xref: /linux/arch/arm64/kernel/cpufeature.c (revision 0df2c90eba60791148cee1823c0bf5fc66e3465c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  */
7 
8 #define pr_fmt(fmt) "CPU features: " fmt
9 
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
16 #include <linux/mm.h>
17 #include <linux/cpu.h>
18 #include <asm/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
26 #include <asm/virt.h>
27 
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly;
30 
31 #ifdef CONFIG_COMPAT
32 #define COMPAT_ELF_HWCAP_DEFAULT	\
33 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
36 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
37 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
38 				 COMPAT_HWCAP_LPAE)
39 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
40 unsigned int compat_elf_hwcap2 __read_mostly;
41 #endif
42 
43 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
44 EXPORT_SYMBOL(cpu_hwcaps);
45 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
46 
47 /* Need also bit for ARM64_CB_PATCH */
48 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
49 
50 /*
51  * Flag to indicate if we have computed the system wide
52  * capabilities based on the boot time active CPUs. This
53  * will be used to determine if a new booting CPU should
54  * go through the verification process to make sure that it
55  * supports the system capabilities, without using a hotplug
56  * notifier.
57  */
58 static bool sys_caps_initialised;
59 
60 static inline void set_sys_caps_initialised(void)
61 {
62 	sys_caps_initialised = true;
63 }
64 
65 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
66 {
67 	/* file-wide pr_fmt adds "CPU features: " prefix */
68 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
69 	return 0;
70 }
71 
72 static struct notifier_block cpu_hwcaps_notifier = {
73 	.notifier_call = dump_cpu_hwcaps
74 };
75 
76 static int __init register_cpu_hwcaps_dumper(void)
77 {
78 	atomic_notifier_chain_register(&panic_notifier_list,
79 				       &cpu_hwcaps_notifier);
80 	return 0;
81 }
82 __initcall(register_cpu_hwcaps_dumper);
83 
84 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
85 EXPORT_SYMBOL(cpu_hwcap_keys);
86 
87 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
88 	{						\
89 		.sign = SIGNED,				\
90 		.visible = VISIBLE,			\
91 		.strict = STRICT,			\
92 		.type = TYPE,				\
93 		.shift = SHIFT,				\
94 		.width = WIDTH,				\
95 		.safe_val = SAFE_VAL,			\
96 	}
97 
98 /* Define a feature with unsigned values */
99 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
100 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
101 
102 /* Define a feature with a signed value */
103 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
104 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
105 
106 #define ARM64_FTR_END					\
107 	{						\
108 		.width = 0,				\
109 	}
110 
111 /* meta feature for alternatives */
112 static bool __maybe_unused
113 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
114 
115 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
116 
117 /*
118  * NOTE: Any changes to the visibility of features should be kept in
119  * sync with the documentation of the CPU feature register ABI.
120  */
121 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
122 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
123 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
124 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
125 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
134 	ARM64_FTR_END,
135 };
136 
137 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
138 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
139 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
140 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
141 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
142 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
143 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
144 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
145 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
146 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
147 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
148 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
149 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
150 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
151 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
152 	ARM64_FTR_END,
153 };
154 
155 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
156 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
157 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
158 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
159 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
160 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
162 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
163 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
164 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
165 	/* Linux doesn't care about the EL3 */
166 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
167 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
169 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
170 	ARM64_FTR_END,
171 };
172 
173 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
174 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
175 	ARM64_FTR_END,
176 };
177 
178 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
179 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
180 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
181 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
182 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
183 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
184 	ARM64_FTR_END,
185 };
186 
187 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
188 	/*
189 	 * We already refuse to boot CPUs that don't support our configured
190 	 * page size, so we can only detect mismatches for a page size other
191 	 * than the one we're currently using. Unfortunately, SoCs like this
192 	 * exist in the wild so, even though we don't like it, we'll have to go
193 	 * along with it and treat them as non-strict.
194 	 */
195 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
196 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
197 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
198 
199 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
200 	/* Linux shouldn't care about secure memory */
201 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
203 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
204 	/*
205 	 * Differing PARange is fine as long as all peripherals and memory are mapped
206 	 * within the minimum PARange of all CPUs
207 	 */
208 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
209 	ARM64_FTR_END,
210 };
211 
212 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
213 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
214 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
219 	ARM64_FTR_END,
220 };
221 
222 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
223 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
227 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
229 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
230 	ARM64_FTR_END,
231 };
232 
233 static const struct arm64_ftr_bits ftr_ctr[] = {
234 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
235 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
236 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
237 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
240 	/*
241 	 * Linux can handle differing I-cache policies. Userspace JITs will
242 	 * make use of *minLine.
243 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
244 	 */
245 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
246 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
247 	ARM64_FTR_END,
248 };
249 
250 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
251 	.name		= "SYS_CTR_EL0",
252 	.ftr_bits	= ftr_ctr
253 };
254 
255 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
256 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
257 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
258 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
259 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
260 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
261 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
262 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
263 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
264 	ARM64_FTR_END,
265 };
266 
267 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
269 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
271 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
272 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
273 	/*
274 	 * We can instantiate multiple PMU instances with different levels
275 	 * of support.
