xref: /linux/arch/arm64/kernel/cpufeature.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36 
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39 
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT	\
42 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 				 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51 
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54 
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64 
65 static inline void set_sys_caps_initialised(void)
66 {
67 	sys_caps_initialised = true;
68 }
69 
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 	/* file-wide pr_fmt adds "CPU features: " prefix */
73 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 	return 0;
75 }
76 
77 static struct notifier_block cpu_hwcaps_notifier = {
78 	.notifier_call = dump_cpu_hwcaps
79 };
80 
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 	atomic_notifier_chain_register(&panic_notifier_list,
84 				       &cpu_hwcaps_notifier);
85 	return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88 
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91 
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 	{						\
94 		.sign = SIGNED,				\
95 		.visible = VISIBLE,			\
96 		.strict = STRICT,			\
97 		.type = TYPE,				\
98 		.shift = SHIFT,				\
99 		.width = WIDTH,				\
100 		.safe_val = SAFE_VAL,			\
101 	}
102 
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106 
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110 
111 #define ARM64_FTR_END					\
112 	{						\
113 		.width = 0,				\
114 	}
115 
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119 
120 
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
136 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
137 	ARM64_FTR_END,
138 };
139 
140 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
141 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
142 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
143 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
144 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
145 	ARM64_FTR_END,
146 };
147 
148 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
149 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
150 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
151 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
152 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
153 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
154 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
155 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
156 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
157 	/* Linux doesn't care about the EL3 */
158 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
159 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
160 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
162 	ARM64_FTR_END,
163 };
164 
165 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
166 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
167 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
169 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
170 	/* Linux shouldn't care about secure memory */
171 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
172 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
173 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
174 	/*
175 	 * Differing PARange is fine as long as all peripherals and memory are mapped
176 	 * within the minimum PARange of all CPUs
177 	 */
178 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
179 	ARM64_FTR_END,
180 };
181 
182 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
183 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
184 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
185 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
189 	ARM64_FTR_END,
190 };
191 
192 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
193 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
194 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
198 	ARM64_FTR_END,
199 };
200 
201 static const struct arm64_ftr_bits ftr_ctr[] = {
202 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
203 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
204 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
206 	/*
207 	 * Linux can handle differing I-cache policies. Userspace JITs will
208 	 * make use of *minLine.
209 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
210 	 */
211 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
212 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
213 	ARM64_FTR_END,
214 };
215 
216 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
217 	.name		= "SYS_CTR_EL0",
218 	.ftr_bits	= ftr_ctr
219 };
220 
221 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
222 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
223 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
224 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
225 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
226 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
227 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
229 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
230 	ARM64_FTR_END,
231 };
232 
233 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
235 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
239 	/*
240 	 * We can instantiate multiple PMU instances with different levels
241 	 * of support.
242 	 */
243 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
245 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
246 	ARM64_FTR_END,
247 };
248 
249 static const struct arm64_ftr_bits ftr_mvfr2[] = {
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
251 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
252 	ARM64_FTR_END,
253 };
254 
255 static const struct arm64_ftr_bits ftr_dczid[] = {
256 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
257 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
258 	ARM64_FTR_END,
259 };
260 
261 
262 static const struct arm64_ftr_bits ftr_id_isar5[] = {
263 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
264 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
265 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
266 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
267 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
269 	ARM64_FTR_END,
270 };
271 
272 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
273 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
274 	ARM64_FTR_END,
275 };
276 
277 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
280 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
281 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
282 	ARM64_FTR_END,
283 };
284 
285 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
287 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
288 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
290 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
292 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
293 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
294 	ARM64_FTR_END,
295 };
296 
297 static const struct arm64_ftr_bits ftr_zcr[] = {
298 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
299 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
300 	ARM64_FTR_END,
301 };
302 
303 /*
304  * Common ftr bits for a 32bit register with all hidden, strict
305  * attributes, with 4bit feature fields and a default safe value of
306  * 0. Covers the following 32bit registers:
307  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
308  */
309 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
310 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
311 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
312 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
313 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
314 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
315 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
316 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
317 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
318 	ARM64_FTR_END,
319 };
320 
321 /* Table for a single 32bit feature value */
322 static const struct arm64_ftr_bits ftr_single32[] = {
323 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
324 	ARM64_FTR_END,
325 };
326 
327 static const struct arm64_ftr_bits ftr_raz[] = {
328 	ARM64_FTR_END,
329 };
330 
331 #define ARM64_FTR_REG(id, table) {		\
332 	.sys_id = id,				\
333 	.reg = 	&(struct arm64_ftr_reg){	\
334 		.name = #id,			\
335 		.ftr_bits = &((table)[0]),	\
