xref: /linux/arch/arm64/kernel/cpufeature.c (revision 4fc012daf9c074772421c904357abf586336b1ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 #include <linux/sched/isolation.h>
79 
80 #include <asm/cpu.h>
81 #include <asm/cpufeature.h>
82 #include <asm/cpu_ops.h>
83 #include <asm/fpsimd.h>
84 #include <asm/hwcap.h>
85 #include <asm/insn.h>
86 #include <asm/kvm_host.h>
87 #include <asm/mmu_context.h>
88 #include <asm/mte.h>
89 #include <asm/hypervisor.h>
90 #include <asm/processor.h>
91 #include <asm/smp.h>
92 #include <asm/sysreg.h>
93 #include <asm/traps.h>
94 #include <asm/vectors.h>
95 #include <asm/virt.h>
96 
97 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
98 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
99 
100 #ifdef CONFIG_COMPAT
101 #define COMPAT_ELF_HWCAP_DEFAULT	\
102 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
103 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
104 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
105 				 COMPAT_HWCAP_LPAE)
106 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
107 unsigned int compat_elf_hwcap2 __read_mostly;
108 unsigned int compat_elf_hwcap3 __read_mostly;
109 #endif
110 
111 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
112 EXPORT_SYMBOL(system_cpucaps);
113 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
114 
115 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
116 
117 /*
118  * arm64_use_ng_mappings must be placed in the .data section, otherwise it
119  * ends up in the .bss section where it is initialized in early_map_kernel()
120  * after the MMU (with the idmap) was enabled. create_init_idmap() - which
121  * runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
122  * may end up generating an incorrect idmap page table attributes.
123  */
124 bool arm64_use_ng_mappings __read_mostly = false;
125 EXPORT_SYMBOL(arm64_use_ng_mappings);
126 
127 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
128 
129 /*
130  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
131  * support it?
132  */
133 static bool __read_mostly allow_mismatched_32bit_el0;
134 
135 /*
136  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
137  * seen at least one CPU capable of 32-bit EL0.
138  */
139 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
140 
141 /*
142  * Mask of CPUs supporting 32-bit EL0.
143  * Only valid if arm64_mismatched_32bit_el0 is enabled.
144  */
145 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
146 
147 void dump_cpu_features(void)
148 {
149 	/* file-wide pr_fmt adds "CPU features: " prefix */
150 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
151 }
152 
153 #define __ARM64_MAX_POSITIVE(reg, field)				\
154 		((reg##_##field##_SIGNED ?				\
155 		  BIT(reg##_##field##_WIDTH - 1) :			\
156 		  BIT(reg##_##field##_WIDTH)) - 1)
157 
158 #define __ARM64_MIN_NEGATIVE(reg, field)  BIT(reg##_##field##_WIDTH - 1)
159 
160 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value)		\
161 		.sys_reg = SYS_##reg,					\
162 		.field_pos = reg##_##field##_SHIFT,			\
163 		.field_width = reg##_##field##_WIDTH,			\
164 		.sign = reg##_##field##_SIGNED,				\
165 		.min_field_value = min_value,				\
166 		.max_field_value = max_value,
167 
168 /*
169  * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
170  * an implicit maximum that depends on the sign-ess of the field.
171  *
172  * An unsigned field will be capped at all ones, while a signed field
173  * will be limited to the positive half only.
174  */
175 #define ARM64_CPUID_FIELDS(reg, field, min_value)			\
176 	__ARM64_CPUID_FIELDS(reg, field,				\
177 			     SYS_FIELD_VALUE(reg, field, min_value),	\
178 			     __ARM64_MAX_POSITIVE(reg, field))
179 
180 /*
181  * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
182  * implicit minimal value to max_value. This should be used when
183  * matching a non-implemented property.
184  */
185 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value)			\
186 	__ARM64_CPUID_FIELDS(reg, field,				\
187 			     __ARM64_MIN_NEGATIVE(reg, field),		\
188 			     SYS_FIELD_VALUE(reg, field, max_value))
189 
190 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
191 	{						\
192 		.sign = SIGNED,				\
193 		.visible = VISIBLE,			\
194 		.strict = STRICT,			\
195 		.type = TYPE,				\
196 		.shift = SHIFT,				\
197 		.width = WIDTH,				\
198 		.safe_val = SAFE_VAL,			\
199 	}
200 
201 /* Define a feature with unsigned values */
202 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
203 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
204 
205 /* Define a feature with a signed value */
206 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
207 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
208 
209 #define ARM64_FTR_END					\
210 	{						\
211 		.width = 0,				\
212 	}
213 
214 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
215 
216 static bool __system_matches_cap(unsigned int n);
217 
218 /*
219  * NOTE: Any changes to the visibility of features should be kept in
220  * sync with the documentation of the CPU feature register ABI.
221  */
222 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
227 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
229 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
230 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
231 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
237 	ARM64_FTR_END,
238 };
239 
240 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
245 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
247 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
249 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
251 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
252 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
253 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
254 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
255 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
256 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
257 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
258 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
259 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
260 	ARM64_FTR_END,
261 };
262 
263 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
264 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
265 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
266 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
267 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
268 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
271 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
272 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
273 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
274 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
276 	ARM64_FTR_END,
277 };
278 
279 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
280 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
281 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
282 	ARM64_FTR_END,
283 };
284 
285 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
287 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
288 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
290 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
292 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
293 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
294 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
295 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
296 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
297 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
298 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
299 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
300 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
301 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
302 	ARM64_FTR_END,
303 };
304 
305 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
306 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
307 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
308 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
309 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
311 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
312 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
313 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
314 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
315 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
316 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
317 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
318 	ARM64_FTR_END,
319 };
320 
321 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
322 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
323 	ARM64_FTR_END,
324 };
325 
326 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
327 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
328 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
329 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
330 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
331 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
332 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
333 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
334 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
335 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
336 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
337 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
338 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
339 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
340 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
341 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
342 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
343 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
344 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
345 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
346 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
347 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
348 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
349 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
350 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
351 	ARM64_FTR_END,
352 };
353 
354 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
355 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
356 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
357 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
358 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
359 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
360 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
361 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
362 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
363 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
364 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
365 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
366 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
367 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
368 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
369 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
370 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
371 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
372 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
373 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
374 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
375 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
376 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
377 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
378 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
379 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
380 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
381 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
382 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
383 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
384 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
385 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
386 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
387 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
388 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
389 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
390 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
391 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
392 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
393 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
394 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
395 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
396 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
397 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
398 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
399 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
400 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
401 	ARM64_FTR_END,
402 };
403 
404 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
405 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
406 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
407 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
408 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
409 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
410 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
411 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
412 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
413 	ARM64_FTR_END,
414 };
415 
416 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
417 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
418 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
419 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
420 	/*
421 	 * Page size not being supported at Stage-2 is not fatal. You
422 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
423 	 * your favourite nesting hypervisor.
424 	 *
425 	 * There is a small corner case where the hypervisor explicitly
426 	 * advertises a given granule size at Stage-2 (value 2) on some
427 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
428 	 * vCPUs. Although this is not forbidden by the architecture, it
429 	 * indicates that the hypervisor is being silly (or buggy).
430 	 *
431 	 * We make no effort to cope with this and pretend that if these
432 	 * fields are inconsistent across vCPUs, then it isn't worth
433 	 * trying to bring KVM up.
434 	 */
435 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
436 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
437 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
438 	/*
439 	 * We already refuse to boot CPUs that don't support our configured
440 	 * page size, so we can only detect mismatches for a page size other
441 	 * than the one we're currently using. Unfortunately, SoCs like this
442 	 * exist in the wild so, even though we don't like it, we'll have to go
443 	 * along with it and treat them as non-strict.
444 	 */
445 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
446 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
447 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
448 
449 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
450 	/* Linux shouldn't care about secure memory */
451 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
453 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
454 	/*
455 	 * Differing PARange is fine as long as all peripherals and memory are mapped
456 	 * within the minimum PARange of all CPUs
457 	 */
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
459 	ARM64_FTR_END,
460 };
461 
462 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
463 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
464 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
465 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
466 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
467 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
468 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
469 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
470 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
471 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
472 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
473 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
474 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
475 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
476 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
477 	ARM64_FTR_END,
478 };
479 
480 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
481 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
482 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
483 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
484 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
485 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
486 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
487 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
488 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
489 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
490 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
491 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
492 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
493 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
494 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
495 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
496 	ARM64_FTR_END,
497 };
498 
499 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
500 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
501 		       FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
502 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
503 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
504 	ARM64_FTR_END,
505 };
506 
507 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
508 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
509 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
510 	ARM64_FTR_END,
511 };
512 
513 static const struct arm64_ftr_bits ftr_ctr[] = {
514 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
515 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
516 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
517 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
518 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
519 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
520 	/*
521 	 * Linux can handle differing I-cache policies. Userspace JITs will
522 	 * make use of *minLine.
523 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
524 	 */
525 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
526 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
527 	ARM64_FTR_END,
528 };
529 
530 static struct arm64_ftr_override __ro_after_init no_override = { };
531 
532 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
533 	.name		= "SYS_CTR_EL0",
534 	.ftr_bits	= ftr_ctr,
535 	.override	= &no_override,
536 };
537 
538 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
539 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
540 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
541 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
542 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
543 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
544 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
545 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
546 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
547 	ARM64_FTR_END,
548 };
549 
550 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
551 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
552 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
553 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
554 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
555 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
556 	/*
557 	 * We can instantiate multiple PMU instances with different levels
558 	 * of support.
559 	 */
560 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
561 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
562 	ARM64_FTR_END,
563 };
564 
565 static const struct arm64_ftr_bits ftr_mvfr0[] = {
566 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
567 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
568 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
569 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
570 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
571 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
572 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
573 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
574 	ARM64_FTR_END,
575 };
576 
577 static const struct arm64_ftr_bits ftr_mvfr1[] = {
578 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
579 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
580 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
581 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
582 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
583 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
584 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
585 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
586 	ARM64_FTR_END,
587 };
588 
589 static const struct arm64_ftr_bits ftr_mvfr2[] = {
590 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
591 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
592 	ARM64_FTR_END,
593 };
594 
595 static const struct arm64_ftr_bits ftr_dczid[] = {
596 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
597 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
598 	ARM64_FTR_END,
599 };
600 
601 static const struct arm64_ftr_bits ftr_gmid[] = {
602 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
603 	ARM64_FTR_END,
604 };
605 
606 static const struct arm64_ftr_bits ftr_id_isar0[] = {
607 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
608 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
609 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
610 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
611 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
612 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
613 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
614 	ARM64_FTR_END,
615 };
616 
617 static const struct arm64_ftr_bits ftr_id_isar5[] = {
618 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
619 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
620 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
621 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
622 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
623 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
624 	ARM64_FTR_END,
625 };
626 
627 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
628 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
629 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
630 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
631 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
632 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
633 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
634 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
635 
636 	/*
637 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
638 	 * external abort on speculative read. It is safe to assume that an
639 	 * SError might be generated than it will not be. Hence it has been
640 	 * classified as FTR_HIGHER_SAFE.
