xref: /linux/arch/arm64/kernel/cpufeature.c (revision 604e2139a1026793b8c2172bd92c7e9d039a5cf0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  */
7 
8 #define pr_fmt(fmt) "CPU features: " fmt
9 
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
16 #include <linux/mm.h>
17 #include <linux/cpu.h>
18 #include <asm/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
26 #include <asm/virt.h>
27 
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly;
30 
31 #ifdef CONFIG_COMPAT
32 #define COMPAT_ELF_HWCAP_DEFAULT	\
33 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
36 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
37 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
38 				 COMPAT_HWCAP_LPAE)
39 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
40 unsigned int compat_elf_hwcap2 __read_mostly;
41 #endif
42 
43 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
44 EXPORT_SYMBOL(cpu_hwcaps);
45 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
46 
47 /* Need also bit for ARM64_CB_PATCH */
48 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
49 
50 /*
51  * Flag to indicate if we have computed the system wide
52  * capabilities based on the boot time active CPUs. This
53  * will be used to determine if a new booting CPU should
54  * go through the verification process to make sure that it
55  * supports the system capabilities, without using a hotplug
56  * notifier.
57  */
58 static bool sys_caps_initialised;
59 
60 static inline void set_sys_caps_initialised(void)
61 {
62 	sys_caps_initialised = true;
63 }
64 
65 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
66 {
67 	/* file-wide pr_fmt adds "CPU features: " prefix */
68 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
69 	return 0;
70 }
71 
72 static struct notifier_block cpu_hwcaps_notifier = {
73 	.notifier_call = dump_cpu_hwcaps
74 };
75 
76 static int __init register_cpu_hwcaps_dumper(void)
77 {
78 	atomic_notifier_chain_register(&panic_notifier_list,
79 				       &cpu_hwcaps_notifier);
80 	return 0;
81 }
82 __initcall(register_cpu_hwcaps_dumper);
83 
84 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
85 EXPORT_SYMBOL(cpu_hwcap_keys);
86 
87 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
88 	{						\
89 		.sign = SIGNED,				\
90 		.visible = VISIBLE,			\
91 		.strict = STRICT,			\
92 		.type = TYPE,				\
93 		.shift = SHIFT,				\
94 		.width = WIDTH,				\
95 		.safe_val = SAFE_VAL,			\
96 	}
97 
98 /* Define a feature with unsigned values */
99 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
100 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
101 
102 /* Define a feature with a signed value */
103 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
104 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
105 
106 #define ARM64_FTR_END					\
107 	{						\
108 		.width = 0,				\
109 	}
110 
111 /* meta feature for alternatives */
112 static bool __maybe_unused
113 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
114 
115 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
116 
117 /*
118  * NOTE: Any changes to the visibility of features should be kept in
119  * sync with the documentation of the CPU feature register ABI.
120  */
121 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
122 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
123 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
124 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
125 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
134 	ARM64_FTR_END,
135 };
136 
137 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
138 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
139 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
140 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
141 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
142 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
143 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
144 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
145 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
146 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
147 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
148 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
149 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
150 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
151 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
152 	ARM64_FTR_END,
153 };
154 
155 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
156 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
157 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
158 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
159 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
160 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
162 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
163 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
164 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
165 	/* Linux doesn't care about the EL3 */
166 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
167 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
169 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
170 	ARM64_FTR_END,
171 };
172 
173 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
174 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
175 	ARM64_FTR_END,
176 };
177 
178 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
179 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
180 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
181 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
182 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
183 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
184 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
185 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
186 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
188 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
189 	ARM64_FTR_END,
190 };
191 
192 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
193 	/*
194 	 * We already refuse to boot CPUs that don't support our configured
195 	 * page size, so we can only detect mismatches for a page size other
196 	 * than the one we're currently using. Unfortunately, SoCs like this
197 	 * exist in the wild so, even though we don't like it, we'll have to go
198 	 * along with it and treat them as non-strict.
199 	 */
200 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
201 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
202 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
203 
204 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
205 	/* Linux shouldn't care about secure memory */
206 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
207 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
208 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
209 	/*
210 	 * Differing PARange is fine as long as all peripherals and memory are mapped
211 	 * within the minimum PARange of all CPUs
212 	 */
213 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
214 	ARM64_FTR_END,
215 };
216 
217 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
218 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
219 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
222 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
224 	ARM64_FTR_END,
225 };
226 
227 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
229 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
230 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
231 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
235 	ARM64_FTR_END,
236 };
237 
238 static const struct arm64_ftr_bits ftr_ctr[] = {
239 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
240 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
241 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
242 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
245 	/*
246 	 * Linux can handle differing I-cache policies. Userspace JITs will
247 	 * make use of *minLine.
248 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
249 	 */
250 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
251 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
252 	ARM64_FTR_END,
253 };
254 
255 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
256 	.name		= "SYS_CTR_EL0",
257 	.ftr_bits	= ftr_ctr
258 };
259 
260 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
261 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
262 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
263 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
264 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
265 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
266 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
267 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
269 	ARM64_FTR_END,
270 };
271 
272 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
273 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
274 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
276 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
278 	/*
279 	 * We can instantiate multiple PMU instances with different levels
280 	 * of support.
281 	 */
282 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
285 	ARM64_FTR_END,
286 };
287 
288 static const struct arm64_ftr_bits ftr_mvfr2[] = {
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
290 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
291 	ARM64_FTR_END,
292 };
293 
294 static const struct arm64_ftr_bits ftr_dczid[] = {
295 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
296 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
297 	ARM64_FTR_END,
298 };
299 
300 
301 static const struct arm64_ftr_bits ftr_id_isar5[] = {
302 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
303 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
304 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
305 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
306 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
307 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
308 	ARM64_FTR_END,
309 };
310 
311 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
312 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
313 	ARM64_FTR_END,
314 };
315 
316 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
317 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
318 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
321 	ARM64_FTR_END,
322 };
323 
324 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
325 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
326 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
327 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
328 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
329 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
330 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
331 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
332 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
333 	ARM64_FTR_END,
334 };
335 
336 static const struct arm64_ftr_bits ftr_zcr[] = {
337 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
338 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
339 	ARM64_FTR_END,
340 };
341 
342 /*
343  * Common ftr bits for a 32bit register with all hidden, strict
344  * attributes, with 4bit feature fields and a default safe value of
345  * 0. Covers the following 32bit registers:
346  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
347  */
348 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
349 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
350 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
351 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
352 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
353 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
354 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
355 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
356 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
357 	ARM64_FTR_END,
358 };
359 
360 /* Table for a single 32bit feature value */
361 static const struct arm64_ftr_bits ftr_single32[] = {
362 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
363 	ARM64_FTR_END,
364 };
365 
366 static const struct arm64_ftr_bits ftr_raz[] = {
367 	ARM64_FTR_END,
368 };
369 
370 #define ARM64_FTR_REG(id, table) {		\
371 	.sys_id = id,				\
372 	.reg = 	&(struct arm64_ftr_reg){	\
373 		.name = #id,			\
374 		.ftr_bits = &((table)[0]),	\
375 	}}
376 
377 static const struct __ftr_reg_entry {
378 	u32			sys_id;
379 	struct arm64_ftr_reg 	*reg;
380 } arm64_ftr_regs[] = {
381 
382 	/* Op1 = 0, CRn = 0, CRm = 1 */
383 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
384 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
385 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
386 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
387 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
388 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
389 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
390 
391 	/* Op1 = 0, CRn = 0, CRm = 2 */
392 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
393 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
394 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
395 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
396 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
397 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
398 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
399 
400 	/* Op1 = 0, CRn = 0, CRm = 3 */
401 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
402 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
403 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
404 
405 	/* Op1 = 0, CRn = 0, CRm = 4 */
406 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
407 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
408 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
409 
410 	/* Op1 = 0, CRn = 0, CRm = 5 */
411 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
412 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
413 
414 	/* Op1 = 0, CRn = 0, CRm = 6 */
415 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
416 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
417 
418 	/* Op1 = 0, CRn = 0, CRm = 7 */
419 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
420 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
421 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
422 
423 	/* Op1 = 0, CRn = 1, CRm = 2 */
424 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
425 
426 	/* Op1 = 3, CRn = 0, CRm = 0 */
427 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
428 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
429 
430 	/* Op1 = 3, CRn = 14, CRm = 0 */
431 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
432 };
433 
434 static int search_cmp_ftr_reg(const void *id, const void *regp)
435 {
436 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
437 }
438 
439 /*
440  * get_arm64_ftr_reg - Lookup a feature register entry using its
441  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
442  * ascending order of sys_id , we use binary search to find a matching
443  * entry.