336 	}}
337 
338 static const struct __ftr_reg_entry {
339 	u32			sys_id;
340 	struct arm64_ftr_reg 	*reg;
341 } arm64_ftr_regs[] = {
342 
343 	/* Op1 = 0, CRn = 0, CRm = 1 */
344 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
345 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
346 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
347 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
348 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
349 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
350 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
351 
352 	/* Op1 = 0, CRn = 0, CRm = 2 */
353 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
354 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
355 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
356 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
357 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
358 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
359 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
360 
361 	/* Op1 = 0, CRn = 0, CRm = 3 */
362 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
363 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
364 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
365 
366 	/* Op1 = 0, CRn = 0, CRm = 4 */
367 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
368 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
369 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
370 
371 	/* Op1 = 0, CRn = 0, CRm = 5 */
372 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
373 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
374 
375 	/* Op1 = 0, CRn = 0, CRm = 6 */
376 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
377 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
378 
379 	/* Op1 = 0, CRn = 0, CRm = 7 */
380 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
381 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
382 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
383 
384 	/* Op1 = 0, CRn = 1, CRm = 2 */
385 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
386 
387 	/* Op1 = 3, CRn = 0, CRm = 0 */
388 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
389 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
390 
391 	/* Op1 = 3, CRn = 14, CRm = 0 */
392 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
393 };
394 
395 static int search_cmp_ftr_reg(const void *id, const void *regp)
396 {
397 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
398 }
399 
400 /*
401  * get_arm64_ftr_reg - Lookup a feature register entry using its
402  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
403  * ascending order of sys_id , we use binary search to find a matching
404  * entry.
405  *
406  * returns - Upon success,  matching ftr_reg entry for id.
407  *         - NULL on failure. It is upto the caller to decide
408  *	     the impact of a failure.
409  */
410 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
411 {
412 	const struct __ftr_reg_entry *ret;
413 
414 	ret = bsearch((const void *)(unsigned long)sys_id,
415 			arm64_ftr_regs,
416 			ARRAY_SIZE(arm64_ftr_regs),
417 			sizeof(arm64_ftr_regs[0]),
418 			search_cmp_ftr_reg);
419 	if (ret)
420 		return ret->reg;
421 	return NULL;
422 }
423 
424 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
425 			       s64 ftr_val)
426 {
427 	u64 mask = arm64_ftr_mask(ftrp);
428 
429 	reg &= ~mask;
430 	reg |= (ftr_val << ftrp->shift) & mask;
431 	return reg;
432 }
433 
434 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
435 				s64 cur)
436 {
437 	s64 ret = 0;
438 
439 	switch (ftrp->type) {
440 	case FTR_EXACT:
441 		ret = ftrp->safe_val;
442 		break;
443 	case FTR_LOWER_SAFE:
444 		ret = new < cur ? new : cur;
445 		break;
446 	case FTR_HIGHER_SAFE:
447 		ret = new > cur ? new : cur;
448 		break;
449 	default:
450 		BUG();
451 	}
452 
453 	return ret;
454 }
455 
456 static void __init sort_ftr_regs(void)
457 {
458 	int i;
459 
460 	/* Check that the array is sorted so that we can do the binary search */
461 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
462 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
463 }
464 
465 /*
466  * Initialise the CPU feature register from Boot CPU values.
467  * Also initiliases the strict_mask for the register.
468  * Any bits that are not covered by an arm64_ftr_bits entry are considered
469  * RES0 for the system-wide value, and must strictly match.
470  */
471 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
472 {
473 	u64 val = 0;
474 	u64 strict_mask = ~0x0ULL;
475 	u64 user_mask = 0;
476 	u64 valid_mask = 0;
477 
478 	const struct arm64_ftr_bits *ftrp;
479 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
480 
481 	BUG_ON(!reg);
482 
483 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
484 		u64 ftr_mask = arm64_ftr_mask(ftrp);
485 		s64 ftr_new = arm64_ftr_value(ftrp, new);
486 
487 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
488 
489 		valid_mask |= ftr_mask;
490 		if (!ftrp->strict)
491 			strict_mask &= ~ftr_mask;
492 		if (ftrp->visible)
493 			user_mask |= ftr_mask;
494 		else
495 			reg->user_val = arm64_ftr_set_value(ftrp,
496 							    reg->user_val,
497 							    ftrp->safe_val);
498 	}
499 
500 	val &= valid_mask;
501 
502 	reg->sys_val = val;
503 	reg->strict_mask = strict_mask;
504 	reg->user_mask = user_mask;
505 }
506 
507 void __init init_cpu_features(struct cpuinfo_arm64 *info)
508 {
509 	/* Before we start using the tables, make sure it is sorted */
510 	sort_ftr_regs();
511 
512 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
513 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
514 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
515 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
516 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
517 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
518 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
519 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
520 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
521 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
522 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
523 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
524 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
525 
526 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
527 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
528 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
529 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
530 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
531 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
532 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
533 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
534 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
535 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
536 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
537 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
538 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
539 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
540 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
541 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
542 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
543 	}
544 
545 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
546 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
547 		sve_init_vq_map();
548 	}
549 }
550 
551 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
552 {
553 	const struct arm64_ftr_bits *ftrp;
554 
555 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
556 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
557 		s64 ftr_new = arm64_ftr_value(ftrp, new);
558 
559 		if (ftr_cur == ftr_new)
560 			continue;
561 		/* Find a safe value */
562 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
563 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
564 	}
565 
566 }
567 
568 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
569 {
570 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
571 
572 	BUG_ON(!regp);
573 	update_cpu_ftr_reg(regp, val);
574 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
575 		return 0;
576 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
577 			regp->name, boot, cpu, val);
578 	return 1;
579 }
580 
581 /*
582  * Update system wide CPU feature registers with the values from a
583  * non-boot CPU. Also performs SANITY checks to make sure that there
584  * aren't any insane variations from that of the boot CPU.
