1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Contains CPU feature definitions 4 * 5 * Copyright (C) 2015 ARM Ltd. 6 */ 7 8 #define pr_fmt(fmt) "CPU features: " fmt 9 10 #include <linux/bsearch.h> 11 #include <linux/cpumask.h> 12 #include <linux/crash_dump.h> 13 #include <linux/sort.h> 14 #include <linux/stop_machine.h> 15 #include <linux/types.h> 16 #include <linux/mm.h> 17 #include <linux/cpu.h> 18 #include <asm/cpu.h> 19 #include <asm/cpufeature.h> 20 #include <asm/cpu_ops.h> 21 #include <asm/fpsimd.h> 22 #include <asm/mmu_context.h> 23 #include <asm/processor.h> 24 #include <asm/sysreg.h> 25 #include <asm/traps.h> 26 #include <asm/virt.h> 27 28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */ 29 static unsigned long elf_hwcap __read_mostly; 30 31 #ifdef CONFIG_COMPAT 32 #define COMPAT_ELF_HWCAP_DEFAULT \ 33 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ 34 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ 35 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\ 36 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\ 37 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\ 38 COMPAT_HWCAP_LPAE) 39 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; 40 unsigned int compat_elf_hwcap2 __read_mostly; 41 #endif 42 43 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); 44 EXPORT_SYMBOL(cpu_hwcaps); 45 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS]; 46 47 /* Need also bit for ARM64_CB_PATCH */ 48 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE); 49 50 /* 51 * Flag to indicate if we have computed the system wide 52 * capabilities based on the boot time active CPUs. This 53 * will be used to determine if a new booting CPU should 54 * go through the verification process to make sure that it 55 * supports the system capabilities, without using a hotplug 56 * notifier. 57 */ 58 static bool sys_caps_initialised; 59 60 static inline void set_sys_caps_initialised(void) 61 { 62 sys_caps_initialised = true; 63 } 64 65 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p) 66 { 67 /* file-wide pr_fmt adds "CPU features: " prefix */ 68 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps); 69 return 0; 70 } 71 72 static struct notifier_block cpu_hwcaps_notifier = { 73 .notifier_call = dump_cpu_hwcaps 74 }; 75 76 static int __init register_cpu_hwcaps_dumper(void) 77 { 78 atomic_notifier_chain_register(&panic_notifier_list, 79 &cpu_hwcaps_notifier); 80 return 0; 81 } 82 __initcall(register_cpu_hwcaps_dumper); 83 84 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS); 85 EXPORT_SYMBOL(cpu_hwcap_keys); 86 87 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 88 { \ 89 .sign = SIGNED, \ 90 .visible = VISIBLE, \ 91 .strict = STRICT, \ 92 .type = TYPE, \ 93 .shift = SHIFT, \ 94 .width = WIDTH, \ 95 .safe_val = SAFE_VAL, \ 96 } 97 98 /* Define a feature with unsigned values */ 99 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 100 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 101 102 /* Define a feature with a signed value */ 103 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 104 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 105 106 #define ARM64_FTR_END \ 107 { \ 108 .width = 0, \ 109 } 110 111 /* meta feature for alternatives */ 112 static bool __maybe_unused 113 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused); 114 115 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap); 116 117 /* 118 * NOTE: Any changes to the visibility of features should be kept in 119 * sync with the documentation of the CPU feature register ABI. 120 */ 121 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = { 122 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0), 123 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0), 124 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0), 125 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0), 126 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0), 127 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0), 128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0), 129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0), 130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0), 131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0), 132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0), 133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0), 134 ARM64_FTR_END, 135 }; 136 137 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = { 138 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0), 139 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0), 140 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 141 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0), 142 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 143 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0), 144 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0), 145 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0), 146 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0), 147 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 148 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0), 149 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 150 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0), 151 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0), 152 ARM64_FTR_END, 153 }; 154 155 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = { 156 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0), 157 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0), 158 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0), 159 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 160 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0), 161 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0), 162 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0), 163 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI), 164 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI), 165 /* Linux doesn't care about the EL3 */ 166 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0), 167 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0), 168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY), 169 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY), 170 ARM64_FTR_END, 171 }; 172 173 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = { 174 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI), 175 ARM64_FTR_END, 176 }; 177 178 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = { 179 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 180 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0), 181 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 182 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0), 183 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 184 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0), 185 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 186 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0), 187 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 188 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0), 189 ARM64_FTR_END, 190 }; 191 192 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { 193 /* 194 * We already refuse to boot CPUs that don't support our configured 195 * page size, so we can only detect mismatches for a page size other 196 * than the one we're currently using. Unfortunately, SoCs like this 197 * exist in the wild so, even though we don't like it, we'll have to go 198 * along with it and treat them as non-strict. 199 */ 200 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI), 201 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI), 202 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI), 203 204 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0), 205 /* Linux shouldn't care about secure memory */ 206 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0), 207 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0), 208 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0), 209 /* 210 * Differing PARange is fine as long as all peripherals and memory are mapped 211 * within the minimum PARange of all CPUs 212 */ 213 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0), 214 ARM64_FTR_END, 215 }; 216 217 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { 218 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0), 219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0), 220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0), 221 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0), 222 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0), 223 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0), 224 ARM64_FTR_END, 225 }; 226 227 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { 228 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0), 229 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0), 230 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0), 231 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0), 232 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0), 233 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0), 234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0), 235 ARM64_FTR_END, 236 }; 237 238 static const struct arm64_ftr_bits ftr_ctr[] = { 239 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */ 240 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1), 241 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1), 242 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0), 243 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0), 244 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1), 245 /* 246 * Linux can handle differing I-cache policies. Userspace JITs will 247 * make use of *minLine. 