444  *
445  * returns - Upon success,  matching ftr_reg entry for id.
446  *         - NULL on failure. It is upto the caller to decide
447  *	     the impact of a failure.
448  */
449 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
450 {
451 	const struct __ftr_reg_entry *ret;
452 
453 	ret = bsearch((const void *)(unsigned long)sys_id,
454 			arm64_ftr_regs,
455 			ARRAY_SIZE(arm64_ftr_regs),
456 			sizeof(arm64_ftr_regs[0]),
457 			search_cmp_ftr_reg);
458 	if (ret)
459 		return ret->reg;
460 	return NULL;
461 }
462 
463 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
464 			       s64 ftr_val)
465 {
466 	u64 mask = arm64_ftr_mask(ftrp);
467 
468 	reg &= ~mask;
469 	reg |= (ftr_val << ftrp->shift) & mask;
470 	return reg;
471 }
472 
473 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
474 				s64 cur)
475 {
476 	s64 ret = 0;
477 
478 	switch (ftrp->type) {
479 	case FTR_EXACT:
480 		ret = ftrp->safe_val;
481 		break;
482 	case FTR_LOWER_SAFE:
483 		ret = new < cur ? new : cur;
484 		break;
485 	case FTR_HIGHER_OR_ZERO_SAFE:
486 		if (!cur || !new)
487 			break;
488 		/* Fallthrough */
489 	case FTR_HIGHER_SAFE:
490 		ret = new > cur ? new : cur;
491 		break;
492 	default:
493 		BUG();
494 	}
495 
496 	return ret;
497 }
498 
499 static void __init sort_ftr_regs(void)
500 {
501 	int i;
502 
503 	/* Check that the array is sorted so that we can do the binary search */
504 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
505 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
506 }
507 
508 /*
509  * Initialise the CPU feature register from Boot CPU values.
510  * Also initiliases the strict_mask for the register.
511  * Any bits that are not covered by an arm64_ftr_bits entry are considered
512  * RES0 for the system-wide value, and must strictly match.
513  */
514 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
515 {
516 	u64 val = 0;
517 	u64 strict_mask = ~0x0ULL;
518 	u64 user_mask = 0;
519 	u64 valid_mask = 0;
520 
521 	const struct arm64_ftr_bits *ftrp;
522 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
523 
524 	BUG_ON(!reg);
525 
526 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
527 		u64 ftr_mask = arm64_ftr_mask(ftrp);
528 		s64 ftr_new = arm64_ftr_value(ftrp, new);
529 
530 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
531 
532 		valid_mask |= ftr_mask;
533 		if (!ftrp->strict)
534 			strict_mask &= ~ftr_mask;
535 		if (ftrp->visible)
536 			user_mask |= ftr_mask;
537 		else
538 			reg->user_val = arm64_ftr_set_value(ftrp,
539 							    reg->user_val,
540 							    ftrp->safe_val);
541 	}
542 
543 	val &= valid_mask;
544 
545 	reg->sys_val = val;
546 	reg->strict_mask = strict_mask;
547 	reg->user_mask = user_mask;
548 }
549 
550 extern const struct arm64_cpu_capabilities arm64_errata[];
551 static const struct arm64_cpu_capabilities arm64_features[];
552 
553 static void __init
554 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
555 {
556 	for (; caps->matches; caps++) {
557 		if (WARN(caps->capability >= ARM64_NCAPS,
558 			"Invalid capability %d\n", caps->capability))
559 			continue;
560 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
561 			"Duplicate entry for capability %d\n",
562 			caps->capability))
563 			continue;
564 		cpu_hwcaps_ptrs[caps->capability] = caps;
565 	}
566 }
567 
568 static void __init init_cpu_hwcaps_indirect_list(void)
569 {
570 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
571 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
572 }
573 
574 static void __init setup_boot_cpu_capabilities(void);
575 
576 void __init init_cpu_features(struct cpuinfo_arm64 *info)
577 {
578 	/* Before we start using the tables, make sure it is sorted */
579 	sort_ftr_regs();
580 
581 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
582 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
583 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
584 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
585 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
586 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
587 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
588 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
589 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
590 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
591 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
592 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
593 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
594 
595 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
596 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
597 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
598 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
599 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
600 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
601 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
602 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
603 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
604 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
605 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
606 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
607 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
608 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
609 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
610 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
611 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
612 	}
613 
614 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
615 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
616 		sve_init_vq_map();
617 	}
618 
619 	/*
620 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
621 	 * before we handle the boot CPU below.
622 	 */
623 	init_cpu_hwcaps_indirect_list();
624 
625 	/*
626 	 * Detect and enable early CPU capabilities based on the boot CPU,
627 	 * after we have initialised the CPU feature infrastructure.
628 	 */
629 	setup_boot_cpu_capabilities();
630 }
631 
632 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
633 {
634 	const struct arm64_ftr_bits *ftrp;
635 
636 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
637 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
638 		s64 ftr_new = arm64_ftr_value(ftrp, new);
639 
640 		if (ftr_cur == ftr_new)
641 			continue;
642 		/* Find a safe value */
643 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
644 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
645 	}
646 
647 }
648 
649 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
650 {
651 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
652 
653 	BUG_ON(!regp);
654 	update_cpu_ftr_reg(regp, val);
655 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
656 		return 0;
657 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
658 			regp->name, boot, cpu, val);
659 	return 1;
660 }
661 
662 /*
663  * Update system wide CPU feature registers with the values from a
664  * non-boot CPU. Also performs SANITY checks to make sure that there
665  * aren't any insane variations from that of the boot CPU.
666  */
667 void update_cpu_features(int cpu,
668 			 struct cpuinfo_arm64 *info,
669 			 struct cpuinfo_arm64 *boot)
670 {
671 	int taint = 0;
672 
673 	/*
674 	 * The kernel can handle differing I-cache policies, but otherwise
675 	 * caches should look identical. Userspace JITs will make use of
676 	 * *minLine.
677 	 */
678 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
679 				      info->reg_ctr, boot->reg_ctr);
680 
681 	/*
682 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
683 	 * could result in too much or too little memory being zeroed if a
684 	 * process is preempted and migrated between CPUs.