585  */
586 void update_cpu_features(int cpu,
587 			 struct cpuinfo_arm64 *info,
588 			 struct cpuinfo_arm64 *boot)
589 {
590 	int taint = 0;
591 
592 	/*
593 	 * The kernel can handle differing I-cache policies, but otherwise
594 	 * caches should look identical. Userspace JITs will make use of
595 	 * *minLine.
596 	 */
597 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
598 				      info->reg_ctr, boot->reg_ctr);
599 
600 	/*
601 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
602 	 * could result in too much or too little memory being zeroed if a
603 	 * process is preempted and migrated between CPUs.
604 	 */
605 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
606 				      info->reg_dczid, boot->reg_dczid);
607 
608 	/* If different, timekeeping will be broken (especially with KVM) */
609 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
610 				      info->reg_cntfrq, boot->reg_cntfrq);
611 
612 	/*
613 	 * The kernel uses self-hosted debug features and expects CPUs to
614 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
615 	 * and BRPs to be identical.
616 	 * ID_AA64DFR1 is currently RES0.
617 	 */
618 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
619 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
620 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
621 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
622 	/*
623 	 * Even in big.LITTLE, processors should be identical instruction-set
624 	 * wise.
625 	 */
626 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
627 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
628 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
629 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
630 
631 	/*
632 	 * Differing PARange support is fine as long as all peripherals and
633 	 * memory are mapped within the minimum PARange of all CPUs.
634 	 * Linux should not care about secure memory.
635 	 */
636 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
637 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
638 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
639 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
640 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
641 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
642 
643 	/*
644 	 * EL3 is not our concern.
645 	 * ID_AA64PFR1 is currently RES0.
646 	 */
647 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
648 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
649 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
650 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
651 
652 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
653 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
654 
655 	/*
656 	 * If we have AArch32, we care about 32-bit features for compat.
657 	 * If the system doesn't support AArch32, don't update them.
658 	 */
659 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
660 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
661 
662 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
663 					info->reg_id_dfr0, boot->reg_id_dfr0);
664 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
665 					info->reg_id_isar0, boot->reg_id_isar0);
666 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
667 					info->reg_id_isar1, boot->reg_id_isar1);
668 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
669 					info->reg_id_isar2, boot->reg_id_isar2);
670 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
671 					info->reg_id_isar3, boot->reg_id_isar3);
672 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
673 					info->reg_id_isar4, boot->reg_id_isar4);
674 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
675 					info->reg_id_isar5, boot->reg_id_isar5);
676 
677 		/*
678 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
679 		 * ACTLR formats could differ across CPUs and therefore would have to
680 		 * be trapped for virtualization anyway.
681 		 */
682 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
683 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
684 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
685 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
686 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
687 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
688 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
689 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
690 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
691 					info->reg_id_pfr0, boot->reg_id_pfr0);
692 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
693 					info->reg_id_pfr1, boot->reg_id_pfr1);
694 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
695 					info->reg_mvfr0, boot->reg_mvfr0);
696 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
697 					info->reg_mvfr1, boot->reg_mvfr1);
698 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
699 					info->reg_mvfr2, boot->reg_mvfr2);
700 	}
701 
702 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
703 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
704 					info->reg_zcr, boot->reg_zcr);
705 
706 		/* Probe vector lengths, unless we already gave up on SVE */
707 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
708 		    !sys_caps_initialised)
709 			sve_update_vq_map();
710 	}
711 
712 	/*
713 	 * Mismatched CPU features are a recipe for disaster. Don't even
714 	 * pretend to support them.