248 * If we have differing I-cache policies, report it as the weakest - VIPT. 249 */ 250 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */ 251 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0), 252 ARM64_FTR_END, 253 }; 254 255 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { 256 .name = "SYS_CTR_EL0", 257 .ftr_bits = ftr_ctr 258 }; 259 260 static const struct arm64_ftr_bits ftr_id_mmfr0[] = { 261 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */ 262 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */ 263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */ 264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */ 265 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */ 266 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */ 267 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */ 268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */ 269 ARM64_FTR_END, 270 }; 271 272 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = { 273 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0), 274 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0), 275 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0), 276 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0), 277 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0), 278 /* 279 * We can instantiate multiple PMU instances with different levels 280 * of support. 281 */ 282 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0), 283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0), 284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6), 285 ARM64_FTR_END, 286 }; 287 288 static const struct arm64_ftr_bits ftr_mvfr2[] = { 289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */ 290 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */ 291 ARM64_FTR_END, 292 }; 293 294 static const struct arm64_ftr_bits ftr_dczid[] = { 295 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */ 296 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */ 297 ARM64_FTR_END, 298 }; 299 300 301 static const struct arm64_ftr_bits ftr_id_isar5[] = { 302 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0), 303 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0), 304 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0), 305 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0), 306 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0), 307 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0), 308 ARM64_FTR_END, 309 }; 310 311 static const struct arm64_ftr_bits ftr_id_mmfr4[] = { 312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */ 313 ARM64_FTR_END, 314 }; 315 316 static const struct arm64_ftr_bits ftr_id_pfr0[] = { 317 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */ 318 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */ 319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */ 320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */ 321 ARM64_FTR_END, 322 }; 323 324 static const struct arm64_ftr_bits ftr_id_dfr0[] = { 325 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), 326 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */ 327 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), 328 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), 329 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), 330 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), 331 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), 332 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), 333 ARM64_FTR_END, 334 }; 335 336 static const struct arm64_ftr_bits ftr_zcr[] = { 337 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 338 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */ 339 ARM64_FTR_END, 340 }; 341 342 /* 343 * Common ftr bits for a 32bit register with all hidden, strict 344 * attributes, with 4bit feature fields and a default safe value of 345 * 0. Covers the following 32bit registers: 346 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1] 347 */ 348 static const struct arm64_ftr_bits ftr_generic_32bits[] = { 349 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), 350 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), 351 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), 352 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), 353 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), 354 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), 355 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), 356 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), 357 ARM64_FTR_END, 358 }; 359 360 /* Table for a single 32bit feature value */ 361 static const struct arm64_ftr_bits ftr_single32[] = { 362 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0), 363 ARM64_FTR_END, 364 }; 365 366 static const struct arm64_ftr_bits ftr_raz[] = { 367 ARM64_FTR_END, 368 }; 369 370 #define ARM64_FTR_REG(id, table) { \ 371 .sys_id = id, \ 372 .reg = &(struct arm64_ftr_reg){ \ 373 .name = #id, \ 374 .ftr_bits = &((table)[0]), \ 375 }} 376 377 static const struct __ftr_reg_entry { 378 u32 sys_id; 379 struct arm64_ftr_reg *reg; 380 } arm64_ftr_regs[] = { 381 382 /* Op1 = 0, CRn = 0, CRm = 1 */ 383 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), 384 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits), 385 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0), 386 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), 387 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), 388 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), 389 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), 390 391 /* Op1 = 0, CRn = 0, CRm = 2 */ 392 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits), 393 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), 394 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), 395 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), 396 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits), 397 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), 398 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), 399 400 /* Op1 = 0, CRn = 0, CRm = 3 */ 401 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits), 402 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits), 403 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), 404 405 /* Op1 = 0, CRn = 0, CRm = 4 */ 406 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0), 407 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1), 408 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0), 409 410 /* Op1 = 0, CRn = 0, CRm = 5 */ 411 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), 412 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz), 413 414 /* Op1 = 0, CRn = 0, CRm = 6 */ 415 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), 416 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1), 417 418 /* Op1 = 0, CRn = 0, CRm = 7 */ 419 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), 420 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1), 421 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), 422 423 /* Op1 = 0, CRn = 1, CRm = 2 */ 424 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr), 425 426 /* Op1 = 3, CRn = 0, CRm = 0 */ 427 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 }, 428 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), 429 430 /* Op1 = 3, CRn = 14, CRm = 0 */ 431 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32), 432 }; 433 434 static int search_cmp_ftr_reg(const void *id, const void *regp) 435 { 436 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id; 437 } 438 439 /* 440 * get_arm64_ftr_reg - Lookup a feature register entry using its 441 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the 442 * ascending order of sys_id , we use binary search to find a matching 443 * entry. 444 * 445 * returns - Upon success, matching ftr_reg entry for id. 446 * - NULL on failure. It is upto the caller to decide 447 * the impact of a failure. 