641 	 */
642 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
643 	ARM64_FTR_END,
644 };
645 
646 static const struct arm64_ftr_bits ftr_id_isar4[] = {
647 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
648 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
649 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
650 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
651 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
652 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
653 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
654 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
655 	ARM64_FTR_END,
656 };
657 
658 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
659 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
660 	ARM64_FTR_END,
661 };
662 
663 static const struct arm64_ftr_bits ftr_id_isar6[] = {
664 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
665 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
666 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
667 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
668 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
669 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
670 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
671 	ARM64_FTR_END,
672 };
673 
674 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
675 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
676 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
677 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
678 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
679 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
680 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
681 	ARM64_FTR_END,
682 };
683 
684 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
685 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
686 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
687 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
688 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
689 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
690 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
691 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
692 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
693 	ARM64_FTR_END,
694 };
695 
696 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
697 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
698 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
699 	ARM64_FTR_END,
700 };
701 
702 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
703 	/* [31:28] TraceFilt */
704 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
705 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
706 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
707 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
708 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
709 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
710 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
711 	ARM64_FTR_END,
712 };
713 
714 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
715 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
716 	ARM64_FTR_END,
717 };
718 
719 static const struct arm64_ftr_bits ftr_mpamidr[] = {
720 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
721 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
722 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
723 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
724 	ARM64_FTR_END,
725 };
726 
727 /*
728  * Common ftr bits for a 32bit register with all hidden, strict
729  * attributes, with 4bit feature fields and a default safe value of
730  * 0. Covers the following 32bit registers:
731  * id_isar[1-3], id_mmfr[1-3]
732  */
733 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
734 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
735 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
736 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
737 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
738 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
739 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
740 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
741 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
742 	ARM64_FTR_END,
743 };
744 
745 /* Table for a single 32bit feature value */
746 static const struct arm64_ftr_bits ftr_single32[] = {
747 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
748 	ARM64_FTR_END,
749 };
750 
751 static const struct arm64_ftr_bits ftr_raz[] = {
752 	ARM64_FTR_END,
753 };
754 
755 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
756 		.sys_id = id,					\
757 		.reg = 	&(struct arm64_ftr_reg){		\
758 			.name = id_str,				\
759 			.override = (ovr),			\
760 			.ftr_bits = &((table)[0]),		\
761 	}}
762 
763 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
764 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
765 
766 #define ARM64_FTR_REG(id, table)		\
767 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
768 
769 struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
770 struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
771 struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
772 struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
773 struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
774 struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
775 struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
776 struct arm64_ftr_override __read_mostly id_aa64isar1_override;
777 struct arm64_ftr_override __read_mostly id_aa64isar2_override;
778 
779 struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
780 
781 static const struct __ftr_reg_entry {
782 	u32			sys_id;
783 	struct arm64_ftr_reg 	*reg;
784 } arm64_ftr_regs[] = {
785 
786 	/* Op1 = 0, CRn = 0, CRm = 1 */
787 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
788 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
789 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
790 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
791 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
792 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
793 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
794 
795 	/* Op1 = 0, CRn = 0, CRm = 2 */
796 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
797 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
798 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
799 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
800 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
801 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
802 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
803 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
804 
805 	/* Op1 = 0, CRn = 0, CRm = 3 */
806 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
807 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
808 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
809 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
810 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
811 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
812 
813 	/* Op1 = 0, CRn = 0, CRm = 4 */
814 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
815 			       &id_aa64pfr0_override),
816 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
817 			       &id_aa64pfr1_override),
818 	ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
819 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
820 			       &id_aa64zfr0_override),
821 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
822 			       &id_aa64smfr0_override),
823 	ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
824 
825 	/* Op1 = 0, CRn = 0, CRm = 5 */
826 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
827 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
828 
829 	/* Op1 = 0, CRn = 0, CRm = 6 */
830 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
831 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
832 			       &id_aa64isar1_override),
833 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
834 			       &id_aa64isar2_override),
835 	ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
836 
837 	/* Op1 = 0, CRn = 0, CRm = 7 */
838 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
839 			       &id_aa64mmfr0_override),
840 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
841 			       &id_aa64mmfr1_override),
842 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
843 			       &id_aa64mmfr2_override),
844 	ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
845 	ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
846 
847 	/* Op1 = 0, CRn = 10, CRm = 4 */
848 	ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
849 
850 	/* Op1 = 1, CRn = 0, CRm = 0 */
851 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
852 
853 	/* Op1 = 3, CRn = 0, CRm = 0 */
854 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
855 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
856 
857 	/* Op1 = 3, CRn = 14, CRm = 0 */
858 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
859 };
860 
861 static int search_cmp_ftr_reg(const void *id, const void *regp)
862 {
863 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
864 }
865 
866 /*
867  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
868  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
869  * ascending order of sys_id, we use binary search to find a matching
870  * entry.
871  *
872  * returns - Upon success,  matching ftr_reg entry for id.
873  *         - NULL on failure. It is upto the caller to decide
874  *	     the impact of a failure.
875  */
876 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
877 {
878 	const struct __ftr_reg_entry *ret;
879 
880 	ret = bsearch((const void *)(unsigned long)sys_id,
881 			arm64_ftr_regs,
882 			ARRAY_SIZE(arm64_ftr_regs),
883 			sizeof(arm64_ftr_regs[0]),
884 			search_cmp_ftr_reg);
885 	if (ret)
886 		return ret->reg;
887 	return NULL;
888 }
889 
890 /*
891  * get_arm64_ftr_reg - Looks up a feature register entry using
892  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
893  *
894  * returns - Upon success,  matching ftr_reg entry for id.
895  *         - NULL on failure but with an WARN_ON().
896  */
897 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
898 {
899 	struct arm64_ftr_reg *reg;
900 
901 	reg = get_arm64_ftr_reg_nowarn(sys_id);
902 
903 	/*
904 	 * Requesting a non-existent register search is an error. Warn
905 	 * and let the caller handle it.
906 	 */
907 	WARN_ON(!reg);
908 	return reg;
909 }
910 
911 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
912 			       s64 ftr_val)
913 {
914 	u64 mask = arm64_ftr_mask(ftrp);
915 
916 	reg &= ~mask;
917 	reg |= (ftr_val << ftrp->shift) & mask;
918 	return reg;
919 }
920 
921 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
922 				s64 cur)
923 {
924 	s64 ret = 0;
925 
926 	switch (ftrp->type) {
927 	case FTR_EXACT:
928 		ret = ftrp->safe_val;
929 		break;
930 	case FTR_LOWER_SAFE:
931 		ret = min(new, cur);
932 		break;
933 	case FTR_HIGHER_OR_ZERO_SAFE:
934 		if (!cur || !new)
935 			break;
936 		fallthrough;
937 	case FTR_HIGHER_SAFE:
938 		ret = max(new, cur);
939 		break;
940 	default:
941 		BUG();
942 	}
943 
944 	return ret;
945 }
946 
947 static void __init sort_ftr_regs(void)
948 {
949 	unsigned int i;
950 
951 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
952 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
953 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
954 		unsigned int j = 0;
955 
956 		/*
957 		 * Features here must be sorted in descending order with respect
958 		 * to their shift values and should not overlap with each other.
959 		 */
960 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
961 			unsigned int width = ftr_reg->ftr_bits[j].width;
962 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
963 			unsigned int prev_shift;
964 
965 			WARN((shift  + width) > 64,
966 				"%s has invalid feature at shift %d\n",
967 				ftr_reg->name, shift);
968 
969 			/*
970 			 * Skip the first feature. There is nothing to
971 			 * compare against for now.
972 			 */
973 			if (j == 0)
974 				continue;
975 
976 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
977 			WARN((shift + width) > prev_shift,
978 				"%s has feature overlap at shift %d\n",
979 				ftr_reg->name, shift);
980 		}
981 
982 		/*
983 		 * Skip the first register. There is nothing to
984 		 * compare against for now.
985 		 */
986 		if (i == 0)
987 			continue;
988 		/*
989 		 * Registers here must be sorted in ascending order with respect
990 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
991 		 * to work correctly.
992 		 */
993 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
994 	}
995 }
996 
997 /*
998  * Initialise the CPU feature register from Boot CPU values.
999  * Also initiliases the strict_mask for the register.
1000  * Any bits that are not covered by an arm64_ftr_bits entry are considered
1001  * RES0 for the system-wide value, and must strictly match.
1002  */
1003 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1004 {
1005 	u64 val = 0;
1006 	u64 strict_mask = ~0x0ULL;
1007 	u64 user_mask = 0;
1008 	u64 valid_mask = 0;
1009 
1010 	const struct arm64_ftr_bits *ftrp;
1011 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1012 
1013 	if (!reg)
1014 		return;
1015 
1016 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1017 		u64 ftr_mask = arm64_ftr_mask(ftrp);
1018 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1019 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1020 
1021 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
1022 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1023 			char *str = NULL;
1024 
1025 			if (ftr_ovr != tmp) {
1026 				/* Unsafe, remove the override */
1027 				reg->override->mask &= ~ftr_mask;
1028 				reg->override->val &= ~ftr_mask;
1029 				tmp = ftr_ovr;
1030 				str = "ignoring override";
1031 			} else if (ftr_new != tmp) {
1032 				/* Override was valid */
1033 				ftr_new = tmp;
1034 				str = "forced";
1035 			} else {
1036 				/* Override was the safe value */
1037 				str = "already set";
1038 			}
1039 
1040 			pr_warn("%s[%d:%d]: %s to %llx\n",
1041 				reg->name,
1042 				ftrp->shift + ftrp->width - 1,
1043 				ftrp->shift, str,
1044 				tmp & (BIT(ftrp->width) - 1));
1045 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1046 			reg->override->val &= ~ftr_mask;
1047 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
1048 				reg->name,
1049 				ftrp->shift + ftrp->width - 1,
1050 				ftrp->shift);
1051 		}
1052 
1053 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
1054 
1055 		valid_mask |= ftr_mask;
1056 		if (!ftrp->strict)
1057 			strict_mask &= ~ftr_mask;
1058 		if (ftrp->visible)
1059 			user_mask |= ftr_mask;
1060 		else
1061 			reg->user_val = arm64_ftr_set_value(ftrp,
1062 							    reg->user_val,
1063 							    ftrp->safe_val);
1064 	}
1065 
1066 	val &= valid_mask;
1067 
1068 	reg->sys_val = val;
1069 	reg->strict_mask = strict_mask;
1070 	reg->user_mask = user_mask;
1071 }
1072 
1073 extern const struct arm64_cpu_capabilities arm64_errata[];
1074 static const struct arm64_cpu_capabilities arm64_features[];
1075 
1076 static void __init
1077 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1078 {
1079 	for (; caps->matches; caps++) {
1080 		if (WARN(caps->capability >= ARM64_NCAPS,
1081 			"Invalid capability %d\n", caps->capability))
1082 			continue;
1083 		if (WARN(cpucap_ptrs[caps->capability],
1084 			"Duplicate entry for capability %d\n",
1085 			caps->capability))
1086 			continue;
1087 		cpucap_ptrs[caps->capability] = caps;
1088 	}
1089 }
1090 
1091 static void __init init_cpucap_indirect_list(void)
1092 {
1093 	init_cpucap_indirect_list_from_array(arm64_features);
1094 	init_cpucap_indirect_list_from_array(arm64_errata);
1095 }
1096 
1097 static void __init setup_boot_cpu_capabilities(void);
1098 
1099 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1100 {
1101 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1102 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1103 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1104 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1105 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1106 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1107 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1108 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1109 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1110 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1111 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1112 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1113 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1114 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1115 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1116 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1117 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1118 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1119 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1120 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1121 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1122 }
1123 
1124 #ifdef CONFIG_ARM64_PSEUDO_NMI
1125 static bool enable_pseudo_nmi;
1126 
1127 static int __init early_enable_pseudo_nmi(char *p)
1128 {
1129 	return kstrtobool(p, &enable_pseudo_nmi);
1130 }
1131 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1132 
1133 static __init void detect_system_supports_pseudo_nmi(void)
1134 {
1135 	struct device_node *np;
1136 
1137 	if (!enable_pseudo_nmi)
1138 		return;
1139 
1140 	/*
1141 	 * Detect broken MediaTek firmware that doesn't properly save and
1142 	 * restore GIC priorities.