715 	 */
716 	if (taint) {
717 		pr_warn_once("Unsupported CPU feature variation detected.\n");
718 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
719 	}
720 }
721 
722 u64 read_sanitised_ftr_reg(u32 id)
723 {
724 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
725 
726 	/* We shouldn't get a request for an unsupported register */
727 	BUG_ON(!regp);
728 	return regp->sys_val;
729 }
730 
731 #define read_sysreg_case(r)	\
732 	case r:		return read_sysreg_s(r)
733 
734 /*
735  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
736  * Read the system register on the current CPU
737  */
738 static u64 __read_sysreg_by_encoding(u32 sys_id)
739 {
740 	switch (sys_id) {
741 	read_sysreg_case(SYS_ID_PFR0_EL1);
742 	read_sysreg_case(SYS_ID_PFR1_EL1);
743 	read_sysreg_case(SYS_ID_DFR0_EL1);
744 	read_sysreg_case(SYS_ID_MMFR0_EL1);
745 	read_sysreg_case(SYS_ID_MMFR1_EL1);
746 	read_sysreg_case(SYS_ID_MMFR2_EL1);
747 	read_sysreg_case(SYS_ID_MMFR3_EL1);
748 	read_sysreg_case(SYS_ID_ISAR0_EL1);
749 	read_sysreg_case(SYS_ID_ISAR1_EL1);
750 	read_sysreg_case(SYS_ID_ISAR2_EL1);
751 	read_sysreg_case(SYS_ID_ISAR3_EL1);
752 	read_sysreg_case(SYS_ID_ISAR4_EL1);
753 	read_sysreg_case(SYS_ID_ISAR5_EL1);
754 	read_sysreg_case(SYS_MVFR0_EL1);
755 	read_sysreg_case(SYS_MVFR1_EL1);
756 	read_sysreg_case(SYS_MVFR2_EL1);
757 
758 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
759 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
760 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
761 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
762 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
763 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
764 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
765 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
766 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
767 
768 	read_sysreg_case(SYS_CNTFRQ_EL0);
769 	read_sysreg_case(SYS_CTR_EL0);
770 	read_sysreg_case(SYS_DCZID_EL0);
771 
772 	default:
773 		BUG();
774 		return 0;
775 	}
776 }
777 
778 #include <linux/irqchip/arm-gic-v3.h>
779 
780 static bool
781 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
782 {
783 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
784 
785 	return val >= entry->min_field_value;
786 }
787 
788 static bool
789 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
790 {
791 	u64 val;
792 
793 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
794 	if (scope == SCOPE_SYSTEM)
795 		val = read_sanitised_ftr_reg(entry->sys_reg);
796 	else
797 		val = __read_sysreg_by_encoding(entry->sys_reg);
798 
799 	return feature_matches(val, entry);
800 }
801 
802 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
803 {
804 	bool has_sre;
805 
806 	if (!has_cpuid_feature(entry, scope))
807 		return false;
808 
809 	has_sre = gic_enable_sre();
810 	if (!has_sre)
811 		pr_warn_once("%s present but disabled by higher exception level\n",
812 			     entry->desc);
813 
814 	return has_sre;
815 }
816 
817 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
818 {
819 	u32 midr = read_cpuid_id();
820 
821 	/* Cavium ThunderX pass 1.x and 2.x */
822 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
823 		MIDR_CPU_VAR_REV(0, 0),
824 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
825 }
826 
827 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
828 {
829 	return is_kernel_in_hyp_mode();
830 }
831 
832 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
833 			   int __unused)
834 {
835 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
836 
837 	/*
838 	 * Activate the lower HYP offset only if:
839 	 * - the idmap doesn't clash with it,
840 	 * - the kernel is not running at EL2.
841 	 */
842 	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
843 }
844 
845 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
846 {
847 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
848 
849 	return cpuid_feature_extract_signed_field(pfr0,
850 					ID_AA64PFR0_FP_SHIFT) < 0;
851 }
852 
853 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
854 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
855 
856 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
857 				int __unused)
858 {
859 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
860 
861 	/* Forced on command line? */
862 	if (__kpti_forced) {
863 		pr_info_once("kernel page table isolation forced %s by command line option\n",
864 			     __kpti_forced > 0 ? "ON" : "OFF");
865 		return __kpti_forced > 0;
866 	}
867 
868 	/* Useful for KASLR robustness */
869 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
870 		return true;
871 
872 	/* Don't force KPTI for CPUs that are not vulnerable */
873 	switch (read_cpuid_id() & MIDR_CPU_MODEL_MASK) {
874 	case MIDR_CAVIUM_THUNDERX2:
875 	case MIDR_BRCM_VULCAN:
876 		return false;
877 	}
878 
879 	/* Defer to CPU feature registers */
880 	return !cpuid_feature_extract_unsigned_field(pfr0,
881 						     ID_AA64PFR0_CSV3_SHIFT);
882 }
883 
884 static int __init parse_kpti(char *str)
885 {
886 	bool enabled;
887 	int ret = strtobool(str, &enabled);
888 
889 	if (ret)
890 		return ret;
891 
892 	__kpti_forced = enabled ? 1 : -1;
893 	return 0;
894 }
895 __setup("kpti=", parse_kpti);
896 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
897 
898 static int cpu_copy_el2regs(void *__unused)
899 {
900 	/*
901 	 * Copy register values that aren't redirected by hardware.