448 */ 449 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) 450 { 451 const struct __ftr_reg_entry *ret; 452 453 ret = bsearch((const void *)(unsigned long)sys_id, 454 arm64_ftr_regs, 455 ARRAY_SIZE(arm64_ftr_regs), 456 sizeof(arm64_ftr_regs[0]), 457 search_cmp_ftr_reg); 458 if (ret) 459 return ret->reg; 460 return NULL; 461 } 462 463 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, 464 s64 ftr_val) 465 { 466 u64 mask = arm64_ftr_mask(ftrp); 467 468 reg &= ~mask; 469 reg |= (ftr_val << ftrp->shift) & mask; 470 return reg; 471 } 472 473 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, 474 s64 cur) 475 { 476 s64 ret = 0; 477 478 switch (ftrp->type) { 479 case FTR_EXACT: 480 ret = ftrp->safe_val; 481 break; 482 case FTR_LOWER_SAFE: 483 ret = new < cur ? new : cur; 484 break; 485 case FTR_HIGHER_OR_ZERO_SAFE: 486 if (!cur || !new) 487 break; 488 /* Fallthrough */ 489 case FTR_HIGHER_SAFE: 490 ret = new > cur ? new : cur; 491 break; 492 default: 493 BUG(); 494 } 495 496 return ret; 497 } 498 499 static void __init sort_ftr_regs(void) 500 { 501 int i; 502 503 /* Check that the array is sorted so that we can do the binary search */ 504 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++) 505 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id); 506 } 507 508 /* 509 * Initialise the CPU feature register from Boot CPU values. 510 * Also initiliases the strict_mask for the register. 511 * Any bits that are not covered by an arm64_ftr_bits entry are considered 512 * RES0 for the system-wide value, and must strictly match. 513 */ 514 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new) 515 { 516 u64 val = 0; 517 u64 strict_mask = ~0x0ULL; 518 u64 user_mask = 0; 519 u64 valid_mask = 0; 520 521 const struct arm64_ftr_bits *ftrp; 522 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); 523 524 BUG_ON(!reg); 525 526 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 527 u64 ftr_mask = arm64_ftr_mask(ftrp); 528 s64 ftr_new = arm64_ftr_value(ftrp, new); 529 530 val = arm64_ftr_set_value(ftrp, val, ftr_new); 531 532 valid_mask |= ftr_mask; 533 if (!ftrp->strict) 534 strict_mask &= ~ftr_mask; 535 if (ftrp->visible) 536 user_mask |= ftr_mask; 537 else 538 reg->user_val = arm64_ftr_set_value(ftrp, 539 reg->user_val, 540 ftrp->safe_val); 541 } 542 543 val &= valid_mask; 544 545 reg->sys_val = val; 546 reg->strict_mask = strict_mask; 547 reg->user_mask = user_mask; 548 } 549 550 extern const struct arm64_cpu_capabilities arm64_errata[]; 551 static const struct arm64_cpu_capabilities arm64_features[]; 552 553 static void __init 554 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps) 555 { 556 for (; caps->matches; caps++) { 557 if (WARN(caps->capability >= ARM64_NCAPS, 558 "Invalid capability %d\n", caps->capability)) 559 continue; 560 if (WARN(cpu_hwcaps_ptrs[caps->capability], 561 "Duplicate entry for capability %d\n", 562 caps->capability)) 563 continue; 564 cpu_hwcaps_ptrs[caps->capability] = caps; 565 } 566 } 567 568 static void __init init_cpu_hwcaps_indirect_list(void) 569 { 570 init_cpu_hwcaps_indirect_list_from_array(arm64_features); 571 init_cpu_hwcaps_indirect_list_from_array(arm64_errata); 572 } 573 574 static void __init setup_boot_cpu_capabilities(void); 575 576 void __init init_cpu_features(struct cpuinfo_arm64 *info) 577 { 578 /* Before we start using the tables, make sure it is sorted */ 579 sort_ftr_regs(); 580 581 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); 582 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); 583 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); 584 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); 585 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); 586 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); 587 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); 588 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); 589 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); 590 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); 591 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); 592 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); 593 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0); 594 595 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { 596 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); 597 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); 598 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); 599 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); 600 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); 601 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); 602 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); 603 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); 604 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); 605 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); 606 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); 607 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); 608 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); 609 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); 610 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); 611 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); 612 } 613 614 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { 615 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr); 616 sve_init_vq_map(); 617 } 618 619 /* 620 * Initialize the indirect array of CPU hwcaps capabilities pointers 621 * before we handle the boot CPU below. 622 */ 623 init_cpu_hwcaps_indirect_list(); 624 625 /* 626 * Detect and enable early CPU capabilities based on the boot CPU, 627 * after we have initialised the CPU feature infrastructure. 628 */ 629 setup_boot_cpu_capabilities(); 630 } 631 632 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) 633 { 634 const struct arm64_ftr_bits *ftrp; 635 636 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 637 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); 638 s64 ftr_new = arm64_ftr_value(ftrp, new); 639 640 if (ftr_cur == ftr_new) 641 continue; 642 /* Find a safe value */ 643 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); 644 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); 645 } 646 647 } 648 649 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) 650 { 651 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); 652 653 BUG_ON(!regp); 654 update_cpu_ftr_reg(regp, val); 655 if ((boot & regp->strict_mask) == (val & regp->strict_mask)) 656 return 0; 657 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", 658 regp->name, boot, cpu, val); 659 return 1; 660 } 661 662 /* 663 * Update system wide CPU feature registers with the values from a 664 * non-boot CPU. Also performs SANITY checks to make sure that there 665 * aren't any insane variations from that of the boot CPU. 666 */ 667 void update_cpu_features(int cpu, 668 struct cpuinfo_arm64 *info, 669 struct cpuinfo_arm64 *boot) 670 { 671 int taint = 0; 672 673 /* 674 * The kernel can handle differing I-cache policies, but otherwise 675 * caches should look identical. Userspace JITs will make use of 676 * *minLine. 677 */ 678 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, 679 info->reg_ctr, boot->reg_ctr); 680 681 /* 682 * Userspace may perform DC ZVA instructions. Mismatched block sizes 683 * could result in too much or too little memory being zeroed if a 684 * process is preempted and migrated between CPUs. 685 */ 686 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, 687 info->reg_dczid, boot->reg_dczid); 688 689 /* If different, timekeeping will be broken (especially with KVM) */ 690 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, 691 info->reg_cntfrq, boot->reg_cntfrq); 692 693 /* 694 * The kernel uses self-hosted debug features and expects CPUs to 695 * support identical debug features. We presently need CTX_CMPs, WRPs, 696 * and BRPs to be identical. 697 * ID_AA64DFR1 is currently RES0. 698 */ 699 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, 700 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); 701 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, 702 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); 703 /* 704 * Even in big.LITTLE, processors should be identical instruction-set 705 * wise. 706 */ 707 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, 708 info->reg_id_aa64isar0, boot->reg_id_aa64isar0); 709 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, 710 info->reg_id_aa64isar1, boot->reg_id_aa64isar1); 711 712 /* 713 * Differing PARange support is fine as long as all peripherals and 714 * memory are mapped within the minimum PARange of all CPUs. 715 * Linux should not care about secure memory. 716 */ 717 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, 718 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); 719 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, 720 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); 721 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, 722 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); 723 724 /* 725 * EL3 is not our concern. 726 */ 727 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, 728 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); 729 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, 730 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); 731 732 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu, 733 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0); 734 735 /* 736 * If we have AArch32, we care about 32-bit features for compat. 