1143 	 */
1144 	np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1145 	if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1146 		pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1147 		enable_pseudo_nmi = false;
1148 	}
1149 	of_node_put(np);
1150 }
1151 #else /* CONFIG_ARM64_PSEUDO_NMI */
1152 static inline void detect_system_supports_pseudo_nmi(void) { }
1153 #endif
1154 
1155 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1156 {
1157 	/* Before we start using the tables, make sure it is sorted */
1158 	sort_ftr_regs();
1159 
1160 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1161 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1162 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1163 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1164 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1165 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1166 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1167 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1168 	init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1169 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1170 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1171 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1172 	init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1173 	init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1174 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1175 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1176 	init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1177 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1178 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1179 	init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1180 
1181 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1182 		init_32bit_cpu_features(&info->aarch32);
1183 
1184 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1185 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1186 		unsigned long cpacr = cpacr_save_enable_kernel_sve();
1187 
1188 		vec_init_vq_map(ARM64_VEC_SVE);
1189 
1190 		cpacr_restore(cpacr);
1191 	}
1192 
1193 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1194 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1195 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1196 
1197 		vec_init_vq_map(ARM64_VEC_SME);
1198 
1199 		cpacr_restore(cpacr);
1200 	}
1201 
1202 	if (id_aa64pfr0_mpam(info->reg_id_aa64pfr0))
1203 		init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1204 
1205 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1206 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1207 }
1208 
1209 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1210 {
1211 	const struct arm64_ftr_bits *ftrp;
1212 
1213 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1214 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1215 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1216 
1217 		if (ftr_cur == ftr_new)
1218 			continue;
1219 		/* Find a safe value */
1220 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1221 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1222 	}
1223 
1224 }
1225 
1226 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1227 {
1228 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1229 
1230 	if (!regp)
1231 		return 0;
1232 
1233 	update_cpu_ftr_reg(regp, val);
1234 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1235 		return 0;
1236 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1237 			regp->name, boot, cpu, val);
1238 	return 1;
1239 }
1240 
1241 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1242 {
1243 	const struct arm64_ftr_bits *ftrp;
1244 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1245 
1246 	if (!regp)
1247 		return;
1248 
1249 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1250 		if (ftrp->shift == field) {
1251 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1252 			break;
1253 		}
1254 	}
1255 
1256 	/* Bogus field? */
1257 	WARN_ON(!ftrp->width);
1258 }
1259 
1260 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1261 					 struct cpuinfo_arm64 *boot)
1262 {
1263 	static bool boot_cpu_32bit_regs_overridden = false;
1264 
1265 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1266 		return;
1267 
1268 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1269 		return;
1270 
1271 	boot->aarch32 = info->aarch32;
1272 	init_32bit_cpu_features(&boot->aarch32);
1273 	boot_cpu_32bit_regs_overridden = true;
1274 }
1275 
1276 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1277 				     struct cpuinfo_32bit *boot)
1278 {
1279 	int taint = 0;
1280 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1281 
1282 	/*
1283 	 * If we don't have AArch32 at EL1, then relax the strictness of
1284 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1285 	 */
1286 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1287 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1288 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1289 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1290 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1291 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1292 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1293 	}
1294 
1295 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1296 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1297 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1298 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1299 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1300 				      info->reg_id_isar0, boot->reg_id_isar0);
1301 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1302 				      info->reg_id_isar1, boot->reg_id_isar1);
1303 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1304 				      info->reg_id_isar2, boot->reg_id_isar2);
1305 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1306 				      info->reg_id_isar3, boot->reg_id_isar3);
1307 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1308 				      info->reg_id_isar4, boot->reg_id_isar4);
1309 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1310 				      info->reg_id_isar5, boot->reg_id_isar5);
1311 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1312 				      info->reg_id_isar6, boot->reg_id_isar6);
1313 
1314 	/*
1315 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1316 	 * ACTLR formats could differ across CPUs and therefore would have to
1317 	 * be trapped for virtualization anyway.
1318 	 */
1319 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1320 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1321 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1322 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1323 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1324 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1325 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1326 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1327 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1328 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1329 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1330 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1331 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1332 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1333 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1334 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1335 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1336 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1337 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1338 				      info->reg_mvfr0, boot->reg_mvfr0);
1339 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1340 				      info->reg_mvfr1, boot->reg_mvfr1);
1341 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1342 				      info->reg_mvfr2, boot->reg_mvfr2);
1343 
1344 	return taint;
1345 }
1346 
1347 /*
1348  * Update system wide CPU feature registers with the values from a
1349  * non-boot CPU. Also performs SANITY checks to make sure that there
1350  * aren't any insane variations from that of the boot CPU.
1351  */
1352 void update_cpu_features(int cpu,
1353 			 struct cpuinfo_arm64 *info,
1354 			 struct cpuinfo_arm64 *boot)
1355 {
1356 	int taint = 0;
1357 
1358 	/*
1359 	 * The kernel can handle differing I-cache policies, but otherwise
1360 	 * caches should look identical. Userspace JITs will make use of
1361 	 * *minLine.
1362 	 */
1363 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1364 				      info->reg_ctr, boot->reg_ctr);
1365 
1366 	/*
1367 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1368 	 * could result in too much or too little memory being zeroed if a
1369 	 * process is preempted and migrated between CPUs.
1370 	 */
1371 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1372 				      info->reg_dczid, boot->reg_dczid);
1373 
1374 	/* If different, timekeeping will be broken (especially with KVM) */
1375 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1376 				      info->reg_cntfrq, boot->reg_cntfrq);
1377 
1378 	/*
1379 	 * The kernel uses self-hosted debug features and expects CPUs to
1380 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1381 	 * and BRPs to be identical.
1382 	 * ID_AA64DFR1 is currently RES0.
1383 	 */
1384 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1385 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1386 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1387 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1388 	/*
1389 	 * Even in big.LITTLE, processors should be identical instruction-set
1390 	 * wise.
1391 	 */
1392 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1393 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1394 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1395 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1396 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1397 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1398 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1399 				      info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1400 
1401 	/*
1402 	 * Differing PARange support is fine as long as all peripherals and
1403 	 * memory are mapped within the minimum PARange of all CPUs.
1404 	 * Linux should not care about secure memory.
1405 	 */
1406 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1407 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1408 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1409 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1410 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1411 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1412 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1413 				      info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1414 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1415 				      info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1416 
1417 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1418 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1419 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1420 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1421 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1422 				      info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1423 
1424 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1425 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1426 
1427 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1428 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1429 
1430 	taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1431 				      info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1432 
1433 	/* Probe vector lengths */
1434 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1435 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1436 		if (!system_capabilities_finalized()) {
1437 			unsigned long cpacr = cpacr_save_enable_kernel_sve();
1438 
1439 			vec_update_vq_map(ARM64_VEC_SVE);
1440 
1441 			cpacr_restore(cpacr);
1442 		}
1443 	}
1444 
1445 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1446 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1447 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1448 
1449 		/* Probe vector lengths */
1450 		if (!system_capabilities_finalized())
1451 			vec_update_vq_map(ARM64_VEC_SME);
1452 
1453 		cpacr_restore(cpacr);
1454 	}
1455 
1456 	if (id_aa64pfr0_mpam(info->reg_id_aa64pfr0)) {
1457 		taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1458 					info->reg_mpamidr, boot->reg_mpamidr);
1459 	}
1460 
1461 	/*
1462 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1463 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1464 	 * value is the same on all CPUs.
1465 	 */
1466 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1467 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1468 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1469 					      info->reg_gmid, boot->reg_gmid);
1470 	}
1471 
1472 	/*
1473 	 * If we don't have AArch32 at all then skip the checks entirely
1474 	 * as the register values may be UNKNOWN and we're not going to be
1475 	 * using them for anything.
1476 	 *
1477 	 * This relies on a sanitised view of the AArch64 ID registers
1478 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1479 	 */
1480 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1481 		lazy_init_32bit_cpu_features(info, boot);
1482 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1483 						   &boot->aarch32);
1484 	}
1485 
1486 	/*
1487 	 * Mismatched CPU features are a recipe for disaster. Don't even
1488 	 * pretend to support them.
1489 	 */
1490 	if (taint) {
1491 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1492 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1493 	}
1494 }
1495 
1496 u64 read_sanitised_ftr_reg(u32 id)
1497 {
1498 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1499 
1500 	if (!regp)
1501 		return 0;
1502 	return regp->sys_val;
1503 }
1504 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1505 
1506 #define read_sysreg_case(r)	\
1507 	case r:		val = read_sysreg_s(r); break;
1508 
1509 /*
1510  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1511  * Read the system register on the current CPU
1512  */
1513 u64 __read_sysreg_by_encoding(u32 sys_id)
1514 {
1515 	struct arm64_ftr_reg *regp;
1516 	u64 val;
1517 
1518 	switch (sys_id) {
1519 	read_sysreg_case(SYS_ID_PFR0_EL1);
1520 	read_sysreg_case(SYS_ID_PFR1_EL1);
1521 	read_sysreg_case(SYS_ID_PFR2_EL1);
1522 	read_sysreg_case(SYS_ID_DFR0_EL1);
1523 	read_sysreg_case(SYS_ID_DFR1_EL1);
1524 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1525 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1526 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1527 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1528 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1529 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1530 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1531 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1532 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1533 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1534 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1535 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1536 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1537 	read_sysreg_case(SYS_MVFR0_EL1);
1538 	read_sysreg_case(SYS_MVFR1_EL1);
1539 	read_sysreg_case(SYS_MVFR2_EL1);
1540 
1541 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1542 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1543 	read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1544 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1545 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1546 	read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1547 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1548 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1549 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1550 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1551 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1552 	read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1553 	read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1554 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1555 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1556 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1557 	read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1558 
1559 	read_sysreg_case(SYS_CNTFRQ_EL0);
1560 	read_sysreg_case(SYS_CTR_EL0);
1561 	read_sysreg_case(SYS_DCZID_EL0);
1562 
1563 	default:
1564 		BUG();
1565 		return 0;
1566 	}
1567 
1568 	regp  = get_arm64_ftr_reg(sys_id);
1569 	if (regp) {
1570 		val &= ~regp->override->mask;
1571 		val |= (regp->override->val & regp->override->mask);
1572 	}
1573 
1574 	return val;
1575 }
1576 
1577 #include <linux/irqchip/arm-gic-v3.h>
1578 
1579 static bool
1580 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1581 {
1582 	return true;
1583 }
1584 
1585 static bool
1586 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1587 {
1588 	int val, min, max;
1589 	u64 tmp;
1590 
1591 	val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1592 						entry->field_width,
1593 						entry->sign);
1594 
1595 	tmp = entry->min_field_value;
1596 	tmp <<= entry->field_pos;
1597 
1598 	min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1599 						entry->field_width,
1600 						entry->sign);
1601 
1602 	tmp = entry->max_field_value;
1603 	tmp <<= entry->field_pos;
1604 
1605 	max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1606 						entry->field_width,
1607 						entry->sign);
1608 
1609 	return val >= min && val <= max;
1610 }
1611 
1612 static u64
1613 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1614 {
1615 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1616 	if (scope == SCOPE_SYSTEM)
1617 		return read_sanitised_ftr_reg(entry->sys_reg);
1618 	else
1619 		return __read_sysreg_by_encoding(entry->sys_reg);
1620 }
1621 
1622 static bool
1623 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1624 {
1625 	int mask;
1626 	struct arm64_ftr_reg *regp;
1627 	u64 val = read_scoped_sysreg(entry, scope);
1628 
1629 	regp = get_arm64_ftr_reg(entry->sys_reg);
1630 	if (!regp)
1631 		return false;
1632 
1633 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1634 							  entry->field_pos,
1635 							  entry->field_width);
1636 	if (!mask)
1637 		return false;
1638 
1639 	return feature_matches(val, entry);
1640 }
1641 
1642 static bool
1643 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1644 {
1645 	u64 val = read_scoped_sysreg(entry, scope);
1646 	return feature_matches(val, entry);
1647 }
1648 
1649 const struct cpumask *system_32bit_el0_cpumask(void)
1650 {
1651 	if (!system_supports_32bit_el0())
1652 		return cpu_none_mask;
1653 
1654 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1655 		return cpu_32bit_el0_mask;
1656 
1657 	return cpu_possible_mask;
1658 }
1659 
1660 const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1661 {
1662 	return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_TICK));
1663 }
1664 
1665 static int __init parse_32bit_el0_param(char *str)
1666 {
1667 	allow_mismatched_32bit_el0 = true;
1668 	return 0;
1669 }
1670 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1671 
1672 static ssize_t aarch32_el0_show(struct device *dev,
1673 				struct device_attribute *attr, char *buf)
1674 {
1675 	const struct cpumask *mask = system_32bit_el0_cpumask();
1676 
1677 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1678 }
1679 static const DEVICE_ATTR_RO(aarch32_el0);
1680 
1681 static int __init aarch32_el0_sysfs_init(void)
1682 {
1683 	struct device *dev_root;
1684 	int ret = 0;
1685 
1686 	if (!allow_mismatched_32bit_el0)
1687 		return 0;
1688 
1689 	dev_root = bus_get_dev_root(&cpu_subsys);
1690 	if (dev_root) {
1691 		ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1692 		put_device(dev_root);
1693 	}
1694 	return ret;
1695 }
1696 device_initcall(aarch32_el0_sysfs_init);
1697 
1698 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1699 {
1700 	if (!has_cpuid_feature(entry, scope))
1701 		return allow_mismatched_32bit_el0;
1702 
1703 	if (scope == SCOPE_SYSTEM)
1704 		pr_info("detected: 32-bit EL0 Support\n");
1705 
1706 	return true;
1707 }
1708 
1709 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1710 {
1711 	bool has_sre;
1712 
1713 	if (!has_cpuid_feature(entry, scope))
1714 		return false;
1715 
1716 	has_sre = gic_enable_sre();
1717 	if (!has_sre)
1718 		pr_warn_once("%s present but disabled by higher exception level\n",
1719 			     entry->desc);
1720 
1721 	return has_sre;
1722 }
1723 
1724 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1725 			  int scope)
1726 {
1727 	u64 ctr;
1728 
1729 	if (scope == SCOPE_SYSTEM)
1730 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1731 	else
1732 		ctr = read_cpuid_effective_cachetype();
1733 
1734 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1735 }
1736 
1737 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1738 {
1739 	/*
1740 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1741 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1742 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1743 	 * value.