685 	 */
686 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
687 				      info->reg_dczid, boot->reg_dczid);
688 
689 	/* If different, timekeeping will be broken (especially with KVM) */
690 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
691 				      info->reg_cntfrq, boot->reg_cntfrq);
692 
693 	/*
694 	 * The kernel uses self-hosted debug features and expects CPUs to
695 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
696 	 * and BRPs to be identical.
697 	 * ID_AA64DFR1 is currently RES0.
698 	 */
699 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
700 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
701 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
702 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
703 	/*
704 	 * Even in big.LITTLE, processors should be identical instruction-set
705 	 * wise.
706 	 */
707 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
708 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
709 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
710 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
711 
712 	/*
713 	 * Differing PARange support is fine as long as all peripherals and
714 	 * memory are mapped within the minimum PARange of all CPUs.
715 	 * Linux should not care about secure memory.
716 	 */
717 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
718 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
719 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
720 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
721 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
722 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
723 
724 	/*
725 	 * EL3 is not our concern.
726 	 */
727 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
728 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
729 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
730 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
731 
732 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
733 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
734 
735 	/*
736 	 * If we have AArch32, we care about 32-bit features for compat.
737 	 * If the system doesn't support AArch32, don't update them.
738 	 */
739 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
740 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
741 
742 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
743 					info->reg_id_dfr0, boot->reg_id_dfr0);
744 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
745 					info->reg_id_isar0, boot->reg_id_isar0);
746 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
747 					info->reg_id_isar1, boot->reg_id_isar1);
748 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
749 					info->reg_id_isar2, boot->reg_id_isar2);
750 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
751 					info->reg_id_isar3, boot->reg_id_isar3);
752 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
753 					info->reg_id_isar4, boot->reg_id_isar4);
754 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
755 					info->reg_id_isar5, boot->reg_id_isar5);
756 
757 		/*
758 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
759 		 * ACTLR formats could differ across CPUs and therefore would have to
760 		 * be trapped for virtualization anyway.
761 		 */
762 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
763 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
764 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
765 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
766 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
767 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
768 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
769 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
770 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
771 					info->reg_id_pfr0, boot->reg_id_pfr0);
772 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
773 					info->reg_id_pfr1, boot->reg_id_pfr1);
774 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
775 					info->reg_mvfr0, boot->reg_mvfr0);
776 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
777 					info->reg_mvfr1, boot->reg_mvfr1);
778 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
779 					info->reg_mvfr2, boot->reg_mvfr2);
780 	}
781 
782 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
783 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
784 					info->reg_zcr, boot->reg_zcr);
785 
786 		/* Probe vector lengths, unless we already gave up on SVE */
787 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
788 		    !sys_caps_initialised)
789 			sve_update_vq_map();
790 	}
791 
792 	/*
793 	 * Mismatched CPU features are a recipe for disaster. Don't even
794 	 * pretend to support them.
795 	 */
796 	if (taint) {
797 		pr_warn_once("Unsupported CPU feature variation detected.\n");
798 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
799 	}
800 }
801 
802 u64 read_sanitised_ftr_reg(u32 id)
803 {
804 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
805 
806 	/* We shouldn't get a request for an unsupported register */
807 	BUG_ON(!regp);
808 	return regp->sys_val;
809 }
810 
811 #define read_sysreg_case(r)	\
812 	case r:		return read_sysreg_s(r)
813 
814 /*
815  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
816  * Read the system register on the current CPU
817  */
818 static u64 __read_sysreg_by_encoding(u32 sys_id)
819 {
820 	switch (sys_id) {
821 	read_sysreg_case(SYS_ID_PFR0_EL1);
822 	read_sysreg_case(SYS_ID_PFR1_EL1);
823 	read_sysreg_case(SYS_ID_DFR0_EL1);
824 	read_sysreg_case(SYS_ID_MMFR0_EL1);
825 	read_sysreg_case(SYS_ID_MMFR1_EL1);
826 	read_sysreg_case(SYS_ID_MMFR2_EL1);
827 	read_sysreg_case(SYS_ID_MMFR3_EL1);
828 	read_sysreg_case(SYS_ID_ISAR0_EL1);
829 	read_sysreg_case(SYS_ID_ISAR1_EL1);
830 	read_sysreg_case(SYS_ID_ISAR2_EL1);
831 	read_sysreg_case(SYS_ID_ISAR3_EL1);
832 	read_sysreg_case(SYS_ID_ISAR4_EL1);
833 	read_sysreg_case(SYS_ID_ISAR5_EL1);
834 	read_sysreg_case(SYS_MVFR0_EL1);
835 	read_sysreg_case(SYS_MVFR1_EL1);
836 	read_sysreg_case(SYS_MVFR2_EL1);
837 
838 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
839 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
840 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
841 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
842 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
843 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
844 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
845 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
846 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
847 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
848 
849 	read_sysreg_case(SYS_CNTFRQ_EL0);
850 	read_sysreg_case(SYS_CTR_EL0);
851 	read_sysreg_case(SYS_DCZID_EL0);
852 
853 	default:
854 		BUG();
855 		return 0;
856 	}
857 }
858 
859 #include <linux/irqchip/arm-gic-v3.h>
860 
861 static bool
862 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
863 {
864 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
865 
866 	return val >= entry->min_field_value;
867 }
868 
869 static bool
870 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
871 {
872 	u64 val;
873 
874 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
875 	if (scope == SCOPE_SYSTEM)
876 		val = read_sanitised_ftr_reg(entry->sys_reg);
877 	else
878 		val = __read_sysreg_by_encoding(entry->sys_reg);
879 
880 	return feature_matches(val, entry);
881 }
882 
883 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
884 {
885 	bool has_sre;
886 
887 	if (!has_cpuid_feature(entry, scope))
888 		return false;
889 
890 	has_sre = gic_enable_sre();
891 	if (!has_sre)
892 		pr_warn_once("%s present but disabled by higher exception level\n",
893 			     entry->desc);
894 
895 	return has_sre;
896 }
897 
898 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
899 {
900 	u32 midr = read_cpuid_id();
901 
902 	/* Cavium ThunderX pass 1.x and 2.x */
903 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
904 		MIDR_CPU_VAR_REV(0, 0),
905 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
906 }
907 
908 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
909 {
910 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
911 
912 	return cpuid_feature_extract_signed_field(pfr0,
913 					ID_AA64PFR0_FP_SHIFT) < 0;
914 }
915 
916 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
917 			  int scope)
918 {
919 	u64 ctr;
920 
921 	if (scope == SCOPE_SYSTEM)
922 		ctr = arm64_ftr_reg_ctrel0.sys_val;
923 	else
924 		ctr = read_cpuid_effective_cachetype();
925 
926 	return ctr & BIT(CTR_IDC_SHIFT);
927 }
928 
929 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
930 {
931 	/*
932 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
933 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
934 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
935 	 * value.
936 	 */
937 	if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
938 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
939 }
940 
941 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
942 			  int scope)
943 {
944 	u64 ctr;
945 
946 	if (scope == SCOPE_SYSTEM)
947 		ctr = arm64_ftr_reg_ctrel0.sys_val;
948 	else
949 		ctr = read_cpuid_cachetype();
950 
951 	return ctr & BIT(CTR_DIC_SHIFT);
952 }
953 
954 static bool __maybe_unused
955 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
956 {
957 	/*
958 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
959 	 * may share TLB entries with a CPU stuck in the crashed
960 	 * kernel.