902 	 *
903 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
904 	 * this value to tpidr_el2 before we patch the code. Once we've done
905 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
906 	 * do anything here.
907 	 */
908 	if (!alternatives_applied)
909 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
910 
911 	return 0;
912 }
913 
914 static const struct arm64_cpu_capabilities arm64_features[] = {
915 	{
916 		.desc = "GIC system register CPU interface",
917 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
918 		.def_scope = SCOPE_SYSTEM,
919 		.matches = has_useable_gicv3_cpuif,
920 		.sys_reg = SYS_ID_AA64PFR0_EL1,
921 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
922 		.sign = FTR_UNSIGNED,
923 		.min_field_value = 1,
924 	},
925 #ifdef CONFIG_ARM64_PAN
926 	{
927 		.desc = "Privileged Access Never",
928 		.capability = ARM64_HAS_PAN,
929 		.def_scope = SCOPE_SYSTEM,
930 		.matches = has_cpuid_feature,
931 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
932 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
933 		.sign = FTR_UNSIGNED,
934 		.min_field_value = 1,
935 		.enable = cpu_enable_pan,
936 	},
937 #endif /* CONFIG_ARM64_PAN */
938 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
939 	{
940 		.desc = "LSE atomic instructions",
941 		.capability = ARM64_HAS_LSE_ATOMICS,
942 		.def_scope = SCOPE_SYSTEM,
943 		.matches = has_cpuid_feature,
944 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
945 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
946 		.sign = FTR_UNSIGNED,
947 		.min_field_value = 2,
948 	},
949 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
950 	{
951 		.desc = "Software prefetching using PRFM",
952 		.capability = ARM64_HAS_NO_HW_PREFETCH,
953 		.def_scope = SCOPE_SYSTEM,
954 		.matches = has_no_hw_prefetch,
955 	},
956 #ifdef CONFIG_ARM64_UAO
957 	{
958 		.desc = "User Access Override",
959 		.capability = ARM64_HAS_UAO,
960 		.def_scope = SCOPE_SYSTEM,
961 		.matches = has_cpuid_feature,
962 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
963 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
964 		.min_field_value = 1,
965 		/*
966 		 * We rely on stop_machine() calling uao_thread_switch() to set
967 		 * UAO immediately after patching.
968 		 */
969 	},
970 #endif /* CONFIG_ARM64_UAO */
971 #ifdef CONFIG_ARM64_PAN
972 	{
973 		.capability = ARM64_ALT_PAN_NOT_UAO,
974 		.def_scope = SCOPE_SYSTEM,
975 		.matches = cpufeature_pan_not_uao,
976 	},
977 #endif /* CONFIG_ARM64_PAN */
978 	{
979 		.desc = "Virtualization Host Extensions",
980 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
981 		.def_scope = SCOPE_SYSTEM,
982 		.matches = runs_at_el2,
983 		.enable = cpu_copy_el2regs,
984 	},
985 	{
986 		.desc = "32-bit EL0 Support",
987 		.capability = ARM64_HAS_32BIT_EL0,
988 		.def_scope = SCOPE_SYSTEM,
989 		.matches = has_cpuid_feature,
990 		.sys_reg = SYS_ID_AA64PFR0_EL1,
991 		.sign = FTR_UNSIGNED,
992 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
993 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
994 	},
995 	{
996 		.desc = "Reduced HYP mapping offset",
997 		.capability = ARM64_HYP_OFFSET_LOW,
998 		.def_scope = SCOPE_SYSTEM,
999 		.matches = hyp_offset_low,
1000 	},
1001 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1002 	{
1003 		.desc = "Kernel page table isolation (KPTI)",
1004 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1005 		.def_scope = SCOPE_SYSTEM,
1006 		.matches = unmap_kernel_at_el0,
1007 	},
1008 #endif
1009 	{
1010 		/* FP/SIMD is not implemented */
1011 		.capability = ARM64_HAS_NO_FPSIMD,
1012 		.def_scope = SCOPE_SYSTEM,
1013 		.min_field_value = 0,
1014 		.matches = has_no_fpsimd,
1015 	},
1016 #ifdef CONFIG_ARM64_PMEM
1017 	{
1018 		.desc = "Data cache clean to Point of Persistence",
1019 		.capability = ARM64_HAS_DCPOP,
1020 		.def_scope = SCOPE_SYSTEM,
1021 		.matches = has_cpuid_feature,
1022 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1023 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1024 		.min_field_value = 1,
1025 	},
1026 #endif
1027 #ifdef CONFIG_ARM64_SVE
1028 	{
1029 		.desc = "Scalable Vector Extension",
1030 		.capability = ARM64_SVE,
1031 		.def_scope = SCOPE_SYSTEM,
1032 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1033 		.sign = FTR_UNSIGNED,