1744 	 */
1745 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1746 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1747 }
1748 
1749 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1750 			  int scope)
1751 {
1752 	u64 ctr;
1753 
1754 	if (scope == SCOPE_SYSTEM)
1755 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1756 	else
1757 		ctr = read_cpuid_cachetype();
1758 
1759 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1760 }
1761 
1762 static bool __maybe_unused
1763 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1764 {
1765 	/*
1766 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1767 	 * may share TLB entries with a CPU stuck in the crashed
1768 	 * kernel.
1769 	 */
1770 	if (is_kdump_kernel())
1771 		return false;
1772 
1773 	if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1774 		return false;
1775 
1776 	return has_cpuid_feature(entry, scope);
1777 }
1778 
1779 static bool __meltdown_safe = true;
1780 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1781 
1782 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1783 				int scope)
1784 {
1785 	/* List of CPUs that are not vulnerable and don't need KPTI */
1786 	static const struct midr_range kpti_safe_list[] = {
1787 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1788 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1789 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1790 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1791 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1792 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1793 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1794 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1795 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1796 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1797 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1798 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1799 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1800 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1801 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1802 		{ /* sentinel */ }
1803 	};
1804 	char const *str = "kpti command line option";
1805 	bool meltdown_safe;
1806 
1807 	meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1808 
1809 	/* Defer to CPU feature registers */
1810 	if (has_cpuid_feature(entry, scope))
1811 		meltdown_safe = true;
1812 
1813 	if (!meltdown_safe)
1814 		__meltdown_safe = false;
1815 
1816 	/*
1817 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1818 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1819 	 * ends as well as you might imagine. Don't even try. We cannot rely
1820 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1821 	 * because cpucap detection order may change. However, since we know
1822 	 * affected CPUs are always in a homogeneous configuration, it is
1823 	 * safe to rely on this_cpu_has_cap() here.
1824 	 */
1825 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1826 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1827 		__kpti_forced = -1;
1828 	}
1829 
1830 	/* Useful for KASLR robustness */
1831 	if (kaslr_enabled() && kaslr_requires_kpti()) {
1832 		if (!__kpti_forced) {
1833 			str = "KASLR";
1834 			__kpti_forced = 1;
1835 		}
1836 	}
1837 
1838 	if (cpu_mitigations_off() && !__kpti_forced) {
1839 		str = "mitigations=off";
1840 		__kpti_forced = -1;
1841 	}
1842 
1843 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1844 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1845 		return false;
1846 	}
1847 
1848 	/* Forced? */
1849 	if (__kpti_forced) {
1850 		pr_info_once("kernel page table isolation forced %s by %s\n",
1851 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1852 		return __kpti_forced > 0;
1853 	}
1854 
1855 	return !meltdown_safe;
1856 }
1857 
1858 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1859 {
1860 	/*
1861 	 * Although the Apple M2 family appears to support NV1, the
1862 	 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1863 	 * that it doesn't support NV1 at all.
1864 	 */
1865 	static const struct midr_range nv1_ni_list[] = {
1866 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1867 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1868 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1869 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1870 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1871 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1872 		{}
1873 	};
1874 
1875 	return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1876 		!(has_cpuid_feature(entry, scope) ||
1877 		  is_midr_in_range_list(nv1_ni_list)));
1878 }
1879 
1880 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1881 static bool has_lpa2_at_stage1(u64 mmfr0)
1882 {
1883 	unsigned int tgran;
1884 
1885 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1886 					ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1887 	return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1888 }
1889 
1890 static bool has_lpa2_at_stage2(u64 mmfr0)
1891 {
1892 	unsigned int tgran;
1893 
1894 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1895 					ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1896 	return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1897 }
1898 
1899 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1900 {
1901 	u64 mmfr0;
1902 
1903 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1904 	return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1905 }
1906 #else
1907 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1908 {
1909 	return false;
1910 }
1911 #endif
1912 
1913 #ifdef CONFIG_HW_PERF_EVENTS
1914 static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1915 {
1916 	u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1917 	unsigned int pmuver;
1918 
1919 	/*
1920 	 * PMUVer follows the standard ID scheme for an unsigned field with the
1921 	 * exception of 0xF (IMP_DEF) which is treated specially and implies
1922 	 * FEAT_PMUv3 is not implemented.
1923 	 *
1924 	 * See DDI0487L.a D24.1.3.2 for more details.
1925 	 */
1926 	pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1927 						      ID_AA64DFR0_EL1_PMUVer_SHIFT);
1928 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1929 		return false;
1930 
1931 	return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1932 }
1933 #endif
1934 
1935 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1936 #define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1937 
1938 extern
1939 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1940 			     phys_addr_t size, pgprot_t prot,
1941 			     phys_addr_t (*pgtable_alloc)(int), int flags);
1942 
1943 static phys_addr_t __initdata kpti_ng_temp_alloc;
1944 
1945 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1946 {
1947 	kpti_ng_temp_alloc -= PAGE_SIZE;
1948 	return kpti_ng_temp_alloc;
1949 }
1950 
1951 static int __init __kpti_install_ng_mappings(void *__unused)
1952 {
1953 	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1954 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1955 	kpti_remap_fn *remap_fn;
1956 
1957 	int cpu = smp_processor_id();
1958 	int levels = CONFIG_PGTABLE_LEVELS;
1959 	int order = order_base_2(levels);
1960 	u64 kpti_ng_temp_pgd_pa = 0;
1961 	pgd_t *kpti_ng_temp_pgd;
1962 	u64 alloc = 0;
1963 
1964 	if (levels == 5 && !pgtable_l5_enabled())
1965 		levels = 4;
1966 	else if (levels == 4 && !pgtable_l4_enabled())
1967 		levels = 3;
1968 
1969 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1970 
1971 	if (!cpu) {
1972 		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1973 		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1974 		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1975 
1976 		//
1977 		// Create a minimal page table hierarchy that permits us to map
1978 		// the swapper page tables temporarily as we traverse them.
1979 		//
1980 		// The physical pages are laid out as follows:
1981 		//
1982 		// +--------+-/-------+-/------ +-/------ +-\\\--------+
1983 		// :  PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[]  :
1984 		// +--------+-\-------+-\------ +-\------ +-///--------+
1985 		//      ^
1986 		// The first page is mapped into this hierarchy at a PMD_SHIFT
1987 		// aligned virtual address, so that we can manipulate the PTE
1988 		// level entries while the mapping is active. The first entry
1989 		// covers the PTE[] page itself, the remaining entries are free
1990 		// to be used as a ad-hoc fixmap.
1991 		//
1992 		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1993 					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1994 					kpti_ng_pgd_alloc, 0);
1995 	}
1996 
1997 	cpu_install_idmap();
1998 	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1999 	cpu_uninstall_idmap();
2000 
2001 	if (!cpu) {
2002 		free_pages(alloc, order);
2003 		arm64_use_ng_mappings = true;
2004 	}
2005 
2006 	return 0;
2007 }
2008 
2009 static void __init kpti_install_ng_mappings(void)
2010 {
2011 	/* Check whether KPTI is going to be used */
2012 	if (!arm64_kernel_unmapped_at_el0())
2013 		return;
2014 
2015 	/*
2016 	 * We don't need to rewrite the page-tables if either we've done
2017 	 * it already or we have KASLR enabled and therefore have not
2018 	 * created any global mappings at all.
2019 	 */
2020 	if (arm64_use_ng_mappings)
2021 		return;
2022 
2023 	stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
2024 }
2025 
2026 #else
2027 static inline void kpti_install_ng_mappings(void)
2028 {
2029 }
2030 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
2031 
2032 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
2033 {
2034 	if (__this_cpu_read(this_cpu_vector) == vectors) {
2035 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
2036 
2037 		__this_cpu_write(this_cpu_vector, v);
2038 	}
2039 
2040 }
2041 
2042 static int __init parse_kpti(char *str)
2043 {
2044 	bool enabled;
2045 	int ret = kstrtobool(str, &enabled);
2046 
2047 	if (ret)
2048 		return ret;
2049 
2050 	__kpti_forced = enabled ? 1 : -1;
2051 	return 0;
2052 }
2053 early_param("kpti", parse_kpti);
2054 
2055 #ifdef CONFIG_ARM64_HW_AFDBM
2056 static struct cpumask dbm_cpus __read_mostly;
2057 
2058 static inline void __cpu_enable_hw_dbm(void)
2059 {
2060 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
2061 
2062 	write_sysreg(tcr, tcr_el1);
2063 	isb();
2064 	local_flush_tlb_all();
2065 }
2066 
2067 static bool cpu_has_broken_dbm(void)
2068 {
2069 	/* List of CPUs which have broken DBM support. */
2070 	static const struct midr_range cpus[] = {
2071 #ifdef CONFIG_ARM64_ERRATUM_1024718
2072 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2073 		/* Kryo4xx Silver (rdpe => r1p0) */
2074 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2075 #endif
2076 #ifdef CONFIG_ARM64_ERRATUM_2051678
2077 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2078 #endif
2079 		{},
2080 	};
2081 
2082 	return is_midr_in_range_list(cpus);
2083 }
2084 
2085 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2086 {
2087 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2088 	       !cpu_has_broken_dbm();
2089 }
2090 
2091 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2092 {
2093 	if (cpu_can_use_dbm(cap)) {
2094 		__cpu_enable_hw_dbm();
2095 		cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2096 	}
2097 }
2098 
2099 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2100 		       int __unused)
2101 {
2102 	/*
2103 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
2104 	 * run a mix of CPUs with and without the feature. So, we
2105 	 * unconditionally enable the capability to allow any late CPU
2106 	 * to use the feature. We only enable the control bits on the
2107 	 * CPU, if it is supported.
2108 	 */
2109 
2110 	return true;
2111 }
2112 
2113 #endif
2114 
2115 #ifdef CONFIG_ARM64_AMU_EXTN
2116 
2117 /*
2118  * The "amu_cpus" cpumask only signals that the CPU implementation for the
2119  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2120  * information regarding all the events that it supports. When a CPU bit is
2121  * set in the cpumask, the user of this feature can only rely on the presence
2122  * of the 4 fixed counters for that CPU. But this does not guarantee that the
2123  * counters are enabled or access to these counters is enabled by code
2124  * executed at higher exception levels (firmware).
2125  */
2126 static struct cpumask amu_cpus __read_mostly;
2127 
2128 bool cpu_has_amu_feat(int cpu)
2129 {
2130 	return cpumask_test_cpu(cpu, &amu_cpus);
2131 }
2132 
2133 int get_cpu_with_amu_feat(void)
2134 {
2135 	return cpumask_any(&amu_cpus);
2136 }
2137 
2138 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2139 {
2140 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2141 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2142 
2143 		/* 0 reference values signal broken/disabled counters */
2144 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2145 			update_freq_counters_refs();
2146 	}
2147 }
2148 
2149 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2150 		    int __unused)
2151 {
2152 	/*
2153 	 * The AMU extension is a non-conflicting feature: the kernel can
2154 	 * safely run a mix of CPUs with and without support for the
2155 	 * activity monitors extension. Therefore, unconditionally enable
2156 	 * the capability to allow any late CPU to use the feature.
2157 	 *
2158 	 * With this feature unconditionally enabled, the cpu_enable
2159 	 * function will be called for all CPUs that match the criteria,
2160 	 * including secondary and hotplugged, marking this feature as
2161 	 * present on that respective CPU. The enable function will also
2162 	 * print a detection message.
2163 	 */
2164 
2165 	return true;
2166 }
2167 #else
2168 int get_cpu_with_amu_feat(void)
2169 {
2170 	return nr_cpu_ids;
2171 }
2172 #endif
2173 
2174 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2175 {
2176 	return is_kernel_in_hyp_mode();
2177 }
2178 
2179 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2180 {
2181 	/*
2182 	 * Copy register values that aren't redirected by hardware.
2183 	 *
2184 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2185 	 * this value to tpidr_el2 before we patch the code. Once we've done
2186 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2187 	 * do anything here.
2188 	 */
2189 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2190 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2191 }
2192 
2193 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2194 				    int scope)
2195 {
2196 	if (kvm_get_mode() != KVM_MODE_NV)
2197 		return false;
2198 
2199 	if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2200 		pr_warn("unavailable: %s\n", cap->desc);
2201 		return false;
2202 	}
2203 
2204 	return true;
2205 }
2206 
2207 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2208 			  int __unused)
2209 {
2210 	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2211 }
2212 
2213 #ifdef CONFIG_ARM64_PAN
2214 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2215 {
2216 	/*
2217 	 * We modify PSTATE. This won't work from irq context as the PSTATE
2218 	 * is discarded once we return from the exception.