961 	 */
962 	 if (is_kdump_kernel())
963 		return false;
964 
965 	return has_cpuid_feature(entry, scope);
966 }
967 
968 static bool __meltdown_safe = true;
969 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
970 
971 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
972 				int scope)
973 {
974 	/* List of CPUs that are not vulnerable and don't need KPTI */
975 	static const struct midr_range kpti_safe_list[] = {
976 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
977 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
978 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
979 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
980 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
981 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
982 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
983 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
984 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
985 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
986 		{ /* sentinel */ }
987 	};
988 	char const *str = "kpti command line option";
989 	bool meltdown_safe;
990 
991 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
992 
993 	/* Defer to CPU feature registers */
994 	if (has_cpuid_feature(entry, scope))
995 		meltdown_safe = true;
996 
997 	if (!meltdown_safe)
998 		__meltdown_safe = false;
999 
1000 	/*
1001 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1002 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1003 	 * ends as well as you might imagine. Don't even try.
1004 	 */
1005 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1006 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1007 		__kpti_forced = -1;
1008 	}
1009 
1010 	/* Useful for KASLR robustness */
1011 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
1012 		if (!__kpti_forced) {
1013 			str = "KASLR";
1014 			__kpti_forced = 1;
1015 		}
1016 	}
1017 
1018 	if (cpu_mitigations_off() && !__kpti_forced) {
1019 		str = "mitigations=off";
1020 		__kpti_forced = -1;
1021 	}
1022 
1023 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1024 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1025 		return false;
1026 	}
1027 
1028 	/* Forced? */
1029 	if (__kpti_forced) {
1030 		pr_info_once("kernel page table isolation forced %s by %s\n",
1031 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1032 		return __kpti_forced > 0;
1033 	}
1034 
1035 	return !meltdown_safe;
1036 }
1037 
1038 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1039 static void
1040 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1041 {
1042 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1043 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1044 	kpti_remap_fn *remap_fn;
1045 
1046 	static bool kpti_applied = false;
1047 	int cpu = smp_processor_id();
1048 
1049 	/*
1050 	 * We don't need to rewrite the page-tables if either we've done
1051 	 * it already or we have KASLR enabled and therefore have not
1052 	 * created any global mappings at all.
1053 	 */
1054 	if (kpti_applied || kaslr_offset() > 0)
1055 		return;
1056 
1057 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1058 
1059 	cpu_install_idmap();
1060 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1061 	cpu_uninstall_idmap();
1062 
1063 	if (!cpu)
1064 		kpti_applied = true;
1065 
1066 	return;
1067 }
1068 #else
1069 static void
1070 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1071 {
1072 }
1073 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1074 
1075 static int __init parse_kpti(char *str)
1076 {
1077 	bool enabled;
1078 	int ret = strtobool(str, &enabled);
1079 
1080 	if (ret)
1081 		return ret;
1082 
1083 	__kpti_forced = enabled ? 1 : -1;
1084 	return 0;
1085 }
1086 early_param("kpti", parse_kpti);
1087 
1088 #ifdef CONFIG_ARM64_HW_AFDBM
1089 static inline void __cpu_enable_hw_dbm(void)
1090 {
1091 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1092 
1093 	write_sysreg(tcr, tcr_el1);
1094 	isb();
1095 }
1096 
1097 static bool cpu_has_broken_dbm(void)
1098 {
1099 	/* List of CPUs which have broken DBM support. */
1100 	static const struct midr_range cpus[] = {
1101 #ifdef CONFIG_ARM64_ERRATUM_1024718
1102 		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1103 #endif
1104 		{},
1105 	};
1106 
1107 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1108 }
1109 
1110 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1111 {
1112 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1113 	       !cpu_has_broken_dbm();
1114 }
1115 
1116 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1117 {
1118 	if (cpu_can_use_dbm(cap))
1119 		__cpu_enable_hw_dbm();
1120 }
1121 
1122 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1123 		       int __unused)
1124 {
1125 	static bool detected = false;
1126 	/*
1127 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1128 	 * run a mix of CPUs with and without the feature. So, we
1129 	 * unconditionally enable the capability to allow any late CPU
1130 	 * to use the feature. We only enable the control bits on the
1131 	 * CPU, if it actually supports.
1132 	 *
1133 	 * We have to make sure we print the "feature" detection only
1134 	 * when at least one CPU actually uses it. So check if this CPU
1135 	 * can actually use it and print the message exactly once.
1136 	 *
1137 	 * This is safe as all CPUs (including secondary CPUs - due to the
1138 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1139 	 * goes through the "matches" check exactly once. Also if a CPU
1140 	 * matches the criteria, it is guaranteed that the CPU will turn
1141 	 * the DBM on, as the capability is unconditionally enabled.
1142 	 */
1143 	if (!detected && cpu_can_use_dbm(cap)) {
1144 		detected = true;
1145 		pr_info("detected: Hardware dirty bit management\n");
1146 	}
1147 
1148 	return true;
1149 }
1150 
1151 #endif
1152 
1153 #ifdef CONFIG_ARM64_VHE
1154 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1155 {
1156 	return is_kernel_in_hyp_mode();
1157 }
1158 
1159 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1160 {
1161 	/*
1162 	 * Copy register values that aren't redirected by hardware.
1163 	 *
1164 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1165 	 * this value to tpidr_el2 before we patch the code. Once we've done
1166 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1167 	 * do anything here.
1168 	 */
1169 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1170 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1171 }
1172 #endif
1173 
1174 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1175 {
1176 	u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1177 
1178 	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1179 	WARN_ON(val & (7 << 27 | 7 << 21));
1180 }
1181 
1182 #ifdef CONFIG_ARM64_SSBD
1183 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1184 {
1185 	if (user_mode(regs))
1186 		return 1;
1187 
1188 	if (instr & BIT(PSTATE_Imm_shift))
1189 		regs->pstate |= PSR_SSBS_BIT;
1190 	else
1191 		regs->pstate &= ~PSR_SSBS_BIT;
1192 
1193 	arm64_skip_faulting_instruction(regs, 4);
1194 	return 0;
1195 }
1196 
1197 static struct undef_hook ssbs_emulation_hook = {
1198 	.instr_mask	= ~(1U << PSTATE_Imm_shift),
1199 	.instr_val	= 0xd500401f | PSTATE_SSBS,
1200 	.fn		= ssbs_emulation_handler,
1201 };
1202 
1203 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1204 {
1205 	static bool undef_hook_registered = false;
1206 	static DEFINE_RAW_SPINLOCK(hook_lock);
1207 
1208 	raw_spin_lock(&hook_lock);
1209 	if (!undef_hook_registered) {
1210 		register_undef_hook(&ssbs_emulation_hook);
1211 		undef_hook_registered = true;
1212 	}
1213 	raw_spin_unlock(&hook_lock);
1214 
1215 	if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1216 		sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1217 		arm64_set_ssbd_mitigation(false);
1218 	} else {
1219 		arm64_set_ssbd_mitigation(true);
1220 	}
1221 }
1222 #endif /* CONFIG_ARM64_SSBD */
1223 
1224 #ifdef CONFIG_ARM64_PAN
1225 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1226 {
1227 	/*
1228 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1229 	 * is discarded once we return from the exception.