1034 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1035 		.min_field_value = ID_AA64PFR0_SVE,
1036 		.matches = has_cpuid_feature,
1037 		.enable = sve_kernel_enable,
1038 	},
1039 #endif /* CONFIG_ARM64_SVE */
1040 #ifdef CONFIG_ARM64_RAS_EXTN
1041 	{
1042 		.desc = "RAS Extension Support",
1043 		.capability = ARM64_HAS_RAS_EXTN,
1044 		.def_scope = SCOPE_SYSTEM,
1045 		.matches = has_cpuid_feature,
1046 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1047 		.sign = FTR_UNSIGNED,
1048 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1049 		.min_field_value = ID_AA64PFR0_RAS_V1,
1050 		.enable = cpu_clear_disr,
1051 	},
1052 #endif /* CONFIG_ARM64_RAS_EXTN */
1053 	{},
1054 };
1055 
1056 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
1057 	{							\
1058 		.desc = #cap,					\
1059 		.def_scope = SCOPE_SYSTEM,			\
1060 		.matches = has_cpuid_feature,			\
1061 		.sys_reg = reg,					\
1062 		.field_pos = field,				\
1063 		.sign = s,					\
1064 		.min_field_value = min_value,			\
1065 		.hwcap_type = type,				\
1066 		.hwcap = cap,					\
1067 	}
1068 
1069 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1070 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1071 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1072 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1073 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1074 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1075 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1076 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1077 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1078 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1079 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1080 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1081 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1082 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1083 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1084 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1085 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1086 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1087 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1088 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1089 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1090 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1091 #ifdef CONFIG_ARM64_SVE
1092 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1093 #endif
1094 	{},
1095 };
1096 
1097 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1098 #ifdef CONFIG_COMPAT
1099 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1100 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1101 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1102 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1103 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1104 #endif
1105 	{},
1106 };
1107 
1108 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1109 {
1110 	switch (cap->hwcap_type) {
1111 	case CAP_HWCAP:
1112 		elf_hwcap |= cap->hwcap;
1113 		break;
1114 #ifdef CONFIG_COMPAT
1115 	case CAP_COMPAT_HWCAP:
1116 		compat_elf_hwcap |= (u32)cap->hwcap;
1117 		break;
1118 	case CAP_COMPAT_HWCAP2:
1119 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1120 		break;
1121 #endif
1122 	default:
1123 		WARN_ON(1);
1124 		break;
1125 	}
1126 }
1127 
1128 /* Check if we have a particular HWCAP enabled */
1129 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1130 {
1131 	bool rc;
1132 
1133 	switch (cap->hwcap_type) {
1134 	case CAP_HWCAP:
1135 		rc = (elf_hwcap & cap->hwcap) != 0;
1136 		break;
1137 #ifdef CONFIG_COMPAT
1138 	case CAP_COMPAT_HWCAP:
1139 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1140 		break;
1141 	case CAP_COMPAT_HWCAP2:
1142 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1143 		break;
1144 #endif
1145 	default:
1146 		WARN_ON(1);
1147 		rc = false;
1148 	}
1149 
1150 	return rc;
1151 }
1152 
1153 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1154 {
1155 	/* We support emulation of accesses to CPU ID feature registers */
1156 	elf_hwcap |= HWCAP_CPUID;
1157 	for (; hwcaps->matches; hwcaps++)
1158 		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1159 			cap_set_elf_hwcap(hwcaps);
1160 }
1161 
1162 /*
1163  * Check if the current CPU has a given feature capability.
1164  * Should be called from non-preemptible context.