2219 	 */
2220 	WARN_ON_ONCE(in_interrupt());
2221 
2222 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2223 	set_pstate_pan(1);
2224 }
2225 #endif /* CONFIG_ARM64_PAN */
2226 
2227 #ifdef CONFIG_ARM64_RAS_EXTN
2228 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2229 {
2230 	/* Firmware may have left a deferred SError in this register. */
2231 	write_sysreg_s(0, SYS_DISR_EL1);
2232 }
2233 #endif /* CONFIG_ARM64_RAS_EXTN */
2234 
2235 #ifdef CONFIG_ARM64_PTR_AUTH
2236 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2237 {
2238 	int boot_val, sec_val;
2239 
2240 	/* We don't expect to be called with SCOPE_SYSTEM */
2241 	WARN_ON(scope == SCOPE_SYSTEM);
2242 	/*
2243 	 * The ptr-auth feature levels are not intercompatible with lower
2244 	 * levels. Hence we must match ptr-auth feature level of the secondary
2245 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2246 	 * from the sanitised register whereas direct register read is done for
2247 	 * the secondary CPUs.
2248 	 * The sanitised feature state is guaranteed to match that of the
2249 	 * boot CPU as a mismatched secondary CPU is parked before it gets
2250 	 * a chance to update the state, with the capability.
2251 	 */
2252 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2253 					       entry->field_pos, entry->sign);
2254 	if (scope & SCOPE_BOOT_CPU)
2255 		return boot_val >= entry->min_field_value;
2256 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2257 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2258 					      entry->field_pos, entry->sign);
2259 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2260 }
2261 
2262 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2263 				     int scope)
2264 {
2265 	bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2266 	bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2267 	bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2268 
2269 	return apa || apa3 || api;
2270 }
2271 
2272 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2273 			     int __unused)
2274 {
2275 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2276 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2277 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2278 
2279 	return gpa || gpa3 || gpi;
2280 }
2281 #endif /* CONFIG_ARM64_PTR_AUTH */
2282 
2283 #ifdef CONFIG_ARM64_E0PD
2284 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2285 {
2286 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2287 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2288 }
2289 #endif /* CONFIG_ARM64_E0PD */
2290 
2291 #ifdef CONFIG_ARM64_PSEUDO_NMI
2292 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2293 				   int scope)
2294 {
2295 	/*
2296 	 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2297 	 * feature, so will be detected earlier.
2298 	 */
2299 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2300 	if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2301 		return false;
2302 
2303 	return enable_pseudo_nmi;
2304 }
2305 
2306 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2307 				      int scope)
2308 {
2309 	/*
2310 	 * If we're not using priority masking then we won't be poking PMR_EL1,
2311 	 * and there's no need to relax synchronization of writes to it, and
2312 	 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2313 	 * that.
2314 	 *
2315 	 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2316 	 * feature, so will be detected earlier.
2317 	 */
2318 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2319 	if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2320 		return false;
2321 
2322 	/*
2323 	 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2324 	 * hint for interrupt distribution, a DSB is not necessary when
2325 	 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2326 	 *
2327 	 * Linux itself doesn't use 1:N distribution, so has no need to
2328 	 * set PMHE. The only reason to have it set is if EL3 requires it
2329 	 * (and we can't change it).
2330 	 */
2331 	return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2332 }
2333 #endif
2334 
2335 #ifdef CONFIG_ARM64_BTI
2336 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2337 {
2338 	/*
2339 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2340 	 * function entry points using BR is a requirement for
2341 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2342 	 * So, be strict and forbid other BRs using other registers to
2343 	 * jump onto a PACIxSP instruction:
2344 	 */
2345 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2346 	isb();
2347 }
2348 #endif /* CONFIG_ARM64_BTI */
2349 
2350 #ifdef CONFIG_ARM64_MTE
2351 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2352 {
2353 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2354 
2355 	mte_cpu_setup();
2356 
2357 	/*
2358 	 * Clear the tags in the zero page. This needs to be done via the
2359 	 * linear map which has the Tagged attribute.
2360 	 */
2361 	if (try_page_mte_tagging(ZERO_PAGE(0))) {
2362 		mte_clear_page_tags(lm_alias(empty_zero_page));
2363 		set_page_mte_tagged(ZERO_PAGE(0));
2364 	}
2365 
2366 	kasan_init_hw_tags_cpu();
2367 }
2368 #endif /* CONFIG_ARM64_MTE */
2369 
2370 static void user_feature_fixup(void)
2371 {
2372 	if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2373 		struct arm64_ftr_reg *regp;
2374 
2375 		regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2376 		if (regp)
2377 			regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2378 	}
2379 
2380 	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2381 		struct arm64_ftr_reg *regp;
2382 
2383 		regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2384 		if (regp)
2385 			regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2386 	}
2387 }
2388 
2389 static void elf_hwcap_fixup(void)
2390 {
2391 #ifdef CONFIG_COMPAT
2392 	if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2393 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2394 #endif /* CONFIG_COMPAT */
2395 }
2396 
2397 #ifdef CONFIG_KVM
2398 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2399 {
2400 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2401 }
2402 #endif /* CONFIG_KVM */
2403 
2404 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2405 {
2406 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2407 }
2408 
2409 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2410 {
2411 	set_pstate_dit(1);
2412 }
2413 
2414 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2415 {
2416 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2417 }
2418 
2419 #ifdef CONFIG_ARM64_POE
2420 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2421 {
2422 	sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2423 	sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2424 }
2425 #endif
2426 
2427 #ifdef CONFIG_ARM64_GCS
2428 static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2429 {
2430 	/* GCSPR_EL0 is always readable */
2431 	write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2432 }
2433 #endif
2434 
2435 /* Internal helper functions to match cpu capability type */
2436 static bool
2437 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2438 {
2439 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2440 }
2441 
2442 static bool
2443 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2444 {
2445 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2446 }
2447 
2448 static bool
2449 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2450 {
2451 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2452 }
2453 
2454 static bool
2455 test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2456 {
2457 	if (!has_cpuid_feature(entry, scope))
2458 		return false;
2459 
2460 	/* Check firmware actually enabled MPAM on this cpu. */
2461 	return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2462 }
2463 
2464 static void
2465 cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2466 {
2467 	/*
2468 	 * Access by the kernel (at EL1) should use the reserved PARTID
2469 	 * which is configured unrestricted. This avoids priority-inversion
2470 	 * where latency sensitive tasks have to wait for a task that has
2471 	 * been throttled to release the lock.
2472 	 */
2473 	write_sysreg_s(0, SYS_MPAM1_EL1);
2474 }
2475 
2476 static bool
2477 test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2478 {
2479 	u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2480 
2481 	return idr & MPAMIDR_EL1_HAS_HCR;
2482 }
2483 
2484 static const struct arm64_cpu_capabilities arm64_features[] = {
2485 	{
2486 		.capability = ARM64_ALWAYS_BOOT,
2487 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2488 		.matches = has_always,
2489 	},
2490 	{
2491 		.capability = ARM64_ALWAYS_SYSTEM,
2492 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2493 		.matches = has_always,
2494 	},
2495 	{
2496 		.desc = "GIC system register CPU interface",
2497 		.capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2498 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2499 		.matches = has_useable_gicv3_cpuif,
2500 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2501 	},
2502 	{
2503 		.desc = "Enhanced Counter Virtualization",
2504 		.capability = ARM64_HAS_ECV,
2505 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2506 		.matches = has_cpuid_feature,
2507 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2508 	},
2509 	{
2510 		.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2511 		.capability = ARM64_HAS_ECV_CNTPOFF,
2512 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2513 		.matches = has_cpuid_feature,
2514 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2515 	},
2516 #ifdef CONFIG_ARM64_PAN
2517 	{
2518 		.desc = "Privileged Access Never",
2519 		.capability = ARM64_HAS_PAN,
2520 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2521 		.matches = has_cpuid_feature,
2522 		.cpu_enable = cpu_enable_pan,
2523 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2524 	},
2525 #endif /* CONFIG_ARM64_PAN */
2526 #ifdef CONFIG_ARM64_EPAN
2527 	{
2528 		.desc = "Enhanced Privileged Access Never",
2529 		.capability = ARM64_HAS_EPAN,
2530 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2531 		.matches = has_cpuid_feature,
2532 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2533 	},
2534 #endif /* CONFIG_ARM64_EPAN */
2535 #ifdef CONFIG_ARM64_LSE_ATOMICS
2536 	{
2537 		.desc = "LSE atomic instructions",
2538 		.capability = ARM64_HAS_LSE_ATOMICS,
2539 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2540 		.matches = has_cpuid_feature,
2541 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2542 	},
2543 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2544 	{
2545 		.desc = "Virtualization Host Extensions",
2546 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2547 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2548 		.matches = runs_at_el2,
2549 		.cpu_enable = cpu_copy_el2regs,
2550 	},
2551 	{
2552 		.desc = "Nested Virtualization Support",
2553 		.capability = ARM64_HAS_NESTED_VIRT,
2554 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2555 		.matches = has_nested_virt_support,
2556 		.match_list = (const struct arm64_cpu_capabilities []){
2557 			{
2558 				.matches = has_cpuid_feature,
2559 				ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2560 			},
2561 			{
2562 				.matches = has_cpuid_feature,
2563 				ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2564 			},
2565 			{ /* Sentinel */ }
2566 		},
2567 	},
2568 	{
2569 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2570 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2571 		.matches = has_32bit_el0,
2572 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2573 	},
2574 #ifdef CONFIG_KVM
2575 	{
2576 		.desc = "32-bit EL1 Support",
2577 		.capability = ARM64_HAS_32BIT_EL1,
2578 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2579 		.matches = has_cpuid_feature,
2580 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2581 	},
2582 	{
2583 		.desc = "Protected KVM",
2584 		.capability = ARM64_KVM_PROTECTED_MODE,
2585 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2586 		.matches = is_kvm_protected_mode,
2587 	},
2588 	{
2589 		.desc = "HCRX_EL2 register",
2590 		.capability = ARM64_HAS_HCX,
2591 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2592 		.matches = has_cpuid_feature,
2593 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2594 	},
2595 #endif
2596 	{
2597 		.desc = "Kernel page table isolation (KPTI)",
2598 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2599 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2600 		.cpu_enable = cpu_enable_kpti,
2601 		.matches = unmap_kernel_at_el0,
2602 		/*
2603 		 * The ID feature fields below are used to indicate that
2604 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2605 		 * more details.
2606 		 */
2607 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2608 	},
2609 	{
2610 		.capability = ARM64_HAS_FPSIMD,
2611 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2612 		.matches = has_cpuid_feature,
2613 		.cpu_enable = cpu_enable_fpsimd,
2614 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2615 	},
2616 #ifdef CONFIG_ARM64_PMEM
2617 	{
2618 		.desc = "Data cache clean to Point of Persistence",
2619 		.capability = ARM64_HAS_DCPOP,
2620 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2621 		.matches = has_cpuid_feature,
2622 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2623 	},
2624 	{
2625 		.desc = "Data cache clean to Point of Deep Persistence",
2626 		.capability = ARM64_HAS_DCPODP,
2627 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2628 		.matches = has_cpuid_feature,
2629 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2630 	},
2631 #endif
2632 #ifdef CONFIG_ARM64_SVE
2633 	{
2634 		.desc = "Scalable Vector Extension",
2635 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2636 		.capability = ARM64_SVE,
2637 		.cpu_enable = cpu_enable_sve,
2638 		.matches = has_cpuid_feature,
2639 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2640 	},
2641 #endif /* CONFIG_ARM64_SVE */
2642 #ifdef CONFIG_ARM64_RAS_EXTN
2643 	{
2644 		.desc = "RAS Extension Support",
2645 		.capability = ARM64_HAS_RAS_EXTN,
2646 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2647 		.matches = has_cpuid_feature,
2648 		.cpu_enable = cpu_clear_disr,
2649 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2650 	},
2651 #endif /* CONFIG_ARM64_RAS_EXTN */
2652 #ifdef CONFIG_ARM64_AMU_EXTN
2653 	{
2654 		.desc = "Activity Monitors Unit (AMU)",
2655 		.capability = ARM64_HAS_AMU_EXTN,
2656 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2657 		.matches = has_amu,
2658 		.cpu_enable = cpu_amu_enable,
2659 		.cpus = &amu_cpus,
2660 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2661 	},
2662 #endif /* CONFIG_ARM64_AMU_EXTN */
2663 	{
2664 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2665 		.capability = ARM64_HAS_CACHE_IDC,
2666 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2667 		.matches = has_cache_idc,
2668 		.cpu_enable = cpu_emulate_effective_ctr,
2669 	},
2670 	{
2671 		.desc = "Instruction cache invalidation not required for I/D coherence",
2672 		.capability = ARM64_HAS_CACHE_DIC,
2673 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2674 		.matches = has_cache_dic,
2675 	},
2676 	{
2677 		.desc = "Stage-2 Force Write-Back",
2678 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2679 		.capability = ARM64_HAS_STAGE2_FWB,
2680 		.matches = has_cpuid_feature,
2681 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2682 	},
2683 	{
2684 		.desc = "ARMv8.4 Translation Table Level",
2685 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2686 		.capability = ARM64_HAS_ARMv8_4_TTL,
2687 		.matches = has_cpuid_feature,
2688 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2689 	},
2690 	{
2691 		.desc = "TLB range maintenance instructions",
2692 		.capability = ARM64_HAS_TLB_RANGE,
2693 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2694 		.matches = has_cpuid_feature,
2695 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2696 	},
2697 #ifdef CONFIG_ARM64_HW_AFDBM
2698 	{
2699 		.desc = "Hardware dirty bit management",
2700 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2701 		.capability = ARM64_HW_DBM,
2702 		.matches = has_hw_dbm,
2703 		.cpu_enable = cpu_enable_hw_dbm,
2704 		.cpus = &dbm_cpus,
2705 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2706 	},
2707 #endif
2708 #ifdef CONFIG_ARM64_HAFT
2709 	{
2710 		.desc = "Hardware managed Access Flag for Table Descriptors",
2711 		/*
2712 		 * Contrary to the page/block access flag, the table access flag
2713 		 * cannot be emulated in software (no access fault will occur).