1230 	 */
1231 	WARN_ON_ONCE(in_interrupt());
1232 
1233 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1234 	asm(SET_PSTATE_PAN(1));
1235 }
1236 #endif /* CONFIG_ARM64_PAN */
1237 
1238 #ifdef CONFIG_ARM64_RAS_EXTN
1239 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1240 {
1241 	/* Firmware may have left a deferred SError in this register. */
1242 	write_sysreg_s(0, SYS_DISR_EL1);
1243 }
1244 #endif /* CONFIG_ARM64_RAS_EXTN */
1245 
1246 #ifdef CONFIG_ARM64_PTR_AUTH
1247 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1248 {
1249 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1250 				       SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1251 }
1252 #endif /* CONFIG_ARM64_PTR_AUTH */
1253 
1254 #ifdef CONFIG_ARM64_PSEUDO_NMI
1255 static bool enable_pseudo_nmi;
1256 
1257 static int __init early_enable_pseudo_nmi(char *p)
1258 {
1259 	return strtobool(p, &enable_pseudo_nmi);
1260 }
1261 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1262 
1263 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1264 				   int scope)
1265 {
1266 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1267 }
1268 #endif
1269 
1270 static const struct arm64_cpu_capabilities arm64_features[] = {
1271 	{
1272 		.desc = "GIC system register CPU interface",
1273 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1274 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1275 		.matches = has_useable_gicv3_cpuif,
1276 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1277 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1278 		.sign = FTR_UNSIGNED,
1279 		.min_field_value = 1,
1280 	},
1281 #ifdef CONFIG_ARM64_PAN
1282 	{
1283 		.desc = "Privileged Access Never",
1284 		.capability = ARM64_HAS_PAN,
1285 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1286 		.matches = has_cpuid_feature,
1287 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1288 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1289 		.sign = FTR_UNSIGNED,
1290 		.min_field_value = 1,
1291 		.cpu_enable = cpu_enable_pan,
1292 	},
1293 #endif /* CONFIG_ARM64_PAN */
1294 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1295 	{
1296 		.desc = "LSE atomic instructions",
1297 		.capability = ARM64_HAS_LSE_ATOMICS,
1298 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1299 		.matches = has_cpuid_feature,
1300 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1301 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1302 		.sign = FTR_UNSIGNED,
1303 		.min_field_value = 2,
1304 	},
1305 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1306 	{
1307 		.desc = "Software prefetching using PRFM",
1308 		.capability = ARM64_HAS_NO_HW_PREFETCH,
1309 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1310 		.matches = has_no_hw_prefetch,
1311 	},
1312 #ifdef CONFIG_ARM64_UAO
1313 	{
1314 		.desc = "User Access Override",
1315 		.capability = ARM64_HAS_UAO,
1316 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1317 		.matches = has_cpuid_feature,
1318 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1319 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
1320 		.min_field_value = 1,
1321 		/*
1322 		 * We rely on stop_machine() calling uao_thread_switch() to set
1323 		 * UAO immediately after patching.
1324 		 */
1325 	},
1326 #endif /* CONFIG_ARM64_UAO */
1327 #ifdef CONFIG_ARM64_PAN
1328 	{
1329 		.capability = ARM64_ALT_PAN_NOT_UAO,
1330 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1331 		.matches = cpufeature_pan_not_uao,
1332 	},
1333 #endif /* CONFIG_ARM64_PAN */
1334 #ifdef CONFIG_ARM64_VHE
1335 	{
1336 		.desc = "Virtualization Host Extensions",
1337 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1338 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1339 		.matches = runs_at_el2,
1340 		.cpu_enable = cpu_copy_el2regs,
1341 	},
1342 #endif	/* CONFIG_ARM64_VHE */
1343 	{
1344 		.desc = "32-bit EL0 Support",
1345 		.capability = ARM64_HAS_32BIT_EL0,
1346 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1347 		.matches = has_cpuid_feature,
1348 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1349 		.sign = FTR_UNSIGNED,
1350 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1351 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1352 	},
1353 	{
1354 		.desc = "Kernel page table isolation (KPTI)",
1355 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1356 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1357 		/*
1358 		 * The ID feature fields below are used to indicate that
1359 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1360 		 * more details.
1361 		 */
1362 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1363 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
1364 		.min_field_value = 1,
1365 		.matches = unmap_kernel_at_el0,
1366 		.cpu_enable = kpti_install_ng_mappings,
1367 	},
1368 	{
1369 		/* FP/SIMD is not implemented */
1370 		.capability = ARM64_HAS_NO_FPSIMD,
1371 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1372 		.min_field_value = 0,
1373 		.matches = has_no_fpsimd,
1374 	},
1375 #ifdef CONFIG_ARM64_PMEM
1376 	{
1377 		.desc = "Data cache clean to Point of Persistence",
1378 		.capability = ARM64_HAS_DCPOP,
1379 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1380 		.matches = has_cpuid_feature,
1381 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1382 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1383 		.min_field_value = 1,
1384 	},
1385 	{
1386 		.desc = "Data cache clean to Point of Deep Persistence",
1387 		.capability = ARM64_HAS_DCPODP,
1388 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1389 		.matches = has_cpuid_feature,
1390 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1391 		.sign = FTR_UNSIGNED,
1392 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1393 		.min_field_value = 2,
1394 	},
1395 #endif
1396 #ifdef CONFIG_ARM64_SVE
1397 	{
1398 		.desc = "Scalable Vector Extension",
1399 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1400 		.capability = ARM64_SVE,
1401 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1402 		.sign = FTR_UNSIGNED,
1403 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1404 		.min_field_value = ID_AA64PFR0_SVE,
1405 		.matches = has_cpuid_feature,
1406 		.cpu_enable = sve_kernel_enable,
1407 	},
1408 #endif /* CONFIG_ARM64_SVE */
1409 #ifdef CONFIG_ARM64_RAS_EXTN
1410 	{
1411 		.desc = "RAS Extension Support",
1412 		.capability = ARM64_HAS_RAS_EXTN,
1413 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1414 		.matches = has_cpuid_feature,
1415 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1416 		.sign = FTR_UNSIGNED,
1417 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1418 		.min_field_value = ID_AA64PFR0_RAS_V1,
1419 		.cpu_enable = cpu_clear_disr,
1420 	},
1421 #endif /* CONFIG_ARM64_RAS_EXTN */
1422 	{
1423 		.desc = "Data cache clean to the PoU not required for I/D coherence",
1424 		.capability = ARM64_HAS_CACHE_IDC,
1425 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1426 		.matches = has_cache_idc,
1427 		.cpu_enable = cpu_emulate_effective_ctr,
1428 	},
1429 	{
1430 		.desc = "Instruction cache invalidation not required for I/D coherence",
1431 		.capability = ARM64_HAS_CACHE_DIC,
1432 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1433 		.matches = has_cache_dic,
1434 	},
1435 	{
1436 		.desc = "Stage-2 Force Write-Back",
1437 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1438 		.capability = ARM64_HAS_STAGE2_FWB,
1439 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1440 		.sign = FTR_UNSIGNED,
1441 		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
1442 		.min_field_value = 1,
1443 		.matches = has_cpuid_feature,
1444 		.cpu_enable = cpu_has_fwb,
1445 	},
1446 #ifdef CONFIG_ARM64_HW_AFDBM
1447 	{
1448 		/*
1449 		 * Since we turn this on always, we don't want the user to
1450 		 * think that the feature is available when it may not be.