737 * If the system doesn't support AArch32, don't update them. 738 */ 739 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) && 740 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { 741 742 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, 743 info->reg_id_dfr0, boot->reg_id_dfr0); 744 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, 745 info->reg_id_isar0, boot->reg_id_isar0); 746 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, 747 info->reg_id_isar1, boot->reg_id_isar1); 748 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, 749 info->reg_id_isar2, boot->reg_id_isar2); 750 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, 751 info->reg_id_isar3, boot->reg_id_isar3); 752 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, 753 info->reg_id_isar4, boot->reg_id_isar4); 754 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, 755 info->reg_id_isar5, boot->reg_id_isar5); 756 757 /* 758 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and 759 * ACTLR formats could differ across CPUs and therefore would have to 760 * be trapped for virtualization anyway. 761 */ 762 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, 763 info->reg_id_mmfr0, boot->reg_id_mmfr0); 764 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, 765 info->reg_id_mmfr1, boot->reg_id_mmfr1); 766 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, 767 info->reg_id_mmfr2, boot->reg_id_mmfr2); 768 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, 769 info->reg_id_mmfr3, boot->reg_id_mmfr3); 770 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, 771 info->reg_id_pfr0, boot->reg_id_pfr0); 772 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, 773 info->reg_id_pfr1, boot->reg_id_pfr1); 774 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, 775 info->reg_mvfr0, boot->reg_mvfr0); 776 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, 777 info->reg_mvfr1, boot->reg_mvfr1); 778 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, 779 info->reg_mvfr2, boot->reg_mvfr2); 780 } 781 782 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { 783 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu, 784 info->reg_zcr, boot->reg_zcr); 785 786 /* Probe vector lengths, unless we already gave up on SVE */ 787 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) && 788 !sys_caps_initialised) 789 sve_update_vq_map(); 790 } 791 792 /* 793 * Mismatched CPU features are a recipe for disaster. Don't even 794 * pretend to support them. 795 */ 796 if (taint) { 797 pr_warn_once("Unsupported CPU feature variation detected.\n"); 798 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 799 } 800 } 801 802 u64 read_sanitised_ftr_reg(u32 id) 803 { 804 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); 805 806 /* We shouldn't get a request for an unsupported register */ 807 BUG_ON(!regp); 808 return regp->sys_val; 809 } 810 811 #define read_sysreg_case(r) \ 812 case r: return read_sysreg_s(r) 813 814 /* 815 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated. 816 * Read the system register on the current CPU 817 */ 818 static u64 __read_sysreg_by_encoding(u32 sys_id) 819 { 820 switch (sys_id) { 821 read_sysreg_case(SYS_ID_PFR0_EL1); 822 read_sysreg_case(SYS_ID_PFR1_EL1); 823 read_sysreg_case(SYS_ID_DFR0_EL1); 824 read_sysreg_case(SYS_ID_MMFR0_EL1); 825 read_sysreg_case(SYS_ID_MMFR1_EL1); 826 read_sysreg_case(SYS_ID_MMFR2_EL1); 827 read_sysreg_case(SYS_ID_MMFR3_EL1); 828 read_sysreg_case(SYS_ID_ISAR0_EL1); 829 read_sysreg_case(SYS_ID_ISAR1_EL1); 830 read_sysreg_case(SYS_ID_ISAR2_EL1); 831 read_sysreg_case(SYS_ID_ISAR3_EL1); 832 read_sysreg_case(SYS_ID_ISAR4_EL1); 833 read_sysreg_case(SYS_ID_ISAR5_EL1); 834 read_sysreg_case(SYS_MVFR0_EL1); 835 read_sysreg_case(SYS_MVFR1_EL1); 836 read_sysreg_case(SYS_MVFR2_EL1); 837 838 read_sysreg_case(SYS_ID_AA64PFR0_EL1); 839 read_sysreg_case(SYS_ID_AA64PFR1_EL1); 840 read_sysreg_case(SYS_ID_AA64ZFR0_EL1); 841 read_sysreg_case(SYS_ID_AA64DFR0_EL1); 842 read_sysreg_case(SYS_ID_AA64DFR1_EL1); 843 read_sysreg_case(SYS_ID_AA64MMFR0_EL1); 844 read_sysreg_case(SYS_ID_AA64MMFR1_EL1); 845 read_sysreg_case(SYS_ID_AA64MMFR2_EL1); 846 read_sysreg_case(SYS_ID_AA64ISAR0_EL1); 847 read_sysreg_case(SYS_ID_AA64ISAR1_EL1); 848 849 read_sysreg_case(SYS_CNTFRQ_EL0); 850 read_sysreg_case(SYS_CTR_EL0); 851 read_sysreg_case(SYS_DCZID_EL0); 852 853 default: 854 BUG(); 855 return 0; 856 } 857 } 858 859 #include <linux/irqchip/arm-gic-v3.h> 860 861 static bool 862 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) 863 { 864 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign); 865 866 return val >= entry->min_field_value; 867 } 868 869 static bool 870 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) 871 { 872 u64 val; 873 874 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); 875 if (scope == SCOPE_SYSTEM) 876 val = read_sanitised_ftr_reg(entry->sys_reg); 877 else 878 val = __read_sysreg_by_encoding(entry->sys_reg); 879 880 return feature_matches(val, entry); 881 } 882 883 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope) 884 { 885 bool has_sre; 886 887 if (!has_cpuid_feature(entry, scope)) 888 return false; 889 890 has_sre = gic_enable_sre(); 891 if (!has_sre) 892 pr_warn_once("%s present but disabled by higher exception level\n", 893 entry->desc); 894 895 return has_sre; 896 } 897 898 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused) 899 { 900 u32 midr = read_cpuid_id(); 901 902 /* Cavium ThunderX pass 1.x and 2.x */ 903 return midr_is_cpu_model_range(midr, MIDR_THUNDERX, 904 MIDR_CPU_VAR_REV(0, 0), 905 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK)); 906 } 907 908 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused) 909 { 910 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 911 912 return cpuid_feature_extract_signed_field(pfr0, 913 ID_AA64PFR0_FP_SHIFT) < 0; 914 } 915 916 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry, 917 int scope) 918 { 919 u64 ctr; 920 921 if (scope == SCOPE_SYSTEM) 922 ctr = arm64_ftr_reg_ctrel0.sys_val; 923 else 924 ctr = read_cpuid_effective_cachetype(); 925 926 return ctr & BIT(CTR_IDC_SHIFT); 927 } 928 929 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused) 930 { 931 /* 932 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively 933 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses 934 * to the CTR_EL0 on this CPU and emulate it with the real/safe 935 * value. 936 */ 937 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT))) 938 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0); 939 } 940 941 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry, 942 int scope) 943 { 944 u64 ctr; 945 946 if (scope == SCOPE_SYSTEM) 947 ctr = arm64_ftr_reg_ctrel0.sys_val; 948 else 949 ctr = read_cpuid_cachetype(); 950 951 return ctr & BIT(CTR_DIC_SHIFT); 952 } 953 954 static bool __maybe_unused 955 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope) 956 { 957 /* 958 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP 959 * may share TLB entries with a CPU stuck in the crashed 960 * kernel. 961 */ 962 if (is_kdump_kernel()) 963 return false; 964 965 return has_cpuid_feature(entry, scope); 966 } 967 968 static bool __meltdown_safe = true; 969 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ 970 971 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry, 972 int scope) 973 { 974 /* List of CPUs that are not vulnerable and don't need KPTI */ 975 static const struct midr_range kpti_safe_list[] = { 976 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), 977 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), 978 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), 979 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), 980 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), 981 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), 982 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), 983 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), 984 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110), 985 { /* sentinel */ } 986 }; 987 char const *str = "kpti command line option"; 988 bool meltdown_safe; 989 990 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list); 991 992 /* Defer to CPU feature registers */ 993 if (has_cpuid_feature(entry, scope)) 994 meltdown_safe = true; 995 996 if (!meltdown_safe) 997 __meltdown_safe = false; 998 999 /* 1000 * For reasons that aren't entirely clear, enabling KPTI on Cavium 1001 * ThunderX leads to apparent I-cache corruption of kernel text, which 1002 * ends as well as you might imagine. Don't even try. 1003 */ 1004 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) { 1005 str = "ARM64_WORKAROUND_CAVIUM_27456"; 1006 __kpti_forced = -1; 1007 } 1008 1009 /* Useful for KASLR robustness */ 1010 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) { 1011 if (!__kpti_forced) { 1012 str = "KASLR"; 1013 __kpti_forced = 1; 1014 } 1015 } 1016 1017 if (cpu_mitigations_off() && !