2714 		 * Therefore this should be used only if it's supported system
2715 		 * wide.
2716 		 */
2717 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2718 		.capability = ARM64_HAFT,
2719 		.matches = has_cpuid_feature,
2720 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2721 	},
2722 #endif
2723 	{
2724 		.desc = "CRC32 instructions",
2725 		.capability = ARM64_HAS_CRC32,
2726 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2727 		.matches = has_cpuid_feature,
2728 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2729 	},
2730 	{
2731 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2732 		.capability = ARM64_SSBS,
2733 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2734 		.matches = has_cpuid_feature,
2735 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2736 	},
2737 #ifdef CONFIG_ARM64_CNP
2738 	{
2739 		.desc = "Common not Private translations",
2740 		.capability = ARM64_HAS_CNP,
2741 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2742 		.matches = has_useable_cnp,
2743 		.cpu_enable = cpu_enable_cnp,
2744 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2745 	},
2746 #endif
2747 	{
2748 		.desc = "Speculation barrier (SB)",
2749 		.capability = ARM64_HAS_SB,
2750 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2751 		.matches = has_cpuid_feature,
2752 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2753 	},
2754 #ifdef CONFIG_ARM64_PTR_AUTH
2755 	{
2756 		.desc = "Address authentication (architected QARMA5 algorithm)",
2757 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2758 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2759 		.matches = has_address_auth_cpucap,
2760 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2761 	},
2762 	{
2763 		.desc = "Address authentication (architected QARMA3 algorithm)",
2764 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2765 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2766 		.matches = has_address_auth_cpucap,
2767 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2768 	},
2769 	{
2770 		.desc = "Address authentication (IMP DEF algorithm)",
2771 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2772 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2773 		.matches = has_address_auth_cpucap,
2774 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2775 	},
2776 	{
2777 		.capability = ARM64_HAS_ADDRESS_AUTH,
2778 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2779 		.matches = has_address_auth_metacap,
2780 	},
2781 	{
2782 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2783 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2784 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2785 		.matches = has_cpuid_feature,
2786 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2787 	},
2788 	{
2789 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2790 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2791 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2792 		.matches = has_cpuid_feature,
2793 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2794 	},
2795 	{
2796 		.desc = "Generic authentication (IMP DEF algorithm)",
2797 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2798 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2799 		.matches = has_cpuid_feature,
2800 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2801 	},
2802 	{
2803 		.capability = ARM64_HAS_GENERIC_AUTH,
2804 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2805 		.matches = has_generic_auth,
2806 	},
2807 #endif /* CONFIG_ARM64_PTR_AUTH */
2808 #ifdef CONFIG_ARM64_PSEUDO_NMI
2809 	{
2810 		/*
2811 		 * Depends on having GICv3
2812 		 */
2813 		.desc = "IRQ priority masking",
2814 		.capability = ARM64_HAS_GIC_PRIO_MASKING,
2815 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2816 		.matches = can_use_gic_priorities,
2817 	},
2818 	{
2819 		/*
2820 		 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2821 		 */
2822 		.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2823 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2824 		.matches = has_gic_prio_relaxed_sync,
2825 	},
2826 #endif
2827 #ifdef CONFIG_ARM64_E0PD
2828 	{
2829 		.desc = "E0PD",
2830 		.capability = ARM64_HAS_E0PD,
2831 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2832 		.cpu_enable = cpu_enable_e0pd,
2833 		.matches = has_cpuid_feature,
2834 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2835 	},
2836 #endif
2837 	{
2838 		.desc = "Random Number Generator",
2839 		.capability = ARM64_HAS_RNG,
2840 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2841 		.matches = has_cpuid_feature,
2842 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2843 	},
2844 #ifdef CONFIG_ARM64_BTI
2845 	{
2846 		.desc = "Branch Target Identification",
2847 		.capability = ARM64_BTI,
2848 #ifdef CONFIG_ARM64_BTI_KERNEL
2849 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2850 #else
2851 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2852 #endif
2853 		.matches = has_cpuid_feature,
2854 		.cpu_enable = bti_enable,
2855 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2856 	},
2857 #endif
2858 #ifdef CONFIG_ARM64_MTE
2859 	{
2860 		.desc = "Memory Tagging Extension",
2861 		.capability = ARM64_MTE,
2862 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2863 		.matches = has_cpuid_feature,
2864 		.cpu_enable = cpu_enable_mte,
2865 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2866 	},
2867 	{
2868 		.desc = "Asymmetric MTE Tag Check Fault",
2869 		.capability = ARM64_MTE_ASYMM,
2870 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2871 		.matches = has_cpuid_feature,
2872 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2873 	},
2874 #endif /* CONFIG_ARM64_MTE */
2875 	{
2876 		.desc = "RCpc load-acquire (LDAPR)",
2877 		.capability = ARM64_HAS_LDAPR,
2878 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2879 		.matches = has_cpuid_feature,
2880 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2881 	},
2882 	{
2883 		.desc = "Fine Grained Traps",
2884 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2885 		.capability = ARM64_HAS_FGT,
2886 		.matches = has_cpuid_feature,
2887 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2888 	},
2889 	{
2890 		.desc = "Fine Grained Traps 2",
2891 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2892 		.capability = ARM64_HAS_FGT2,
2893 		.matches = has_cpuid_feature,
2894 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2895 	},
2896 #ifdef CONFIG_ARM64_SME
2897 	{
2898 		.desc = "Scalable Matrix Extension",
2899 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2900 		.capability = ARM64_SME,
2901 		.matches = has_cpuid_feature,
2902 		.cpu_enable = cpu_enable_sme,
2903 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2904 	},
2905 	/* FA64 should be sorted after the base SME capability */
2906 	{
2907 		.desc = "FA64",
2908 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2909 		.capability = ARM64_SME_FA64,
2910 		.matches = has_cpuid_feature,
2911 		.cpu_enable = cpu_enable_fa64,
2912 		ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2913 	},
2914 	{
2915 		.desc = "SME2",
2916 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2917 		.capability = ARM64_SME2,
2918 		.matches = has_cpuid_feature,
2919 		.cpu_enable = cpu_enable_sme2,
2920 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2921 	},
2922 #endif /* CONFIG_ARM64_SME */
2923 	{
2924 		.desc = "WFx with timeout",
2925 		.capability = ARM64_HAS_WFXT,
2926 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2927 		.matches = has_cpuid_feature,
2928 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2929 	},
2930 	{
2931 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2932 		.capability = ARM64_HAS_TIDCP1,
2933 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2934 		.matches = has_cpuid_feature,
2935 		.cpu_enable = cpu_trap_el0_impdef,
2936 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2937 	},
2938 	{
2939 		.desc = "Data independent timing control (DIT)",
2940 		.capability = ARM64_HAS_DIT,
2941 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2942 		.matches = has_cpuid_feature,
2943 		.cpu_enable = cpu_enable_dit,
2944 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2945 	},
2946 	{
2947 		.desc = "Memory Copy and Memory Set instructions",
2948 		.capability = ARM64_HAS_MOPS,
2949 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2950 		.matches = has_cpuid_feature,
2951 		.cpu_enable = cpu_enable_mops,
2952 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2953 	},
2954 	{
2955 		.capability = ARM64_HAS_TCR2,
2956 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2957 		.matches = has_cpuid_feature,
2958 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2959 	},
2960 	{
2961 		.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2962 		.capability = ARM64_HAS_S1PIE,
2963 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2964 		.matches = has_cpuid_feature,
2965 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2966 	},
2967 	{
2968 		.desc = "VHE for hypervisor only",
2969 		.capability = ARM64_KVM_HVHE,
2970 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2971 		.matches = hvhe_possible,
2972 	},
2973 	{
2974 		.desc = "Enhanced Virtualization Traps",
2975 		.capability = ARM64_HAS_EVT,
2976 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2977 		.matches = has_cpuid_feature,
2978 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2979 	},
2980 	{
2981 		.desc = "52-bit Virtual Addressing for KVM (LPA2)",
2982 		.capability = ARM64_HAS_LPA2,
2983 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2984 		.matches = has_lpa2,
2985 	},
2986 	{
2987 		.desc = "FPMR",
2988 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2989 		.capability = ARM64_HAS_FPMR,
2990 		.matches = has_cpuid_feature,
2991 		.cpu_enable = cpu_enable_fpmr,
2992 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2993 	},
2994 #ifdef CONFIG_ARM64_VA_BITS_52
2995 	{
2996 		.capability = ARM64_HAS_VA52,
2997 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2998 		.matches = has_cpuid_feature,
2999 #ifdef CONFIG_ARM64_64K_PAGES
3000 		.desc = "52-bit Virtual Addressing (LVA)",
3001 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3002 #else
3003 		.desc = "52-bit Virtual Addressing (LPA2)",
3004 #ifdef CONFIG_ARM64_4K_PAGES
3005 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3006 #else
3007 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3008 #endif
3009 #endif
3010 	},
3011 #endif
3012 	{
3013 		.desc = "Memory Partitioning And Monitoring",
3014 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3015 		.capability = ARM64_MPAM,
3016 		.matches = test_has_mpam,
3017 		.cpu_enable = cpu_enable_mpam,
3018 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3019 	},
3020 	{
3021 		.desc = "Memory Partitioning And Monitoring Virtualisation",
3022 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3023 		.capability = ARM64_MPAM_HCR,
3024 		.matches = test_has_mpam_hcr,
3025 	},
3026 	{
3027 		.desc = "NV1",
3028 		.capability = ARM64_HAS_HCR_NV1,
3029 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3030 		.matches = has_nv1,
3031 		ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3032 	},
3033 #ifdef CONFIG_ARM64_POE
3034 	{
3035 		.desc = "Stage-1 Permission Overlay Extension (S1POE)",
3036 		.capability = ARM64_HAS_S1POE,
3037 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3038 		.matches = has_cpuid_feature,
3039 		.cpu_enable = cpu_enable_poe,
3040 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3041 	},
3042 #endif
3043 #ifdef CONFIG_ARM64_GCS
3044 	{
3045 		.desc = "Guarded Control Stack (GCS)",
3046 		.capability = ARM64_HAS_GCS,
3047 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3048 		.cpu_enable = cpu_enable_gcs,
3049 		.matches = has_cpuid_feature,
3050 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3051 	},
3052 #endif
3053 #ifdef CONFIG_HW_PERF_EVENTS
3054 	{
3055 		.desc = "PMUv3",
3056 		.capability = ARM64_HAS_PMUV3,
3057 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3058 		.matches = has_pmuv3,
3059 	},
3060 #endif
3061 	{},
3062 };
3063 
3064 #define HWCAP_CPUID_MATCH(reg, field, min_value)			\
3065 		.matches = has_user_cpuid_feature,			\
3066 		ARM64_CPUID_FIELDS(reg, field, min_value)
3067 
3068 #define __HWCAP_CAP(name, cap_type, cap)					\
3069 		.desc = name,							\
3070 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
3071 		.hwcap_type = cap_type,						\
3072 		.hwcap = cap,							\
3073 
3074 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)		\
3075 	{									\
3076 		__HWCAP_CAP(#cap, cap_type, cap)				\
3077 		HWCAP_CPUID_MATCH(reg, field, min_value) 		\
3078 	}
3079 
3080 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
3081 	{									\
3082 		__HWCAP_CAP(#cap, cap_type, cap)				\
3083 		.matches = cpucap_multi_entry_cap_matches,			\
3084 		.match_list = list,						\
3085 	}
3086 
3087 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
3088 	{									\
3089 		__HWCAP_CAP(#cap, cap_type, cap)				\
3090 		.matches = match,						\
3091 	}
3092 
3093 #define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap)		\
3094 	{									\
3095 		__HWCAP_CAP(#cap, cap_type, cap)				\
3096 		HWCAP_CPUID_MATCH(reg, field, min_value) 			\
3097 		.matches = match,						\
3098 	}
3099 
3100 #ifdef CONFIG_ARM64_PTR_AUTH
3101 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3102 	{
3103 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3104 	},
3105 	{
3106 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3107 	},
3108 	{
3109 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3110 	},
3111 	{},
3112 };
3113 
3114 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3115 	{
3116 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3117 	},
3118 	{
3119 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3120 	},
3121 	{
3122 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3123 	},
3124 	{},
3125 };
3126 #endif
3127 
3128 #ifdef CONFIG_ARM64_SVE
3129 static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3130 {
3131 	return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3132 }
3133 #endif
3134 
3135 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3136 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3137 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3138 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3139 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3140 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3141 	HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3142 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3143 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3144 	HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3145 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3146 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3147 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3148 	HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3149 	HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3150 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3151 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3152 	HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3153 	HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3154 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3155 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3156 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3157 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3158 	HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3159 	HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3160 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3161 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3162 	HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3163 	HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3164 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3165 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3166 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3167 	HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3168 	HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3169 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3170 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3171 	HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3172 	HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3173 	HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3174 	HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3175 	HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3176 #ifdef CONFIG_ARM64_SVE