1451 		 * So hide the description.
1452 		 *
1453 		 * .desc = "Hardware pagetable Dirty Bit Management",
1454 		 *
1455 		 */
1456 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1457 		.capability = ARM64_HW_DBM,
1458 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1459 		.sign = FTR_UNSIGNED,
1460 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1461 		.min_field_value = 2,
1462 		.matches = has_hw_dbm,
1463 		.cpu_enable = cpu_enable_hw_dbm,
1464 	},
1465 #endif
1466 	{
1467 		.desc = "CRC32 instructions",
1468 		.capability = ARM64_HAS_CRC32,
1469 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1470 		.matches = has_cpuid_feature,
1471 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1472 		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1473 		.min_field_value = 1,
1474 	},
1475 #ifdef CONFIG_ARM64_SSBD
1476 	{
1477 		.desc = "Speculative Store Bypassing Safe (SSBS)",
1478 		.capability = ARM64_SSBS,
1479 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1480 		.matches = has_cpuid_feature,
1481 		.sys_reg = SYS_ID_AA64PFR1_EL1,
1482 		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
1483 		.sign = FTR_UNSIGNED,
1484 		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1485 		.cpu_enable = cpu_enable_ssbs,
1486 	},
1487 #endif
1488 #ifdef CONFIG_ARM64_CNP
1489 	{
1490 		.desc = "Common not Private translations",
1491 		.capability = ARM64_HAS_CNP,
1492 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1493 		.matches = has_useable_cnp,
1494 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1495 		.sign = FTR_UNSIGNED,
1496 		.field_pos = ID_AA64MMFR2_CNP_SHIFT,
1497 		.min_field_value = 1,
1498 		.cpu_enable = cpu_enable_cnp,
1499 	},
1500 #endif
1501 	{
1502 		.desc = "Speculation barrier (SB)",
1503 		.capability = ARM64_HAS_SB,
1504 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1505 		.matches = has_cpuid_feature,
1506 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1507 		.field_pos = ID_AA64ISAR1_SB_SHIFT,
1508 		.sign = FTR_UNSIGNED,
1509 		.min_field_value = 1,
1510 	},
1511 #ifdef CONFIG_ARM64_PTR_AUTH
1512 	{
1513 		.desc = "Address authentication (architected algorithm)",
1514 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1515 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1516 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1517 		.sign = FTR_UNSIGNED,
1518 		.field_pos = ID_AA64ISAR1_APA_SHIFT,
1519 		.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1520 		.matches = has_cpuid_feature,
1521 		.cpu_enable = cpu_enable_address_auth,
1522 	},
1523 	{
1524 		.desc = "Address authentication (IMP DEF algorithm)",
1525 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1526 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1527 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1528 		.sign = FTR_UNSIGNED,
1529 		.field_pos = ID_AA64ISAR1_API_SHIFT,
1530 		.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1531 		.matches = has_cpuid_feature,
1532 		.cpu_enable = cpu_enable_address_auth,
1533 	},
1534 	{
1535 		.desc = "Generic authentication (architected algorithm)",
1536 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1537 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1538 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1539 		.sign = FTR_UNSIGNED,
1540 		.field_pos = ID_AA64ISAR1_GPA_SHIFT,
1541 		.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1542 		.matches = has_cpuid_feature,
1543 	},
1544 	{
1545 		.desc = "Generic authentication (IMP DEF algorithm)",
1546 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1547 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1548 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1549 		.sign = FTR_UNSIGNED,
1550 		.field_pos = ID_AA64ISAR1_GPI_SHIFT,
1551 		.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1552 		.matches = has_cpuid_feature,
1553 	},
1554 #endif /* CONFIG_ARM64_PTR_AUTH */
1555 #ifdef CONFIG_ARM64_PSEUDO_NMI
1556 	{
1557 		/*
1558 		 * Depends on having GICv3
1559 		 */
1560 		.desc = "IRQ priority masking",
1561 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
1562 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1563 		.matches = can_use_gic_priorities,
1564 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1565 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1566 		.sign = FTR_UNSIGNED,
1567 		.min_field_value = 1,
1568 	},
1569 #endif
1570 	{},
1571 };
1572 
1573 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)				\
1574 		.matches = has_cpuid_feature,					\
1575 		.sys_reg = reg,							\
1576 		.field_pos = field,						\
1577 		.sign = s,							\
1578 		.min_field_value = min_value,
1579 
1580 #define __HWCAP_CAP(name, cap_type, cap)					\
1581 		.desc = name,							\
1582 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
1583 		.hwcap_type = cap_type,						\
1584 		.hwcap = cap,							\
1585 
1586 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)			\
1587 	{									\
1588 		__HWCAP_CAP(#cap, cap_type, cap)				\
1589 		HWCAP_CPUID_MATCH(reg, field, s, min_value)			\
1590 	}
1591 
1592 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
1593 	{									\
1594 		__HWCAP_CAP(#cap, cap_type, cap)				\
1595 		.matches = cpucap_multi_entry_cap_matches,			\
1596 		.match_list = list,						\
1597 	}
1598 
1599 #ifdef CONFIG_ARM64_PTR_AUTH
1600 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1601 	{
1602 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1603 				  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1604 	},
1605 	{
1606 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1607 				  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1608 	},
1609 	{},
1610 };
1611 
1612 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1613 	{
1614 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1615 				  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1616 	},
1617 	{
1618 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1619 				  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1620 	},
1621 	{},
1622 };
1623 #endif
1624 
1625 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1626 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1627 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1628 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1629 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1630 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1631 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1632 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1633 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1634 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1635 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1636 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1637 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1638 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1639 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1640 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1641 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1642 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1643 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1644 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1645 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1646 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1647 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1648 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1649 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1650 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1651 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1652 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1653 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1654 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1655 #ifdef CONFIG_ARM64_SVE
1656 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1657 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1658 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1659 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1660 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1661 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1662 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1663 #endif
1664 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1665 #ifdef CONFIG_ARM64_PTR_AUTH
1666 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1667 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1668 #endif
1669 	{},
1670 };
1671 
1672 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1673 #ifdef CONFIG_COMPAT
1674 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1675 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1676 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1677 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1678 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1679 #endif
1680 	{},
1681 };
1682 
1683 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1684 {
1685 	switch (cap->hwcap_type) {
1686 	case CAP_HWCAP:
1687 		cpu_set_feature(cap->hwcap);
1688 		break;
1689 #ifdef CONFIG_COMPAT
1690 	case CAP_COMPAT_HWCAP:
1691 		compat_elf_hwcap |= (u32)cap->hwcap;
1692 		break;
1693 	case CAP_COMPAT_HWCAP2:
1694 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1695 		break;
1696 #endif
1697 	default:
1698 		WARN_ON(1);
1699 		break;
1700 	}
1701 }
1702 
1703 /* Check if we have a particular HWCAP enabled */
1704 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1705 {
1706 	bool rc;
1707 
1708 	switch (cap->hwcap_type) {
1709 	case CAP_HWCAP:
1710 		rc = cpu_have_feature(cap->hwcap);
1711 		break;
1712 #ifdef CONFIG_COMPAT
1713 	case CAP_COMPAT_HWCAP:
1714 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1715 		break;
1716 	case CAP_COMPAT_HWCAP2:
1717 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1718 		break;
1719 #endif
1720 	default:
1721 		WARN_ON(1);
1722 		rc = false;
1723 	}
1724 
1725 	return rc;
1726 }
1727 
1728 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1729 {
1730 	/* We support emulation of accesses to CPU ID feature registers */
1731 	cpu_set_named_feature(CPUID);
1732 	for (; hwcaps->matches; hwcaps++)
1733 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1734 			cap_set_elf_hwcap(hwcaps);
1735 }
1736 
1737 static void update_cpu_capabilities(u16 scope_mask)
1738 {
1739 	int i;
1740 	const struct arm64_cpu_capabilities *caps;
1741 
1742 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1743 	for (i = 0; i < ARM64_NCAPS; i++) {
1744 		caps = cpu_hwcaps_ptrs[i];
1745 		if (!caps || !(caps->type & scope_mask) ||
1746 		    cpus_have_cap(caps->capability) ||
1747 		    !caps->matches(caps, cpucap_default_scope(caps)))
1748 			continue;
1749 
1750 		if (caps->desc)
1751 			pr_info("detected: %s\n", caps->desc);
1752 		cpus_set_cap(caps->capability);
1753 
1754 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
1755 			set_bit(caps->capability, boot_capabilities);
1756 	}
1757 }
1758 
1759 /*
1760  * Enable all the available capabilities on this CPU. The capabilities
1761  * with BOOT_CPU scope are handled separately and hence skipped here.