1165  */
1166 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1167 			       unsigned int cap)
1168 {
1169 	const struct arm64_cpu_capabilities *caps;
1170 
1171 	if (WARN_ON(preemptible()))
1172 		return false;
1173 
1174 	for (caps = cap_array; caps->matches; caps++)
1175 		if (caps->capability == cap &&
1176 		    caps->matches(caps, SCOPE_LOCAL_CPU))
1177 			return true;
1178 	return false;
1179 }
1180 
1181 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1182 			    const char *info)
1183 {
1184 	for (; caps->matches; caps++) {
1185 		if (!caps->matches(caps, caps->def_scope))
1186 			continue;
1187 
1188 		if (!cpus_have_cap(caps->capability) && caps->desc)
1189 			pr_info("%s %s\n", info, caps->desc);
1190 		cpus_set_cap(caps->capability);
1191 	}
1192 }
1193 
1194 /*
1195  * Run through the enabled capabilities and enable() it on all active
1196  * CPUs
1197  */
1198 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1199 {
1200 	for (; caps->matches; caps++) {
1201 		unsigned int num = caps->capability;
1202 
1203 		if (!cpus_have_cap(num))
1204 			continue;
1205 
1206 		/* Ensure cpus_have_const_cap(num) works */
1207 		static_branch_enable(&cpu_hwcap_keys[num]);
1208 
1209 		if (caps->enable) {
1210 			/*
1211 			 * Use stop_machine() as it schedules the work allowing
1212 			 * us to modify PSTATE, instead of on_each_cpu() which
1213 			 * uses an IPI, giving us a PSTATE that disappears when
1214 			 * we return.
1215 			 */
1216 			stop_machine(caps->enable, (void *)caps, cpu_online_mask);
1217 		}
1218 	}
1219 }
1220 
1221 /*
1222  * Check for CPU features that are used in early boot
1223  * based on the Boot CPU value.
1224  */
1225 static void check_early_cpu_features(void)
1226 {
1227 	verify_cpu_run_el();
1228 	verify_cpu_asid_bits();
1229 }
1230 
1231 static void
1232 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1233 {
1234 
1235 	for (; caps->matches; caps++)
1236 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1237 			pr_crit("CPU%d: missing HWCAP: %s\n",
1238 					smp_processor_id(), caps->desc);
1239 			cpu_die_early();
1240 		}
1241 }
1242 
1243 static void
1244 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps_list)
1245 {
1246 	const struct arm64_cpu_capabilities *caps = caps_list;
1247 	for (; caps->matches; caps++) {
1248 		if (!cpus_have_cap(caps->capability))
1249 			continue;
1250 		/*
1251 		 * If the new CPU misses an advertised feature, we cannot proceed
1252 		 * further, park the cpu.
1253 		 */
1254 		if (!__this_cpu_has_cap(caps_list, caps->capability)) {
1255 			pr_crit("CPU%d: missing feature: %s\n",
1256 					smp_processor_id(), caps->desc);
1257 			cpu_die_early();
1258 		}
1259 		if (caps->enable)
1260 			caps->enable((void *)caps);
1261 	}
1262 }
1263 
1264 static void verify_sve_features(void)
1265 {
1266 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1267 	u64 zcr = read_zcr_features();
1268 
1269 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1270 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1271 
1272 	if (len < safe_len || sve_verify_vq_map()) {
1273 		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1274 			smp_processor_id());
1275 		cpu_die_early();
1276 	}
1277 
1278 	/* Add checks on other ZCR bits here if necessary */
1279 }
1280 
1281 /*
1282  * Run through the enabled system capabilities and enable() it on this CPU.
1283  * The capabilities were decided based on the available CPUs at the boot time.
1284  * Any new CPU should match the system wide status of the capability. If the
1285  * new CPU doesn't have a capability which the system now has enabled, we
1286  * cannot do anything to fix it up and could cause unexpected failures. So
1287  * we park the CPU.
1288  */
1289 static void verify_local_cpu_capabilities(void)
1290 {
1291 	verify_local_cpu_errata_workarounds();
1292 	verify_local_cpu_features(arm64_features);
1293 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1294 
1295 	if (system_supports_32bit_el0())
1296 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1297 
1298 	if (system_supports_sve())
1299 		verify_sve_features();
1300 
1301 	if (system_uses_ttbr0_pan())
1302 		pr_info("Emulating Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1303 }
1304 
1305 void check_local_cpu_capabilities(void)
1306 {
1307 	/*
1308 	 * All secondary CPUs should conform to the early CPU features
1309 	 * in use by the kernel based on boot CPU.
1310 	 */
1311 	check_early_cpu_features();
1312 
1313 	/*
1314 	 * If we haven't finalised the system capabilities, this CPU gets
1315 	 * a chance to update the errata work arounds.
1316 	 * Otherwise, this CPU should verify that it has all the system
1317 	 * advertised capabilities.