3177 	HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3178 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3179 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3180 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3181 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3182 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3183 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3184 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3185 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3186 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3187 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3188 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3189 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3190 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3191 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3192 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3193 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3194 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3195 	HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3196 #endif
3197 #ifdef CONFIG_ARM64_GCS
3198 	HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3199 #endif
3200 	HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3201 #ifdef CONFIG_ARM64_BTI
3202 	HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3203 #endif
3204 #ifdef CONFIG_ARM64_PTR_AUTH
3205 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3206 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3207 #endif
3208 #ifdef CONFIG_ARM64_MTE
3209 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3210 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3211 #endif /* CONFIG_ARM64_MTE */
3212 	HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3213 	HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3214 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3215 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3216 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3217 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3218 	HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3219 	HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3220 	HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3221 #ifdef CONFIG_ARM64_SME
3222 	HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3223 	HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3224 	HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3225 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3226 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3227 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3228 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3229 	HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3230 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3231 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3232 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3233 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3234 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3235 	HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3236 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3237 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3238 	HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3239 	HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3240 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3241 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3242 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3243 	HWCAP_CAP(ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3244 	HWCAP_CAP(ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3245 	HWCAP_CAP(ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3246 	HWCAP_CAP(ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3247 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3248 #endif /* CONFIG_ARM64_SME */
3249 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3250 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3251 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3252 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3253 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3254 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3255 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3256 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3257 #ifdef CONFIG_ARM64_POE
3258 	HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3259 #endif
3260 	{},
3261 };
3262 
3263 #ifdef CONFIG_COMPAT
3264 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3265 {
3266 	/*
3267 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3268 	 * in line with that of arm32 as in vfp_init(). We make sure that the
3269 	 * check is future proof, by making sure value is non-zero.
3270 	 */
3271 	u32 mvfr1;
3272 
3273 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3274 	if (scope == SCOPE_SYSTEM)
3275 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3276 	else
3277 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3278 
3279 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3280 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3281 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3282 }
3283 #endif
3284 
3285 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3286 #ifdef CONFIG_COMPAT
3287 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3288 	HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3289 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3290 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3291 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3292 	HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3293 	HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3294 	HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3295 	HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3296 	HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3297 	HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3298 	HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3299 	HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3300 	HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3301 	HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3302 	HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3303 	HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3304 	HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3305 #endif
3306 	{},
3307 };
3308 
3309 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3310 {
3311 	switch (cap->hwcap_type) {
3312 	case CAP_HWCAP:
3313 		cpu_set_feature(cap->hwcap);
3314 		break;
3315 #ifdef CONFIG_COMPAT
3316 	case CAP_COMPAT_HWCAP:
3317 		compat_elf_hwcap |= (u32)cap->hwcap;
3318 		break;
3319 	case CAP_COMPAT_HWCAP2:
3320 		compat_elf_hwcap2 |= (u32)cap->hwcap;
3321 		break;
3322 #endif
3323 	default:
3324 		WARN_ON(1);
3325 		break;
3326 	}
3327 }
3328 
3329 /* Check if we have a particular HWCAP enabled */
3330 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3331 {
3332 	bool rc;
3333 
3334 	switch (cap->hwcap_type) {
3335 	case CAP_HWCAP:
3336 		rc = cpu_have_feature(cap->hwcap);
3337 		break;
3338 #ifdef CONFIG_COMPAT
3339 	case CAP_COMPAT_HWCAP:
3340 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3341 		break;
3342 	case CAP_COMPAT_HWCAP2:
3343 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3344 		break;
3345 #endif
3346 	default:
3347 		WARN_ON(1);
3348 		rc = false;
3349 	}
3350 
3351 	return rc;
3352 }
3353 
3354 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3355 {
3356 	/* We support emulation of accesses to CPU ID feature registers */
3357 	cpu_set_named_feature(CPUID);
3358 	for (; hwcaps->matches; hwcaps++)
3359 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3360 			cap_set_elf_hwcap(hwcaps);
3361 }
3362 
3363 static void update_cpu_capabilities(u16 scope_mask)
3364 {
3365 	int i;
3366 	const struct arm64_cpu_capabilities *caps;
3367 
3368 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3369 	for (i = 0; i < ARM64_NCAPS; i++) {
3370 		caps = cpucap_ptrs[i];
3371 		if (!caps || !(caps->type & scope_mask) ||
3372 		    cpus_have_cap(caps->capability) ||
3373 		    !caps->matches(caps, cpucap_default_scope(caps)))
3374 			continue;
3375 
3376 		if (caps->desc && !caps->cpus)
3377 			pr_info("detected: %s\n", caps->desc);
3378 
3379 		__set_bit(caps->capability, system_cpucaps);
3380 
3381 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3382 			set_bit(caps->capability, boot_cpucaps);
3383 	}
3384 }
3385 
3386 /*
3387  * Enable all the available capabilities on this CPU. The capabilities
3388  * with BOOT_CPU scope are handled separately and hence skipped here.
3389  */
3390 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3391 {
3392 	int i;
3393 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3394 
3395 	for_each_available_cap(i) {
3396 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3397 
3398 		if (WARN_ON(!cap))
3399 			continue;
3400 
3401 		if (!(cap->type & non_boot_scope))
3402 			continue;
3403 
3404 		if (cap->cpu_enable)
3405 			cap->cpu_enable(cap);
3406 	}
3407 	return 0;
3408 }
3409 
3410 /*
3411  * Run through the enabled capabilities and enable() it on all active
3412  * CPUs
3413  */
3414 static void __init enable_cpu_capabilities(u16 scope_mask)
3415 {
3416 	int i;
3417 	const struct arm64_cpu_capabilities *caps;
3418 	bool boot_scope;
3419 
3420 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3421 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3422 
3423 	for (i = 0; i < ARM64_NCAPS; i++) {
3424 		caps = cpucap_ptrs[i];
3425 		if (!caps || !(caps->type & scope_mask) ||
3426 		    !cpus_have_cap(caps->capability))
3427 			continue;
3428 
3429 		if (boot_scope && caps->cpu_enable)
3430 			/*
3431 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3432 			 * before any secondary CPU boots. Thus, each secondary
3433 			 * will enable the capability as appropriate via
3434 			 * check_local_cpu_capabilities(). The only exception is
3435 			 * the boot CPU, for which the capability must be
3436 			 * enabled here. This approach avoids costly
3437 			 * stop_machine() calls for this case.
3438 			 */
3439 			caps->cpu_enable(caps);
3440 	}
3441 
3442 	/*
3443 	 * For all non-boot scope capabilities, use stop_machine()
3444 	 * as it schedules the work allowing us to modify PSTATE,
3445 	 * instead of on_each_cpu() which uses an IPI, giving us a
3446 	 * PSTATE that disappears when we return.
3447 	 */
3448 	if (!boot_scope)
3449 		stop_machine(cpu_enable_non_boot_scope_capabilities,
3450 			     NULL, cpu_online_mask);
3451 }
3452 
3453 /*
3454  * Run through the list of capabilities to check for conflicts.
3455  * If the system has already detected a capability, take necessary
3456  * action on this CPU.
3457  */
3458 static void verify_local_cpu_caps(u16 scope_mask)
3459 {
3460 	int i;
3461 	bool cpu_has_cap, system_has_cap;
3462 	const struct arm64_cpu_capabilities *caps;
3463 
3464 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3465 
3466 	for (i = 0; i < ARM64_NCAPS; i++) {
3467 		caps = cpucap_ptrs[i];
3468 		if (!caps || !(caps->type & scope_mask))
3469 			continue;
3470 
3471 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3472 		system_has_cap = cpus_have_cap(caps->capability);
3473 
3474 		if (system_has_cap) {
3475 			/*
3476 			 * Check if the new CPU misses an advertised feature,
3477 			 * which is not safe to miss.
3478 			 */
3479 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3480 				break;
3481 			/*
3482 			 * We have to issue cpu_enable() irrespective of
3483 			 * whether the CPU has it or not, as it is enabeld
3484 			 * system wide. It is upto the call back to take
3485 			 * appropriate action on this CPU.
3486 			 */
3487 			if (caps->cpu_enable)
3488 				caps->cpu_enable(caps);
3489 		} else {
3490 			/*
3491 			 * Check if the CPU has this capability if it isn't
3492 			 * safe to have when the system doesn't.
3493 			 */
3494 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3495 				break;
3496 		}
3497 	}
3498 
3499 	if (i < ARM64_NCAPS) {
3500 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3501 			smp_processor_id(), caps->capability,
3502 			caps->desc, system_has_cap, cpu_has_cap);
3503 
3504 		if (cpucap_panic_on_conflict(caps))
3505 			cpu_panic_kernel();
3506 		else
3507 			cpu_die_early();
3508 	}
3509 }
3510 
3511 /*
3512  * Check for CPU features that are used in early boot
3513  * based on the Boot CPU value.
3514  */
3515 static void check_early_cpu_features(void)
3516 {
3517 	verify_cpu_asid_bits();
3518 
3519 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3520 }
3521 
3522 static void
3523 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3524 {
3525 
3526 	for (; caps->matches; caps++)
3527 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3528 			pr_crit("CPU%d: missing HWCAP: %s\n",
3529 					smp_processor_id(), caps->desc);
3530 			cpu_die_early();
3531 		}
3532 }
3533 
3534 static void verify_local_elf_hwcaps(void)
3535 {
3536 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3537 
3538 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3539 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3540 }
3541 
3542 static void verify_sve_features(void)
3543 {
3544 	unsigned long cpacr = cpacr_save_enable_kernel_sve();
3545 
3546 	if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3547 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3548 			smp_processor_id());
3549 		cpu_die_early();
3550 	}
3551 
3552 	cpacr_restore(cpacr);
3553 }
3554 
3555 static void verify_sme_features(void)
3556 {
3557 	unsigned long cpacr = cpacr_save_enable_kernel_sme();
3558 
3559 	if (vec_verify_vq_map(ARM64_VEC_SME)) {
3560 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3561 			smp_processor_id());
3562 		cpu_die_early();
3563 	}
3564 
3565 	cpacr_restore(cpacr);
3566 }
3567 
3568 static void verify_hyp_capabilities(void)
3569 {
3570 	u64 safe_mmfr1, mmfr0, mmfr1;
3571 	int parange, ipa_max;
3572 	unsigned int safe_vmid_bits, vmid_bits;
3573 
3574 	if (!IS_ENABLED(CONFIG_KVM))
3575 		return;
3576 
3577 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3578 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3579 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3580 
3581 	/* Verify VMID bits */
3582 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3583 	vmid_bits = get_vmid_bits(mmfr1);
3584 	if (vmid_bits < safe_vmid_bits) {
3585 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3586 		cpu_die_early();
3587 	}
3588 
3589 	/* Verify IPA range */
3590 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3591 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3592 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3593 	if (ipa_max < get_kvm_ipa_limit()) {
3594 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3595 		cpu_die_early();
3596 	}
3597 }
3598 
3599 static void verify_mpam_capabilities(void)
3600 {
3601 	u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3602 	u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3603 	u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3604 
3605 	if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3606 	    FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3607 		pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3608 		cpu_die_early();
3609 	}
3610 
3611 	cpu_idr = read_cpuid(MPAMIDR_EL1);
3612 	sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3613 	if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3614 	    FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3615 		pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3616 		cpu_die_early();
3617 	}
3618 
3619 	cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3620 	cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3621 	sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3622 	sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3623 	if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3624 		pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3625 		cpu_die_early();
3626 	}
3627 }
3628 
3629 /*
3630  * Run through the enabled system capabilities and enable() it on this CPU.