1762  */
1763 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1764 {
1765 	int i;
1766 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1767 
1768 	for_each_available_cap(i) {
1769 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1770 
1771 		if (WARN_ON(!cap))
1772 			continue;
1773 
1774 		if (!(cap->type & non_boot_scope))
1775 			continue;
1776 
1777 		if (cap->cpu_enable)
1778 			cap->cpu_enable(cap);
1779 	}
1780 	return 0;
1781 }
1782 
1783 /*
1784  * Run through the enabled capabilities and enable() it on all active
1785  * CPUs
1786  */
1787 static void __init enable_cpu_capabilities(u16 scope_mask)
1788 {
1789 	int i;
1790 	const struct arm64_cpu_capabilities *caps;
1791 	bool boot_scope;
1792 
1793 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1794 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1795 
1796 	for (i = 0; i < ARM64_NCAPS; i++) {
1797 		unsigned int num;
1798 
1799 		caps = cpu_hwcaps_ptrs[i];
1800 		if (!caps || !(caps->type & scope_mask))
1801 			continue;
1802 		num = caps->capability;
1803 		if (!cpus_have_cap(num))
1804 			continue;
1805 
1806 		/* Ensure cpus_have_const_cap(num) works */
1807 		static_branch_enable(&cpu_hwcap_keys[num]);
1808 
1809 		if (boot_scope && caps->cpu_enable)
1810 			/*
1811 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1812 			 * before any secondary CPU boots. Thus, each secondary
1813 			 * will enable the capability as appropriate via
1814 			 * check_local_cpu_capabilities(). The only exception is
1815 			 * the boot CPU, for which the capability must be
1816 			 * enabled here. This approach avoids costly
1817 			 * stop_machine() calls for this case.
1818 			 */
1819 			caps->cpu_enable(caps);
1820 	}
1821 
1822 	/*
1823 	 * For all non-boot scope capabilities, use stop_machine()
1824 	 * as it schedules the work allowing us to modify PSTATE,
1825 	 * instead of on_each_cpu() which uses an IPI, giving us a
1826 	 * PSTATE that disappears when we return.
1827 	 */
1828 	if (!boot_scope)
1829 		stop_machine(cpu_enable_non_boot_scope_capabilities,
1830 			     NULL, cpu_online_mask);
1831 }
1832 
1833 /*
1834  * Run through the list of capabilities to check for conflicts.
1835  * If the system has already detected a capability, take necessary
1836  * action on this CPU.
1837  *
1838  * Returns "false" on conflicts.
1839  */
1840 static bool verify_local_cpu_caps(u16 scope_mask)
1841 {
1842 	int i;
1843 	bool cpu_has_cap, system_has_cap;
1844 	const struct arm64_cpu_capabilities *caps;
1845 
1846 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1847 
1848 	for (i = 0; i < ARM64_NCAPS; i++) {
1849 		caps = cpu_hwcaps_ptrs[i];
1850 		if (!caps || !(caps->type & scope_mask))
1851 			continue;
1852 
1853 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1854 		system_has_cap = cpus_have_cap(caps->capability);
1855 
1856 		if (system_has_cap) {
1857 			/*
1858 			 * Check if the new CPU misses an advertised feature,
1859 			 * which is not safe to miss.
1860 			 */
1861 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1862 				break;
1863 			/*
1864 			 * We have to issue cpu_enable() irrespective of
1865 			 * whether the CPU has it or not, as it is enabeld
1866 			 * system wide. It is upto the call back to take
1867 			 * appropriate action on this CPU.
1868 			 */
1869 			if (caps->cpu_enable)
1870 				caps->cpu_enable(caps);
1871 		} else {
1872 			/*
1873 			 * Check if the CPU has this capability if it isn't
1874 			 * safe to have when the system doesn't.
1875 			 */
1876 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1877 				break;
1878 		}
1879 	}
1880 
1881 	if (i < ARM64_NCAPS) {
1882 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1883 			smp_processor_id(), caps->capability,
1884 			caps->desc, system_has_cap, cpu_has_cap);
1885 		return false;
1886 	}
1887 
1888 	return true;
1889 }
1890 
1891 /*
1892  * Check for CPU features that are used in early boot
1893  * based on the Boot CPU value.
1894  */
1895 static void check_early_cpu_features(void)
1896 {
1897 	verify_cpu_asid_bits();
1898 	/*
1899 	 * Early features are used by the kernel already. If there
1900 	 * is a conflict, we cannot proceed further.
1901 	 */
1902 	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1903 		cpu_panic_kernel();
1904 }
1905 
1906 static void
1907 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1908 {
1909 
1910 	for (; caps->matches; caps++)
1911 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1912 			pr_crit("CPU%d: missing HWCAP: %s\n",
1913 					smp_processor_id(), caps->desc);
1914 			cpu_die_early();
1915 		}
1916 }
1917 
1918 static void verify_sve_features(void)
1919 {
1920 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1921 	u64 zcr = read_zcr_features();
1922 
1923 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1924 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1925 
1926 	if (len < safe_len || sve_verify_vq_map()) {
1927 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
1928 			smp_processor_id());
1929 		cpu_die_early();
1930 	}
1931 
1932 	/* Add checks on other ZCR bits here if necessary */
1933 }
1934 
1935 
1936 /*
1937  * Run through the enabled system capabilities and enable() it on this CPU.
1938  * The capabilities were decided based on the available CPUs at the boot time.
1939  * Any new CPU should match the system wide status of the capability. If the
1940  * new CPU doesn't have a capability which the system now has enabled, we
1941  * cannot do anything to fix it up and could cause unexpected failures. So
1942  * we park the CPU.
1943  */
1944 static void verify_local_cpu_capabilities(void)
1945 {
1946 	/*
1947 	 * The capabilities with SCOPE_BOOT_CPU are checked from
1948 	 * check_early_cpu_features(), as they need to be verified
1949 	 * on all secondary CPUs.