__kpti_forced) { 1018 str = "mitigations=off"; 1019 __kpti_forced = -1; 1020 } 1021 1022 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) { 1023 pr_info_once("kernel page table isolation disabled by kernel configuration\n"); 1024 return false; 1025 } 1026 1027 /* Forced? */ 1028 if (__kpti_forced) { 1029 pr_info_once("kernel page table isolation forced %s by %s\n", 1030 __kpti_forced > 0 ? "ON" : "OFF", str); 1031 return __kpti_forced > 0; 1032 } 1033 1034 return !meltdown_safe; 1035 } 1036 1037 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 1038 static void 1039 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) 1040 { 1041 typedef void (kpti_remap_fn)(int, int, phys_addr_t); 1042 extern kpti_remap_fn idmap_kpti_install_ng_mappings; 1043 kpti_remap_fn *remap_fn; 1044 1045 static bool kpti_applied = false; 1046 int cpu = smp_processor_id(); 1047 1048 /* 1049 * We don't need to rewrite the page-tables if either we've done 1050 * it already or we have KASLR enabled and therefore have not 1051 * created any global mappings at all. 1052 */ 1053 if (kpti_applied || kaslr_offset() > 0) 1054 return; 1055 1056 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings); 1057 1058 cpu_install_idmap(); 1059 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir)); 1060 cpu_uninstall_idmap(); 1061 1062 if (!cpu) 1063 kpti_applied = true; 1064 1065 return; 1066 } 1067 #else 1068 static void 1069 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) 1070 { 1071 } 1072 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ 1073 1074 static int __init parse_kpti(char *str) 1075 { 1076 bool enabled; 1077 int ret = strtobool(str, &enabled); 1078 1079 if (ret) 1080 return ret; 1081 1082 __kpti_forced = enabled ? 1 : -1; 1083 return 0; 1084 } 1085 early_param("kpti", parse_kpti); 1086 1087 #ifdef CONFIG_ARM64_HW_AFDBM 1088 static inline void __cpu_enable_hw_dbm(void) 1089 { 1090 u64 tcr = read_sysreg(tcr_el1) | TCR_HD; 1091 1092 write_sysreg(tcr, tcr_el1); 1093 isb(); 1094 } 1095 1096 static bool cpu_has_broken_dbm(void) 1097 { 1098 /* List of CPUs which have broken DBM support. */ 1099 static const struct midr_range cpus[] = { 1100 #ifdef CONFIG_ARM64_ERRATUM_1024718 1101 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0 1102 #endif 1103 {}, 1104 }; 1105 1106 return is_midr_in_range_list(read_cpuid_id(), cpus); 1107 } 1108 1109 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap) 1110 { 1111 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) && 1112 !cpu_has_broken_dbm(); 1113 } 1114 1115 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap) 1116 { 1117 if (cpu_can_use_dbm(cap)) 1118 __cpu_enable_hw_dbm(); 1119 } 1120 1121 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap, 1122 int __unused) 1123 { 1124 static bool detected = false; 1125 /* 1126 * DBM is a non-conflicting feature. i.e, the kernel can safely 1127 * run a mix of CPUs with and without the feature. So, we 1128 * unconditionally enable the capability to allow any late CPU 1129 * to use the feature. We only enable the control bits on the 1130 * CPU, if it actually supports. 1131 * 1132 * We have to make sure we print the "feature" detection only 1133 * when at least one CPU actually uses it. So check if this CPU 1134 * can actually use it and print the message exactly once. 1135 * 1136 * This is safe as all CPUs (including secondary CPUs - due to the 1137 * LOCAL_CPU scope - and the hotplugged CPUs - via verification) 1138 * goes through the "matches" check exactly once. Also if a CPU 1139 * matches the criteria, it is guaranteed that the CPU will turn 1140 * the DBM on, as the capability is unconditionally enabled. 1141 */ 1142 if (!detected && cpu_can_use_dbm(cap)) { 1143 detected = true; 1144 pr_info("detected: Hardware dirty bit management\n"); 1145 } 1146 1147 return true; 1148 } 1149 1150 #endif 1151 1152 #ifdef CONFIG_ARM64_VHE 1153 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused) 1154 { 1155 return is_kernel_in_hyp_mode(); 1156 } 1157 1158 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused) 1159 { 1160 /* 1161 * Copy register values that aren't redirected by hardware. 1162 * 1163 * Before code patching, we only set tpidr_el1, all CPUs need to copy 1164 * this value to tpidr_el2 before we patch the code. Once we've done 1165 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to 1166 * do anything here. 1167 */ 1168 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN)) 1169 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2); 1170 } 1171 #endif 1172 1173 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused) 1174 { 1175 u64 val = read_sysreg_s(SYS_CLIDR_EL1); 1176 1177 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */ 1178 WARN_ON(val & (7 << 27 | 7 << 21)); 1179 } 1180 1181 #ifdef CONFIG_ARM64_SSBD 1182 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr) 1183 { 1184 if (user_mode(regs)) 1185 return 1; 1186 1187 if (instr & BIT(PSTATE_Imm_shift)) 1188 regs->pstate |= PSR_SSBS_BIT; 1189 else 1190 regs->pstate &= ~PSR_SSBS_BIT; 1191 1192 arm64_skip_faulting_instruction(regs, 4); 1193 return 0; 1194 } 1195 1196 static struct undef_hook ssbs_emulation_hook = { 1197 .instr_mask = ~(1U << PSTATE_Imm_shift), 1198 .instr_val = 0xd500401f | PSTATE_SSBS, 1199 .fn = ssbs_emulation_handler, 1200 }; 1201 1202 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused) 1203 { 1204 static bool undef_hook_registered = false; 1205 static DEFINE_RAW_SPINLOCK(hook_lock); 1206 1207 raw_spin_lock(&hook_lock); 1208 if (!undef_hook_registered) { 1209 register_undef_hook(&ssbs_emulation_hook); 1210 undef_hook_registered = true; 1211 } 1212 raw_spin_unlock(&hook_lock); 1213 1214 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) { 1215 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS); 1216 arm64_set_ssbd_mitigation(false); 1217 } else { 1218 arm64_set_ssbd_mitigation(true); 1219 } 1220 } 1221 #endif /* CONFIG_ARM64_SSBD */ 1222 1223 #ifdef CONFIG_ARM64_PAN 1224 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) 1225 { 1226 /* 1227 * We modify PSTATE. This won't work from irq context as the PSTATE 1228 * is discarded once we return from the exception. 1229 */ 1230 WARN_ON_ONCE(in_interrupt()); 1231 1232 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); 1233 asm(SET_PSTATE_PAN(1)); 1234 } 1235 #endif /* CONFIG_ARM64_PAN */ 1236 1237 #ifdef CONFIG_ARM64_RAS_EXTN 1238 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused) 1239 { 1240 /* Firmware may have left a deferred SError in this register. */ 1241 write_sysreg_s(0, SYS_DISR_EL1); 1242 } 1243 #endif /* CONFIG_ARM64_RAS_EXTN */ 1244 1245 #ifdef CONFIG_ARM64_PTR_AUTH 1246 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap) 1247 { 1248 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB | 1249 SCTLR_ELx_ENDA | SCTLR_ELx_ENDB); 1250 } 1251 #endif /* CONFIG_ARM64_PTR_AUTH */ 1252 1253 #ifdef CONFIG_ARM64_PSEUDO_NMI 1254 static bool enable_pseudo_nmi; 1255 1256 static int __init early_enable_pseudo_nmi(char *p) 1257 { 1258 return strtobool(p, &enable_pseudo_nmi); 1259 } 1260 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi); 1261 1262 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry, 1263 int scope) 1264 { 1265 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope); 1266 } 1267 #endif 1268 1269 static const struct arm64_cpu_capabilities arm64_features[] = { 1270 { 1271 .desc = "GIC system register CPU interface", 1272 .capability = ARM64_HAS_SYSREG_GIC_CPUIF, 1273 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 1274 .matches = has_useable_gicv3_cpuif, 1275 .sys_reg = SYS_ID_AA64PFR0_EL1, 1276 .field_pos = ID_AA64PFR0_GIC_SHIFT, 1277 .sign = FTR_UNSIGNED, 1278 .min_field_value = 1, 1279 }, 1280 #ifdef CONFIG_ARM64_PAN 1281 { 1282 .desc = "Privileged Access Never", 1283 .capability = ARM64_HAS_PAN, 1284 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1285 .matches = has_cpuid_feature, 1286 .sys_reg = SYS_ID_AA64MMFR1_EL1, 1287 .field_pos = ID_AA64MMFR1_PAN_SHIFT, 1288 .sign = FTR_UNSIGNED, 1289 .min_field_value = 1, 1290 .cpu_enable = cpu_enable_pan, 1291 }, 1292 #endif /* CONFIG_ARM64_PAN */ 1293 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS) 1294 { 1295 .desc = "LSE atomic instructions", 1296 .capability = ARM64_HAS_LSE_ATOMICS, 1297 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1298 .matches = has_cpuid_feature, 1299 .sys_reg = SYS_ID_AA64ISAR0_EL1, 1300 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT, 1301 .sign = FTR_UNSIGNED, 1302 .min_field_value = 2, 1303 }, 1304 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */ 1305 { 1306 .desc = "Software prefetching using PRFM", 1307 .capability = ARM64_HAS_NO_HW_PREFETCH, 1308 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 1309 .matches = has_no_hw_prefetch, 1310 }, 1311 #ifdef CONFIG_ARM64_UAO 1312 { 1313 .desc = "User Access Override", 1314 .capability = ARM64_HAS_UAO, 1315 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1316 .matches = has_cpuid_feature, 1317 .sys_reg = SYS_ID_AA64MMFR2_EL1, 1318 .field_pos = ID_AA64MMFR2_UAO_SHIFT, 1319 .min_field_value = 1, 1320 /* 1321 * We rely on stop_machine() calling uao_thread_switch() to set 1322 * UAO immediately after patching. 