1318 	 */
1319 	if (!sys_caps_initialised)
1320 		update_cpu_errata_workarounds();
1321 	else
1322 		verify_local_cpu_capabilities();
1323 }
1324 
1325 static void __init setup_feature_capabilities(void)
1326 {
1327 	update_cpu_capabilities(arm64_features, "detected feature:");
1328 	enable_cpu_capabilities(arm64_features);
1329 }
1330 
1331 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1332 EXPORT_SYMBOL(arm64_const_caps_ready);
1333 
1334 static void __init mark_const_caps_ready(void)
1335 {
1336 	static_branch_enable(&arm64_const_caps_ready);
1337 }
1338 
1339 extern const struct arm64_cpu_capabilities arm64_errata[];
1340 
1341 bool this_cpu_has_cap(unsigned int cap)
1342 {
1343 	return (__this_cpu_has_cap(arm64_features, cap) ||
1344 		__this_cpu_has_cap(arm64_errata, cap));
1345 }
1346 
1347 void __init setup_cpu_features(void)
1348 {
1349 	u32 cwg;
1350 	int cls;
1351 
1352 	/* Set the CPU feature capabilies */
1353 	setup_feature_capabilities();
1354 	enable_errata_workarounds();
1355 	mark_const_caps_ready();
1356 	setup_elf_hwcaps(arm64_elf_hwcaps);
1357 
1358 	if (system_supports_32bit_el0())
1359 		setup_elf_hwcaps(compat_elf_hwcaps);
1360 
1361 	sve_setup();
1362 
1363 	/* Advertise that we have computed the system capabilities */
1364 	set_sys_caps_initialised();
1365 
1366 	/*
1367 	 * Check for sane CTR_EL0.CWG value.
1368 	 */
1369 	cwg = cache_type_cwg();
1370 	cls = cache_line_size();
1371 	if (!cwg)
1372 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1373 			cls);
1374 	if (L1_CACHE_BYTES < cls)
1375 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1376 			L1_CACHE_BYTES, cls);
1377 }
1378 
1379 static bool __maybe_unused
1380 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1381 {
1382 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1383 }
1384 
1385 /*
1386  * We emulate only the following system register space.
1387  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1388  * See Table C5-6 System instruction encodings for System register accesses,
1389  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1390  */
1391 static inline bool __attribute_const__ is_emulated(u32 id)
1392 {
1393 	return (sys_reg_Op0(id) == 0x3 &&
1394 		sys_reg_CRn(id) == 0x0 &&
1395 		sys_reg_Op1(id) == 0x0 &&
1396 		(sys_reg_CRm(id) == 0 ||
1397 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1398 }
1399 
1400 /*
1401  * With CRm == 0, reg should be one of :
1402  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1403  */
1404 static inline int emulate_id_reg(u32 id, u64 *valp)
1405 {
1406 	switch (id) {
1407 	case SYS_MIDR_EL1:
1408 		*valp = read_cpuid_id();
1409 		break;
1410 	case SYS_MPIDR_EL1:
1411 		*valp = SYS_MPIDR_SAFE_VAL;
1412 		break;
1413 	case SYS_REVIDR_EL1:
1414 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1415 		*valp = 0;
1416 		break;
1417 	default:
1418 		return -EINVAL;
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 static int emulate_sys_reg(u32 id, u64 *valp)
1425 {
1426 	struct arm64_ftr_reg *regp;
1427 
1428 	if (!is_emulated(id))
1429 		return -EINVAL;
1430 
1431 	if (sys_reg_CRm(id) == 0)
1432 		return emulate_id_reg(id, valp);
1433 
1434 	regp = get_arm64_ftr_reg(id);
1435 	if (regp)
1436 		*valp = arm64_ftr_reg_user_value(regp);
1437 	else
1438 		/*
1439 		 * The untracked registers are either IMPLEMENTATION DEFINED
1440 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1441 		 */
1442 		*valp = 0;
1443 	return 0;
1444 }
1445 
1446 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1447 {
1448 	int rc;
1449 	u32 sys_reg, dst;
1450 	u64 val;
1451 
1452 	/*
1453 	 * sys_reg values are defined as used in mrs/msr instruction.
1454 	 * shift the imm value to get the encoding.
1455 	 */
1456 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1457 	rc = emulate_sys_reg(sys_reg, &val);
1458 	if (!rc) {
1459 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1460 		pt_regs_write_reg(regs, dst, val);
1461 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1462 	}
1463 
1464 	return rc;
1465 }
1466 
1467 static struct undef_hook mrs_hook = {
1468 	.instr_mask = 0xfff00000,
1469 	.instr_val  = 0xd5300000,
1470 	.pstate_mask = COMPAT_PSR_MODE_MASK,
1471 	.pstate_val = PSR_MODE_EL0t,
1472 	.fn = emulate_mrs,
1473 };
1474 
1475 static int __init enable_mrs_emulation(void)
1476 {
1477 	register_undef_hook(&mrs_hook);
1478 	return 0;
1479 }
1480 
1481 core_initcall(enable_mrs_emulation);
1482 
1483 int cpu_clear_disr(void *__unused)
1484 {
1485 	/* Firmware may have left a deferred SError in this register. */
1486 	write_sysreg_s(0, SYS_DISR_EL1);
1487 
1488 	return 0;
1489 }
1490