_MITIGATED:
3760 		return sprintf(buf, "Mitigation: PTI\n");
3761 
3762 	default:
3763 		return sprintf(buf, "Vulnerable\n");
3764 	}
3765 }
3766