1950 	 */
1951 	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1952 		cpu_die_early();
1953 
1954 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1955 
1956 	if (system_supports_32bit_el0())
1957 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1958 
1959 	if (system_supports_sve())
1960 		verify_sve_features();
1961 }
1962 
1963 void check_local_cpu_capabilities(void)
1964 {
1965 	/*
1966 	 * All secondary CPUs should conform to the early CPU features
1967 	 * in use by the kernel based on boot CPU.
1968 	 */
1969 	check_early_cpu_features();
1970 
1971 	/*
1972 	 * If we haven't finalised the system capabilities, this CPU gets
1973 	 * a chance to update the errata work arounds and local features.
1974 	 * Otherwise, this CPU should verify that it has all the system
1975 	 * advertised capabilities.
1976 	 */
1977 	if (!sys_caps_initialised)
1978 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
1979 	else
1980 		verify_local_cpu_capabilities();
1981 }
1982 
1983 static void __init setup_boot_cpu_capabilities(void)
1984 {
1985 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1986 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1987 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1988 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
1989 }
1990 
1991 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1992 EXPORT_SYMBOL(arm64_const_caps_ready);
1993 
1994 static void __init mark_const_caps_ready(void)
1995 {
1996 	static_branch_enable(&arm64_const_caps_ready);
1997 }
1998 
1999 bool this_cpu_has_cap(unsigned int n)
2000 {
2001 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2002 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2003 
2004 		if (cap)
2005 			return cap->matches(cap, SCOPE_LOCAL_CPU);
2006 	}
2007 
2008 	return false;
2009 }
2010 
2011 void cpu_set_feature(unsigned int num)
2012 {
2013 	WARN_ON(num >= MAX_CPU_FEATURES);
2014 	elf_hwcap |= BIT(num);
2015 }
2016 EXPORT_SYMBOL_GPL(cpu_set_feature);
2017 
2018 bool cpu_have_feature(unsigned int num)
2019 {
2020 	WARN_ON(num >= MAX_CPU_FEATURES);
2021 	return elf_hwcap & BIT(num);
2022 }
2023 EXPORT_SYMBOL_GPL(cpu_have_feature);
2024 
2025 unsigned long cpu_get_elf_hwcap(void)
2026 {
2027 	/*
2028 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
2029 	 * note that for userspace compatibility we guarantee that bits 62
2030 	 * and 63 will always be returned as 0.
2031 	 */
2032 	return lower_32_bits(elf_hwcap);
2033 }
2034 
2035 unsigned long cpu_get_elf_hwcap2(void)
2036 {
2037 	return upper_32_bits(elf_hwcap);
2038 }
2039 
2040 static void __init setup_system_capabilities(void)
2041 {
2042 	/*
2043 	 * We have finalised the system-wide safe feature
2044 	 * registers, finalise the capabilities that depend
2045 	 * on it. Also enable all the available capabilities,
2046 	 * that are not enabled already.
2047 	 */
2048 	update_cpu_capabilities(SCOPE_SYSTEM);
2049 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2050 }
2051 
2052 void __init setup_cpu_features(void)
2053 {
2054 	u32 cwg;
2055 
2056 	setup_system_capabilities();
2057 	mark_const_caps_ready();
2058 	setup_elf_hwcaps(arm64_elf_hwcaps);
2059 
2060 	if (system_supports_32bit_el0())
2061 		setup_elf_hwcaps(compat_elf_hwcaps);
2062 
2063 	if (system_uses_ttbr0_pan())
2064 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2065 
2066 	sve_setup();
2067 	minsigstksz_setup();
2068 
2069 	/* Advertise that we have computed the system capabilities */
2070 	set_sys_caps_initialised();
2071 
2072 	/*
2073 	 * Check for sane CTR_EL0.CWG value.
2074 	 */
2075 	cwg = cache_type_cwg();
2076 	if (!cwg)
2077 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
2078 			ARCH_DMA_MINALIGN);
2079 }
2080 
2081 static bool __maybe_unused
2082 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2083 {
2084 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
2085 }
2086 
2087 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2088 {
2089 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2090 }
2091 
2092 /*
2093  * We emulate only the following system register space.
2094  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2095  * See Table C5-6 System instruction encodings for System register accesses,
2096  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2097  */
2098 static inline bool __attribute_const__ is_emulated(u32 id)
2099 {
2100 	return (sys_reg_Op0(id) == 0x3 &&
2101 		sys_reg_CRn(id) == 0x0 &&
2102 		sys_reg_Op1(id) == 0x0 &&
2103 		(sys_reg_CRm(id) == 0 ||
2104 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2105 }
2106 
2107 /*
2108  * With CRm == 0, reg should be one of :
2109  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2110  */
2111 static inline int emulate_id_reg(u32 id, u64 *valp)
2112 {
2113 	switch (id) {
2114 	case SYS_MIDR_EL1:
2115 		*valp = read_cpuid_id();
2116 		break;
2117 	case SYS_MPIDR_EL1:
2118 		*valp = SYS_MPIDR_SAFE_VAL;
2119 		break;
2120 	case SYS_REVIDR_EL1:
2121 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
2122 		*valp = 0;
2123 		break;
2124 	default:
2125 		return -EINVAL;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static int emulate_sys_reg(u32 id, u64 *valp)
2132 {
2133 	struct arm64_ftr_reg *regp;
2134 
2135 	if (!is_emulated(id))
2136 		return -EINVAL;
2137 
2138 	if (sys_reg_CRm(id) == 0)
2139 		return emulate_id_reg(id, valp);
2140 
2141 	regp = get_arm64_ftr_reg(id);
2142 	if (regp)
2143 		*valp = arm64_ftr_reg_user_value(regp);
2144 	else
2145 		/*
2146 		 * The untracked registers are either IMPLEMENTATION DEFINED
2147 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2148 		 */
2149 		*valp = 0;
2150 	return 0;
2151 }
2152 
2153 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2154 {
2155 	int rc;
2156 	u64 val;
2157 
2158 	rc = emulate_sys_reg(sys_reg, &val);
2159 	if (!rc) {
2160 		pt_regs_write_reg(regs, rt, val);
2161 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2162 	}
2163 	return rc;
2164 }
2165 
2166 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2167 {
2168 	u32 sys_reg, rt;
2169 
2170 	/*
2171 	 * sys_reg values are defined as used in mrs/msr instruction.
2172 	 * shift the imm value to get the encoding.
2173 	 */
2174 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2175 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2176 	return do_emulate_mrs(regs, sys_reg, rt);
2177 }
2178 
2179 static struct undef_hook mrs_hook = {
2180 	.instr_mask = 0xfff00000,
2181 	.instr_val  = 0xd5300000,
2182 	.pstate_mask = PSR_AA32_MODE_MASK,
2183 	.pstate_val = PSR_MODE_EL0t,
2184 	.fn = emulate_mrs,
2185 };
2186 
2187 static int __init enable_mrs_emulation(void)
2188 {
2189 	register_undef_hook(&mrs_hook);
2190 	return 0;
2191 }
2192 
2193 core_initcall(enable_mrs_emulation);
2194 
2195 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2196 			  char *buf)
2197 {
2198 	if (__meltdown_safe)
2199 		return sprintf(buf, "Not affected\n");
2200 
2201 	if (arm64_kernel_unmapped_at_el0())
2202 		return sprintf(buf, "Mitigation: PTI\n");
2203 
2204 	return sprintf(buf, "Vulnerable\n");
2205 }
2206