1323 */ 1324 }, 1325 #endif /* CONFIG_ARM64_UAO */ 1326 #ifdef CONFIG_ARM64_PAN 1327 { 1328 .capability = ARM64_ALT_PAN_NOT_UAO, 1329 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1330 .matches = cpufeature_pan_not_uao, 1331 }, 1332 #endif /* CONFIG_ARM64_PAN */ 1333 #ifdef CONFIG_ARM64_VHE 1334 { 1335 .desc = "Virtualization Host Extensions", 1336 .capability = ARM64_HAS_VIRT_HOST_EXTN, 1337 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 1338 .matches = runs_at_el2, 1339 .cpu_enable = cpu_copy_el2regs, 1340 }, 1341 #endif /* CONFIG_ARM64_VHE */ 1342 { 1343 .desc = "32-bit EL0 Support", 1344 .capability = ARM64_HAS_32BIT_EL0, 1345 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1346 .matches = has_cpuid_feature, 1347 .sys_reg = SYS_ID_AA64PFR0_EL1, 1348 .sign = FTR_UNSIGNED, 1349 .field_pos = ID_AA64PFR0_EL0_SHIFT, 1350 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT, 1351 }, 1352 { 1353 .desc = "Kernel page table isolation (KPTI)", 1354 .capability = ARM64_UNMAP_KERNEL_AT_EL0, 1355 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, 1356 /* 1357 * The ID feature fields below are used to indicate that 1358 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for 1359 * more details. 1360 */ 1361 .sys_reg = SYS_ID_AA64PFR0_EL1, 1362 .field_pos = ID_AA64PFR0_CSV3_SHIFT, 1363 .min_field_value = 1, 1364 .matches = unmap_kernel_at_el0, 1365 .cpu_enable = kpti_install_ng_mappings, 1366 }, 1367 { 1368 /* FP/SIMD is not implemented */ 1369 .capability = ARM64_HAS_NO_FPSIMD, 1370 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1371 .min_field_value = 0, 1372 .matches = has_no_fpsimd, 1373 }, 1374 #ifdef CONFIG_ARM64_PMEM 1375 { 1376 .desc = "Data cache clean to Point of Persistence", 1377 .capability = ARM64_HAS_DCPOP, 1378 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1379 .matches = has_cpuid_feature, 1380 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1381 .field_pos = ID_AA64ISAR1_DPB_SHIFT, 1382 .min_field_value = 1, 1383 }, 1384 { 1385 .desc = "Data cache clean to Point of Deep Persistence", 1386 .capability = ARM64_HAS_DCPODP, 1387 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1388 .matches = has_cpuid_feature, 1389 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1390 .sign = FTR_UNSIGNED, 1391 .field_pos = ID_AA64ISAR1_DPB_SHIFT, 1392 .min_field_value = 2, 1393 }, 1394 #endif 1395 #ifdef CONFIG_ARM64_SVE 1396 { 1397 .desc = "Scalable Vector Extension", 1398 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1399 .capability = ARM64_SVE, 1400 .sys_reg = SYS_ID_AA64PFR0_EL1, 1401 .sign = FTR_UNSIGNED, 1402 .field_pos = ID_AA64PFR0_SVE_SHIFT, 1403 .min_field_value = ID_AA64PFR0_SVE, 1404 .matches = has_cpuid_feature, 1405 .cpu_enable = sve_kernel_enable, 1406 }, 1407 #endif /* CONFIG_ARM64_SVE */ 1408 #ifdef CONFIG_ARM64_RAS_EXTN 1409 { 1410 .desc = "RAS Extension Support", 1411 .capability = ARM64_HAS_RAS_EXTN, 1412 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1413 .matches = has_cpuid_feature, 1414 .sys_reg = SYS_ID_AA64PFR0_EL1, 1415 .sign = FTR_UNSIGNED, 1416 .field_pos = ID_AA64PFR0_RAS_SHIFT, 1417 .min_field_value = ID_AA64PFR0_RAS_V1, 1418 .cpu_enable = cpu_clear_disr, 1419 }, 1420 #endif /* CONFIG_ARM64_RAS_EXTN */ 1421 { 1422 .desc = "Data cache clean to the PoU not required for I/D coherence", 1423 .capability = ARM64_HAS_CACHE_IDC, 1424 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1425 .matches = has_cache_idc, 1426 .cpu_enable = cpu_emulate_effective_ctr, 1427 }, 1428 { 1429 .desc = "Instruction cache invalidation not required for I/D coherence", 1430 .capability = ARM64_HAS_CACHE_DIC, 1431 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1432 .matches = has_cache_dic, 1433 }, 1434 { 1435 .desc = "Stage-2 Force Write-Back", 1436 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1437 .capability = ARM64_HAS_STAGE2_FWB, 1438 .sys_reg = SYS_ID_AA64MMFR2_EL1, 1439 .sign = FTR_UNSIGNED, 1440 .field_pos = ID_AA64MMFR2_FWB_SHIFT, 1441 .min_field_value = 1, 1442 .matches = has_cpuid_feature, 1443 .cpu_enable = cpu_has_fwb, 1444 }, 1445 #ifdef CONFIG_ARM64_HW_AFDBM 1446 { 1447 /* 1448 * Since we turn this on always, we don't want the user to 1449 * think that the feature is available when it may not be. 1450 * So hide the description. 1451 * 1452 * .desc = "Hardware pagetable Dirty Bit Management", 1453 * 1454 */ 1455 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 1456 .capability = ARM64_HW_DBM, 1457 .sys_reg = SYS_ID_AA64MMFR1_EL1, 1458 .sign = FTR_UNSIGNED, 1459 .field_pos = ID_AA64MMFR1_HADBS_SHIFT, 1460 .min_field_value = 2, 1461 .matches = has_hw_dbm, 1462 .cpu_enable = cpu_enable_hw_dbm, 1463 }, 1464 #endif 1465 { 1466 .desc = "CRC32 instructions", 1467 .capability = ARM64_HAS_CRC32, 1468 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1469 .matches = has_cpuid_feature, 1470 .sys_reg = SYS_ID_AA64ISAR0_EL1, 1471 .field_pos = ID_AA64ISAR0_CRC32_SHIFT, 1472 .min_field_value = 1, 1473 }, 1474 #ifdef CONFIG_ARM64_SSBD 1475 { 1476 .desc = "Speculative Store Bypassing Safe (SSBS)", 1477 .capability = ARM64_SSBS, 1478 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 1479 .matches = has_cpuid_feature, 1480 .sys_reg = SYS_ID_AA64PFR1_EL1, 1481 .field_pos = ID_AA64PFR1_SSBS_SHIFT, 1482 .sign = FTR_UNSIGNED, 1483 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY, 1484 .cpu_enable = cpu_enable_ssbs, 1485 }, 1486 #endif 1487 #ifdef CONFIG_ARM64_CNP 1488 { 1489 .desc = "Common not Private translations", 1490 .capability = ARM64_HAS_CNP, 1491 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1492 .matches = has_useable_cnp, 1493 .sys_reg = SYS_ID_AA64MMFR2_EL1, 1494 .sign = FTR_UNSIGNED, 1495 .field_pos = ID_AA64MMFR2_CNP_SHIFT, 1496 .min_field_value = 1, 1497 .cpu_enable = cpu_enable_cnp, 1498 }, 1499 #endif 1500 { 1501 .desc = "Speculation barrier (SB)", 1502 .capability = ARM64_HAS_SB, 1503 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1504 .matches = has_cpuid_feature, 1505 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1506 .field_pos = ID_AA64ISAR1_SB_SHIFT, 1507 .sign = FTR_UNSIGNED, 1508 .min_field_value = 1, 1509 }, 1510 #ifdef CONFIG_ARM64_PTR_AUTH 1511 { 1512 .desc = "Address authentication (architected algorithm)", 1513 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH, 1514 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1515 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1516 .sign = FTR_UNSIGNED, 1517 .field_pos = ID_AA64ISAR1_APA_SHIFT, 1518 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED, 1519 .matches = has_cpuid_feature, 1520 .cpu_enable = cpu_enable_address_auth, 1521 }, 1522 { 1523 .desc = "Address authentication (IMP DEF algorithm)", 1524 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF, 1525 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1526 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1527 .sign = FTR_UNSIGNED, 1528 .field_pos = ID_AA64ISAR1_API_SHIFT, 1529 .min_field_value = ID_AA64ISAR1_API_IMP_DEF, 1530 .matches = has_cpuid_feature, 1531 .cpu_enable = cpu_enable_address_auth, 1532 }, 1533 { 1534 .desc = "Generic authentication (architected algorithm)", 1535 .capability = ARM64_HAS_GENERIC_AUTH_ARCH, 1536 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1537 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1538 .sign = FTR_UNSIGNED, 1539 .field_pos = ID_AA64ISAR1_GPA_SHIFT, 1540 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED, 1541 .matches = has_cpuid_feature, 1542 }, 1543 { 1544 .desc = "Generic authentication (IMP DEF algorithm)", 1545 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF, 1546 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1547 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1548 .sign = FTR_UNSIGNED, 1549 .field_pos = ID_AA64ISAR1_GPI_SHIFT, 1550 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF, 1551 .matches = has_cpuid_feature, 1552 }, 1553 #endif /* CONFIG_ARM64_PTR_AUTH */ 1554 #ifdef CONFIG_ARM64_PSEUDO_NMI 1555 { 1556 /* 1557 * Depends on having GICv3 1558 */ 1559 .desc = "IRQ priority masking", 1560 .capability = ARM64_HAS_IRQ_PRIO_MASKING, 1561 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 1562 .matches = can_use_gic_priorities, 1563 .sys_reg = SYS_ID_AA64PFR0_EL1, 1564 .field_pos = ID_AA64PFR0_GIC_SHIFT, 1565 .sign = FTR_UNSIGNED, 1566 .min_field_value = 1, 1567 }, 1568 #endif 1569 {}, 1570 }; 1571 1572 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \ 1573 .matches = has_cpuid_feature, \ 1574 .sys_reg = reg, \ 1575 .field_pos = field, \ 1576 .sign = s, \ 1577 .min_field_value = min_value, 1578 1579 #define __HWCAP_CAP(name, cap_type, cap) \ 1580 .desc = name, \ 1581 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \ 1582 .hwcap_type = cap_type, \ 1583 .hwcap = cap, \ 1584 1585 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \ 1586 { \ 1587 __HWCAP_CAP(#cap, cap_type, cap) \ 1588 HWCAP_CPUID_MATCH(reg, field, s, min_value) \ 1589 } 1590 1591 #define HWCAP_MULTI_CAP(list, cap_type, cap) \ 1592 { \ 1593 __HWCAP_CAP(#cap, cap_type, cap) \ 1594 .matches = cpucap_multi_entry_cap_matches, \ 1595 .match_list = list, \ 1596 } 1597 1598 #ifdef CONFIG_ARM64_PTR_AUTH 1599 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = { 1600 { 1601 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT, 1602 FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED) 