3631  * The capabilities were decided based on the available CPUs at the boot time.
3632  * Any new CPU should match the system wide status of the capability. If the
3633  * new CPU doesn't have a capability which the system now has enabled, we
3634  * cannot do anything to fix it up and could cause unexpected failures. So
3635  * we park the CPU.
3636  */
3637 static void verify_local_cpu_capabilities(void)
3638 {
3639 	/*
3640 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3641 	 * check_early_cpu_features(), as they need to be verified
3642 	 * on all secondary CPUs.
3643 	 */
3644 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3645 	verify_local_elf_hwcaps();
3646 
3647 	if (system_supports_sve())
3648 		verify_sve_features();
3649 
3650 	if (system_supports_sme())
3651 		verify_sme_features();
3652 
3653 	if (is_hyp_mode_available())
3654 		verify_hyp_capabilities();
3655 
3656 	if (system_supports_mpam())
3657 		verify_mpam_capabilities();
3658 }
3659 
3660 void check_local_cpu_capabilities(void)
3661 {
3662 	/*
3663 	 * All secondary CPUs should conform to the early CPU features
3664 	 * in use by the kernel based on boot CPU.
3665 	 */
3666 	check_early_cpu_features();
3667 
3668 	/*
3669 	 * If we haven't finalised the system capabilities, this CPU gets
3670 	 * a chance to update the errata work arounds and local features.
3671 	 * Otherwise, this CPU should verify that it has all the system
3672 	 * advertised capabilities.
3673 	 */
3674 	if (!system_capabilities_finalized())
3675 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3676 	else
3677 		verify_local_cpu_capabilities();
3678 }
3679 
3680 bool this_cpu_has_cap(unsigned int n)
3681 {
3682 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3683 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3684 
3685 		if (cap)
3686 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3687 	}
3688 
3689 	return false;
3690 }
3691 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3692 
3693 /*
3694  * This helper function is used in a narrow window when,
3695  * - The system wide safe registers are set with all the SMP CPUs and,
3696  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3697  */
3698 static bool __maybe_unused __system_matches_cap(unsigned int n)
3699 {
3700 	if (n < ARM64_NCAPS) {
3701 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3702 
3703 		if (cap)
3704 			return cap->matches(cap, SCOPE_SYSTEM);
3705 	}
3706 	return false;
3707 }
3708 
3709 void cpu_set_feature(unsigned int num)
3710 {
3711 	set_bit(num, elf_hwcap);
3712 }
3713 
3714 bool cpu_have_feature(unsigned int num)
3715 {
3716 	return test_bit(num, elf_hwcap);
3717 }
3718 EXPORT_SYMBOL_GPL(cpu_have_feature);
3719 
3720 unsigned long cpu_get_elf_hwcap(void)
3721 {
3722 	/*
3723 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3724 	 * note that for userspace compatibility we guarantee that bits 62
3725 	 * and 63 will always be returned as 0.
3726 	 */
3727 	return elf_hwcap[0];
3728 }
3729 
3730 unsigned long cpu_get_elf_hwcap2(void)
3731 {
3732 	return elf_hwcap[1];
3733 }
3734 
3735 unsigned long cpu_get_elf_hwcap3(void)
3736 {
3737 	return elf_hwcap[2];
3738 }
3739 
3740 static void __init setup_boot_cpu_capabilities(void)
3741 {
3742 	kvm_arm_target_impl_cpu_init();
3743 	/*
3744 	 * The boot CPU's feature register values have been recorded. Detect
3745 	 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3746 	 * patch alternatives for the available boot cpucaps.
3747 	 */
3748 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3749 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3750 	apply_boot_alternatives();
3751 }
3752 
3753 void __init setup_boot_cpu_features(void)
3754 {
3755 	/*
3756 	 * Initialize the indirect array of CPU capabilities pointers before we
3757 	 * handle the boot CPU.
3758 	 */
3759 	init_cpucap_indirect_list();
3760 
3761 	/*
3762 	 * Detect broken pseudo-NMI. Must be called _before_ the call to
3763 	 * setup_boot_cpu_capabilities() since it interacts with
3764 	 * can_use_gic_priorities().
3765 	 */
3766 	detect_system_supports_pseudo_nmi();
3767 
3768 	setup_boot_cpu_capabilities();
3769 }
3770 
3771 static void __init setup_system_capabilities(void)
3772 {
3773 	/*
3774 	 * The system-wide safe feature register values have been finalized.
3775 	 * Detect, enable, and patch alternatives for the available system
3776 	 * cpucaps.
3777 	 */
3778 	update_cpu_capabilities(SCOPE_SYSTEM);
3779 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3780 	apply_alternatives_all();
3781 
3782 	/*
3783 	 * Log any cpucaps with a cpumask as these aren't logged by
3784 	 * update_cpu_capabilities().
3785 	 */
3786 	for (int i = 0; i < ARM64_NCAPS; i++) {
3787 		const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3788 
3789 		if (caps && caps->cpus && caps->desc &&
3790 			cpumask_any(caps->cpus) < nr_cpu_ids)
3791 			pr_info("detected: %s on CPU%*pbl\n",
3792 				caps->desc, cpumask_pr_args(caps->cpus));
3793 	}
3794 
3795 	/*
3796 	 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3797 	 */
3798 	if (system_uses_ttbr0_pan())
3799 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3800 }
3801 
3802 void __init setup_system_features(void)
3803 {
3804 	setup_system_capabilities();
3805 
3806 	kpti_install_ng_mappings();
3807 
3808 	sve_setup();
3809 	sme_setup();
3810 
3811 	/*
3812 	 * Check for sane CTR_EL0.CWG value.
3813 	 */
3814 	if (!cache_type_cwg())
3815 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3816 			ARCH_DMA_MINALIGN);
3817 }
3818 
3819 void __init setup_user_features(void)
3820 {
3821 	user_feature_fixup();
3822 
3823 	setup_elf_hwcaps(arm64_elf_hwcaps);
3824 
3825 	if (system_supports_32bit_el0()) {
3826 		setup_elf_hwcaps(compat_elf_hwcaps);
3827 		elf_hwcap_fixup();
3828 	}
3829 
3830 	minsigstksz_setup();
3831 }
3832 
3833 static int enable_mismatched_32bit_el0(unsigned int cpu)
3834 {
3835 	/*
3836 	 * The first 32-bit-capable CPU we detected and so can no longer
3837 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3838 	 * a 32-bit-capable CPU.
3839 	 */
3840 	static int lucky_winner = -1;
3841 
3842 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3843 	bool cpu_32bit = false;
3844 
3845 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
3846 		if (!housekeeping_cpu(cpu, HK_TYPE_TICK))
3847 			pr_info("Treating adaptive-ticks CPU %u as 64-bit only\n", cpu);
3848 		else
3849 			cpu_32bit = true;
3850 	}
3851 
3852 	if (cpu_32bit) {
3853 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3854 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3855 	}
3856 
3857 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3858 		return 0;
3859 
3860 	if (lucky_winner >= 0)
3861 		return 0;
3862 
3863 	/*
3864 	 * We've detected a mismatch. We need to keep one of our CPUs with
3865 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3866 	 * every CPU in the system for a 32-bit task.
3867 	 */
3868 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3869 							 cpu_active_mask);
3870 	get_cpu_device(lucky_winner)->offline_disabled = true;
3871 	setup_elf_hwcaps(compat_elf_hwcaps);
3872 	elf_hwcap_fixup();
3873 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3874 		cpu, lucky_winner);
3875 	return 0;
3876 }
3877 
3878 static int __init init_32bit_el0_mask(void)
3879 {
3880 	if (!allow_mismatched_32bit_el0)
3881 		return 0;
3882 
3883 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3884 		return -ENOMEM;
3885 
3886 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3887 				 "arm64/mismatched_32bit_el0:online",
3888 				 enable_mismatched_32bit_el0, NULL);
3889 }
3890 subsys_initcall_sync(init_32bit_el0_mask);
3891 
3892 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3893 {
3894 	cpu_enable_swapper_cnp();
3895 }
3896 
3897 /*
3898  * We emulate only the following system register space.
3899  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3900  * See Table C5-6 System instruction encodings for System register accesses,
3901  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3902  */
3903 static inline bool __attribute_const__ is_emulated(u32 id)
3904 {
3905 	return (sys_reg_Op0(id) == 0x3 &&
3906 		sys_reg_CRn(id) == 0x0 &&
3907 		sys_reg_Op1(id) == 0x0 &&
3908 		(sys_reg_CRm(id) == 0 ||
3909 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3910 }
3911 
3912 /*
3913  * With CRm == 0, reg should be one of :
3914  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3915  */
3916 static inline int emulate_id_reg(u32 id, u64 *valp)
3917 {
3918 	switch (id) {
3919 	case SYS_MIDR_EL1:
3920 		*valp = read_cpuid_id();
3921 		break;
3922 	case SYS_MPIDR_EL1:
3923 		*valp = SYS_MPIDR_SAFE_VAL;
3924 		break;
3925 	case SYS_REVIDR_EL1:
3926 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3927 		*valp = 0;
3928 		break;
3929 	default:
3930 		return -EINVAL;
3931 	}
3932 
3933 	return 0;
3934 }
3935 
3936 static int emulate_sys_reg(u32 id, u64 *valp)
3937 {
3938 	struct arm64_ftr_reg *regp;
3939 
3940 	if (!is_emulated(id))
3941 		return -EINVAL;
3942 
3943 	if (sys_reg_CRm(id) == 0)
3944 		return emulate_id_reg(id, valp);
3945 
3946 	regp = get_arm64_ftr_reg_nowarn(id);
3947 	if (regp)
3948 		*valp = arm64_ftr_reg_user_value(regp);
3949 	else
3950 		/*
3951 		 * The untracked registers are either IMPLEMENTATION DEFINED
3952 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3953 		 */
3954 		*valp = 0;
3955 	return 0;
3956 }
3957 
3958 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3959 {
3960 	int rc;
3961 	u64 val;
3962 
3963 	rc = emulate_sys_reg(sys_reg, &val);
3964 	if (!rc) {
3965 		pt_regs_write_reg(regs, rt, val);
3966 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3967 	}
3968 	return rc;
3969 }
3970 
3971 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3972 {
3973 	u32 sys_reg, rt;
3974 
3975 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3976 		return false;
3977 
3978 	/*
3979 	 * sys_reg values are defined as used in mrs/msr instruction.
3980 	 * shift the imm value to get the encoding.
3981 	 */
3982 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3983 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3984 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
3985 }
3986 
3987 enum mitigation_state arm64_get_meltdown_state(void)
3988 {
3989 	if (__meltdown_safe)
3990 		return SPECTRE_UNAFFECTED;
3991 
3992 	if (arm64_kernel_unmapped_at_el0())
3993 		return SPECTRE_MITIGATED;
3994 
3995 	return SPECTRE_VULNERABLE;
3996 }
3997 
3998 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3999 			  char *buf)
4000 {
4001 	switch (arm64_get_meltdown_state()) {
4002 	case SPECTRE_UNAFFECTED:
4003 		return sprintf(buf, "Not affected\n");
4004 
4005 	case SPECTRE_MITIGATED:
4006 		return sprintf(buf, "Mitigation: PTI\n");
4007 
4008 	default:
4009 		return sprintf(buf, "Vulnerable\n");
4010 	}
4011 }
4012