1603 }, 1604 { 1605 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT, 1606 FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF) 1607 }, 1608 {}, 1609 }; 1610 1611 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = { 1612 { 1613 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT, 1614 FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED) 1615 }, 1616 { 1617 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT, 1618 FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF) 1619 }, 1620 {}, 1621 }; 1622 #endif 1623 1624 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = { 1625 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL), 1626 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES), 1627 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1), 1628 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2), 1629 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512), 1630 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32), 1631 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS), 1632 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM), 1633 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3), 1634 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3), 1635 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4), 1636 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP), 1637 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM), 1638 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM), 1639 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2), 1640 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP), 1641 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP), 1642 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD), 1643 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP), 1644 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT), 1645 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP), 1646 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP), 1647 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT), 1648 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA), 1649 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC), 1650 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC), 1651 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT), 1652 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB), 1653 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT), 1654 #ifdef CONFIG_ARM64_SVE 1655 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE), 1656 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2), 1657 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES), 1658 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL), 1659 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM), 1660 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3), 1661 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4), 1662 #endif 1663 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS), 1664 #ifdef CONFIG_ARM64_PTR_AUTH 1665 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA), 1666 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG), 1667 #endif 1668 {}, 1669 }; 1670 1671 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = { 1672 #ifdef CONFIG_COMPAT 1673 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), 1674 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), 1675 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), 1676 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), 1677 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), 1678 #endif 1679 {}, 1680 }; 1681 1682 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap) 1683 { 1684 switch (cap->hwcap_type) { 1685 case CAP_HWCAP: 1686 cpu_set_feature(cap->hwcap); 1687 break; 1688 #ifdef CONFIG_COMPAT 1689 case CAP_COMPAT_HWCAP: 1690 compat_elf_hwcap |= (u32)cap->hwcap; 1691 break; 1692 case CAP_COMPAT_HWCAP2: 1693 compat_elf_hwcap2 |= (u32)cap->hwcap; 1694 break; 1695 #endif 1696 default: 1697 WARN_ON(1); 1698 break; 1699 } 1700 } 1701 1702 /* Check if we have a particular HWCAP enabled */ 1703 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap) 1704 { 1705 bool rc; 1706 1707 switch (cap->hwcap_type) { 1708 case CAP_HWCAP: 1709 rc = cpu_have_feature(cap->hwcap); 1710 break; 1711 #ifdef CONFIG_COMPAT 1712 case CAP_COMPAT_HWCAP: 1713 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; 1714 break; 1715 case CAP_COMPAT_HWCAP2: 1716 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; 1717 break; 1718 #endif 1719 default: 1720 WARN_ON(1); 1721 rc = false; 1722 } 1723 1724 return rc; 1725 } 1726 1727 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps) 1728 { 1729 /* We support emulation of accesses to CPU ID feature registers */ 1730 cpu_set_named_feature(CPUID); 1731 for (; hwcaps->matches; hwcaps++) 1732 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps))) 1733 cap_set_elf_hwcap(hwcaps); 1734 } 1735 1736 static void update_cpu_capabilities(u16 scope_mask) 1737 { 1738 int i; 1739 const struct arm64_cpu_capabilities *caps; 1740 1741 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 1742 for (i = 0; i < ARM64_NCAPS; i++) { 1743 caps = cpu_hwcaps_ptrs[i]; 1744 if (!caps || !(caps->type & scope_mask) || 1745 cpus_have_cap(caps->capability) || 1746 !caps->matches(caps, cpucap_default_scope(caps))) 1747 continue; 1748 1749 if (caps->desc) 1750 pr_info("detected: %s\n", caps->desc); 1751 cpus_set_cap(caps->capability); 1752 1753 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU)) 1754 set_bit(caps->capability, boot_capabilities); 1755 } 1756 } 1757 1758 /* 1759 * Enable all the available capabilities on this CPU. The capabilities 1760 * with BOOT_CPU scope are handled separately and hence skipped here. 1761 */ 1762 static int cpu_enable_non_boot_scope_capabilities(void *__unused) 1763 { 1764 int i; 1765 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU; 1766 1767 for_each_available_cap(i) { 1768 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i]; 1769 1770 if (WARN_ON(!cap)) 1771 continue; 1772 1773 if (!(cap->type & non_boot_scope)) 1774 continue; 1775 1776 if (cap->cpu_enable) 1777 cap->cpu_enable(cap); 1778 } 1779 return 0; 1780 } 1781 1782 /* 1783 * Run through the enabled capabilities and enable() it on all active 1784 * CPUs 1785 */ 1786 static void __init enable_cpu_capabilities(u16 scope_mask) 1787 { 1788 int i; 1789 const struct arm64_cpu_capabilities *caps; 1790 bool boot_scope; 1791 1792 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 1793 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU); 1794 1795 for (i = 0; i < ARM64_NCAPS; i++) { 1796 unsigned int num; 1797 1798 caps = cpu_hwcaps_ptrs[i]; 1799 if (!caps || !(caps->type & scope_mask)) 1800 continue; 1801 num = caps->capability; 1802 if (!cpus_have_cap(num)) 1803 continue; 1804 1805 /* Ensure cpus_have_const_cap(num) works */ 1806 static_branch_enable(&cpu_hwcap_keys[num]); 1807 1808 if (boot_scope && caps->cpu_enable) 1809 /* 1810 * Capabilities with SCOPE_BOOT_CPU scope are finalised 1811 * before any secondary CPU boots. Thus, each secondary 1812 * will enable the capability as appropriate via 1813 * check_local_cpu_capabilities(). The only exception is 1814 * the boot CPU, for which the capability must be 1815 * enabled here. This approach avoids costly 1816 * stop_machine() calls for this case. 1817 */ 1818 caps->cpu_enable(caps); 1819 } 1820 1821 /* 1822 * For all non-boot scope capabilities, use stop_machine() 1823 * as it schedules the work allowing us to modify PSTATE, 1824 * instead of on_each_cpu() which uses an IPI, giving us a 1825 * PSTATE that disappears when we return. 1826 */ 1827 if (!boot_scope) 1828 stop_machine(cpu_enable_non_boot_scope_capabilities, 1829 NULL, cpu_online_mask); 1830 } 1831 1832 /* 1833 * Run through the list of capabilities to check for conflicts. 1834 * If the system has already detected a capability, take necessary 1835 * action on this CPU. 1836 * 1837 * Returns "false" on conflicts. 1838 */ 1839 static bool verify_local_cpu_caps(u16 scope_mask) 1840 { 1841 int i; 1842 bool cpu_has_cap, system_has_cap; 1843 const struct arm64_cpu_capabilities *caps; 1844 1845 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 1846 1847 for (i = 0; i < ARM64_NCAPS; i++) { 1848 caps = cpu_hwcaps_ptrs[i]; 1849 if (!caps || !(caps->type & scope_mask)) 1850 continue; 1851 1852 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU); 1853 system_has_cap = cpus_have_cap(caps->capability); 1854 1855 if (system_has_cap) { 1856 /* 1857 * Check if the new CPU misses an advertised feature, 1858 * which is not safe to miss. 1859 */ 1860 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps)) 1861 break; 1862 /* 1863 * We have to issue cpu_enable() irrespective of 1864 * whether the CPU has it or not, as it is enabeld 1865 * system wide. It is upto the call back to take 1866 * appropriate action on this CPU. 1867 */ 1868 if (caps->cpu_enable) 1869 caps->cpu_enable(caps); 1870 } else { 1871 /* 1872 * Check if the CPU has this capability if it isn't 1873 * safe to have when the system doesn't. 1874 */ 1875 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps)) 1876 break; 1877 } 1878 } 1879 1880 if (i < ARM64_NCAPS) { 1881 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n", 1882 smp_processor_id(), caps->capability, 1883 caps->desc, system_has_cap, cpu_has_cap); 1884 return false; 1885 } 1886 1887 return true; 1888 } 1889 1890 /* 1891 * Check for CPU features that are used in early boot 1892 * based on the Boot CPU value. 1893 */ 1894 static void check_early_cpu_features(void) 1895 { 1896 verify_cpu_asid_bits(); 1897 /* 1898 * Early features are used by the kernel already. If there 1899 * is a conflict, we cannot proceed further. 1900 */ 1901 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU)) 1902 cpu_panic_kernel(); 1903 } 1904 1905 static void 1906 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps) 1907 { 1908 1909 for (; caps->matches; caps++) 1910 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) { 1911 pr_crit("CPU%d: missing HWCAP: %s\n", 1912 smp_processor_id(), caps->desc); 1913 cpu_die_early(); 1914 } 1915 } 1916 1917 static void verify_sve_features(void) 1918 { 1919 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 1920 u64 zcr = read_zcr_features(); 1921 1922 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK; 1923 unsigned int len = zcr & ZCR_ELx_LEN_MASK; 1924 1925 if (len < safe_len || sve_verify_vq_map()) { 1926 pr_crit("CPU%d: SVE: vector length support mismatch\n", 1927 smp_processor_id()); 1928 cpu_die_early(); 1929 } 1930 1931 /* Add checks on other ZCR bits here if necessary */ 1932 } 1933 1934 1935 /* 1936 * Run through the enabled system capabilities and enable() it on this CPU. 1937 * The capabilities were decided based on the available CPUs at the boot time. 1938 * Any new CPU should match the system wide status of the capability. If the 1939 * new CPU doesn't have a capability which the system now has enabled, we 1940 * cannot do anything to fix it up and could cause unexpected failures. So 1941 * we park the CPU. 1942 */ 1943 static void verify_local_cpu_capabilities(void) 1944 { 1945 /* 1946 * The capabilities with SCOPE_BOOT_CPU are checked from 1947 * check_early_cpu_features(), as they need to be verified 1948 * on all secondary CPUs. 1949 */ 1950 if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU)) 1951 cpu_die_early(); 1952 1953 verify_local_elf_hwcaps(arm64_elf_hwcaps); 1954 1955 if (system_supports_32bit_el0()) 1956 verify_local_elf_hwcaps(compat_elf_hwcaps); 1957 1958 if (system_supports_sve()) 1959 verify_sve_features(); 1960 } 1961 1962 void check_local_cpu_capabilities(void) 1963 { 1964 /* 1965 * All secondary CPUs should conform to the early CPU features 1966 * in use by the kernel based on boot CPU. 1967 */ 1968 check_early_cpu_features(); 1969 1970 /* 1971 * If we haven't finalised the system capabilities, this CPU gets 1972 * a chance to update the errata work arounds and local features. 1973 * Otherwise, this CPU should verify that it has all the system 1974 * advertised capabilities. 1975 */ 1976 if (!sys_caps_initialised) 1977 update_cpu_capabilities(SCOPE_LOCAL_CPU); 1978 else 1979 verify_local_cpu_capabilities(); 1980 } 1981 1982 static void __init setup_boot_cpu_capabilities(void) 1983 { 1984 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */ 1985 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); 1986 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */ 1987 enable_cpu_capabilities(SCOPE_BOOT_CPU); 1988 } 1989 1990 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready); 1991 EXPORT_SYMBOL(arm64_const_caps_ready); 1992 1993 static void __init mark_const_caps_ready(void) 1994 { 1995 static_branch_enable(&arm64_const_caps_ready); 1996 } 1997 1998 bool this_cpu_has_cap(unsigned int n) 1999 { 2000 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) { 2001 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; 2002 2003 if (cap) 2004 return cap->matches(cap, SCOPE_LOCAL_CPU); 2005 } 2006 2007 return false; 2008 } 2009 2010 void cpu_set_feature(unsigned int num) 2011 { 2012 WARN_ON(num >= MAX_CPU_FEATURES); 2013 elf_hwcap |= BIT(num); 2014 } 2015 EXPORT_SYMBOL_GPL(cpu_set_feature); 2016 2017 bool cpu_have_feature(unsigned int num) 2018 { 2019 WARN_ON(num >= MAX_CPU_FEATURES); 2020 return elf_hwcap & BIT(num); 2021 } 2022 EXPORT_SYMBOL_GPL(cpu_have_feature); 2023 2024 unsigned long cpu_get_elf_hwcap(void) 2025 { 2026 /* 2027 * We currently only populate the first 32 bits of AT_HWCAP. Please 2028 * note that for userspace compatibility we guarantee that bits 62 2029 * and 63 will always be returned as 0. 2030 */ 2031 return lower_32_bits(elf_hwcap); 2032 } 2033 2034 unsigned long cpu_get_elf_hwcap2(void) 2035 { 2036 return upper_32_bits(elf_hwcap); 2037 } 2038 2039 static void __init setup_system_capabilities(void) 2040 { 2041 /* 2042 * We have finalised the system-wide safe feature 2043 * registers, finalise the capabilities that depend 2044 * on it. Also enable all the available capabilities, 2045 * that are not enabled already. 2046 */ 2047 update_cpu_capabilities(SCOPE_SYSTEM); 2048 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU); 2049 } 2050 2051 void __init setup_cpu_features(void) 2052 { 2053 u32 cwg; 2054 2055 setup_system_capabilities(); 2056 mark_const_caps_ready(); 2057 setup_elf_hwcaps(arm64_elf_hwcaps); 2058 2059 if (system_supports_32bit_el0()) 2060 setup_elf_hwcaps(compat_elf_hwcaps); 2061 2062 if (system_uses_ttbr0_pan()) 2063 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n"); 2064 2065 sve_setup(); 2066 minsigstksz_setup(); 2067 2068 /* Advertise that we have computed the system capabilities */ 2069 set_sys_caps_initialised(); 2070 2071 /* 2072 * Check for sane CTR_EL0.CWG value. 2073 */ 2074 cwg = cache_type_cwg(); 2075 if (!cwg) 2076 pr_warn("No Cache Writeback Granule information, assuming %d\n", 2077 ARCH_DMA_MINALIGN); 2078 } 2079 2080 static bool __maybe_unused 2081 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused) 2082 { 2083 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO)); 2084 } 2085 2086 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap) 2087 { 2088 cpu_replace_ttbr1(lm_alias(swapper_pg_dir)); 2089 } 2090 2091 /* 2092 * We emulate only the following system register space. 2093 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7] 2094 * See Table C5-6 System instruction encodings for System register accesses, 2095 * ARMv8 ARM(ARM DDI 0487A.f) for more details. 2096 */ 2097 static inline bool __attribute_const__ is_emulated(u32 id) 2098 { 2099 return (sys_reg_Op0(id) == 0x3 && 2100 sys_reg_CRn(id) == 0x0 && 2101 sys_reg_Op1(id) == 0x0 && 2102 (sys_reg_CRm(id) == 0 || 2103 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7)))); 2104 } 2105 2106 /* 2107 * With CRm == 0, reg should be one of : 2108 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. 2109 */ 2110 static inline int emulate_id_reg(u32 id, u64 *valp) 2111 { 2112 switch (id) { 2113 case SYS_MIDR_EL1: 2114 *valp = read_cpuid_id(); 2115 break; 2116 case SYS_MPIDR_EL1: 2117 *valp = SYS_MPIDR_SAFE_VAL; 2118 break; 2119 case SYS_REVIDR_EL1: 2120 /* IMPLEMENTATION DEFINED values are emulated with 0 */ 2121 *valp = 0; 2122 break; 2123 default: 2124 return -EINVAL; 2125 } 2126 2127 return 0; 2128 } 2129 2130 static int emulate_sys_reg(u32 id, u64 *valp) 2131 { 2132 struct arm64_ftr_reg *regp; 2133 2134 if (!is_emulated(id)) 2135 return -EINVAL; 2136 2137 if (sys_reg_CRm(id) == 0) 2138 return emulate_id_reg(id, valp); 2139 2140 regp = get_arm64_ftr_reg(id); 2141 if (regp) 2142 *valp = arm64_ftr_reg_user_value(regp); 2143 else 2144 /* 2145 * The untracked registers are either IMPLEMENTATION DEFINED 2146 * (e.g, ID_AFR0_EL1) or reserved RAZ. 2147 */ 2148 *valp = 0; 2149 return 0; 2150 } 2151 2152 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt) 2153 { 2154 int rc; 2155 u64 val; 2156 2157 rc = emulate_sys_reg(sys_reg, &val); 2158 if (!rc) { 2159 pt_regs_write_reg(regs, rt, val); 2160 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 2161 } 2162 return rc; 2163 } 2164 2165 static int emulate_mrs(struct pt_regs *regs, u32 insn) 2166 { 2167 u32 sys_reg, rt; 2168 2169 /* 2170 * sys_reg values are defined as used in mrs/msr instruction. 2171 * shift the imm value to get the encoding. 2172 */ 2173 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5; 2174 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn); 2175 return do_emulate_mrs(regs, sys_reg, rt); 2176 } 2177 2178 static struct undef_hook mrs_hook = { 2179 .instr_mask = 0xfff00000, 2180 .instr_val = 0xd5300000, 2181 .pstate_mask = PSR_AA32_MODE_MASK, 2182 .pstate_val = PSR_MODE_EL0t, 2183 .fn = emulate_mrs, 2184 }; 2185 2186 static int __init enable_mrs_emulation(void) 2187 { 2188 register_undef_hook(&mrs_hook); 2189 return 0; 2190 } 2191 2192 core_initcall(enable_mrs_emulation); 2193 2194 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, 2195 char *buf) 2196 { 2197 if (__meltdown_safe) 2198 return sprintf(buf, "Not affected\n"); 2199 2200 if (arm64_kernel_unmapped_at_el0()) 2201 return sprintf(buf, "Mitigation: PTI\n"); 2202 2203 return sprintf(buf, "Vulnerable\n"); 2204 } 2205