276 	 */
277 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
280 	ARM64_FTR_END,
281 };
282 
283 static const struct arm64_ftr_bits ftr_mvfr2[] = {
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
285 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
286 	ARM64_FTR_END,
287 };
288 
289 static const struct arm64_ftr_bits ftr_dczid[] = {
290 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
291 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
292 	ARM64_FTR_END,
293 };
294 
295 
296 static const struct arm64_ftr_bits ftr_id_isar5[] = {
297 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
298 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
299 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
300 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
301 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
302 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
303 	ARM64_FTR_END,
304 };
305 
306 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
307 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
308 	ARM64_FTR_END,
309 };
310 
311 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
312 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
313 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
314 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
315 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
316 	ARM64_FTR_END,
317 };
318 
319 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
321 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
322 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
323 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
324 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
325 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
326 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
327 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
328 	ARM64_FTR_END,
329 };
330 
331 static const struct arm64_ftr_bits ftr_zcr[] = {
332 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
333 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
334 	ARM64_FTR_END,
335 };
336 
337 /*
338  * Common ftr bits for a 32bit register with all hidden, strict
339  * attributes, with 4bit feature fields and a default safe value of
340  * 0. Covers the following 32bit registers:
341  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
342  */
343 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
344 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
345 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
346 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
347 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
348 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
349 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
350 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
351 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
352 	ARM64_FTR_END,
353 };
354 
355 /* Table for a single 32bit feature value */
356 static const struct arm64_ftr_bits ftr_single32[] = {
357 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
358 	ARM64_FTR_END,
359 };
360 
361 static const struct arm64_ftr_bits ftr_raz[] = {
362 	ARM64_FTR_END,
363 };
364 
365 #define ARM64_FTR_REG(id, table) {		\
366 	.sys_id = id,				\
367 	.reg = 	&(struct arm64_ftr_reg){	\
368 		.name = #id,			\
369 		.ftr_bits = &((table)[0]),	\
370 	}}
371 
372 static const struct __ftr_reg_entry {
373 	u32			sys_id;
374 	struct arm64_ftr_reg 	*reg;
375 } arm64_ftr_regs[] = {
376 
377 	/* Op1 = 0, CRn = 0, CRm = 1 */
378 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
379 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
380 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
381 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
382 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
383 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
384 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
385 
386 	/* Op1 = 0, CRn = 0, CRm = 2 */
387 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
388 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
389 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
390 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
391 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
392 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
393 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
394 
395 	/* Op1 = 0, CRn = 0, CRm = 3 */
396 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
397 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
398 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
399 
400 	/* Op1 = 0, CRn = 0, CRm = 4 */
401 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
402 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
403 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
404 
405 	/* Op1 = 0, CRn = 0, CRm = 5 */
406 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
407 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
408 
409 	/* Op1 = 0, CRn = 0, CRm = 6 */
410 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
411 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
412 
413 	/* Op1 = 0, CRn = 0, CRm = 7 */
414 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
415 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
416 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
417 
418 	/* Op1 = 0, CRn = 1, CRm = 2 */
419 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
420 
421 	/* Op1 = 3, CRn = 0, CRm = 0 */
422 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
423 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
424 
425 	/* Op1 = 3, CRn = 14, CRm = 0 */
426 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
427 };
428 
429 static int search_cmp_ftr_reg(const void *id, const void *regp)
430 {
431 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
432 }
433 
434 /*
435  * get_arm64_ftr_reg - Lookup a feature register entry using its
436  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
437  * ascending order of sys_id , we use binary search to find a matching
438  * entry.
439  *
440  * returns - Upon success,  matching ftr_reg entry for id.
441  *         - NULL on failure. It is upto the caller to decide
442  *	     the impact of a failure.
443  */
444 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
445 {
446 	const struct __ftr_reg_entry *ret;
447 
448 	ret = bsearch((const void *)(unsigned long)sys_id,
449 			arm64_ftr_regs,
450 			ARRAY_SIZE(arm64_ftr_regs),
451 			sizeof(arm64_ftr_regs[0]),
452 			search_cmp_ftr_reg);
453 	if (ret)
454 		return ret->reg;
455 	return NULL;
456 }
457 
458 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
459 			       s64 ftr_val)
460 {
461 	u64 mask = arm64_ftr_mask(ftrp);
462 
463 	reg &= ~mask;
464 	reg |= (ftr_val << ftrp->shift) & mask;
465 	return reg;
466 }
467 
468 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
469 				s64 cur)
470 {
471 	s64 ret = 0;
472 
473 	switch (ftrp->type) {
474 	case FTR_EXACT:
475 		ret = ftrp->safe_val;
476 		break;
477 	case FTR_LOWER_SAFE:
478 		ret = new < cur ? new : cur;
479 		break;
480 	case FTR_HIGHER_OR_ZERO_SAFE:
481 		if (!cur || !new)
482 			break;
483 		/* Fallthrough */
484 	case FTR_HIGHER_SAFE:
485 		ret = new > cur ? new : cur;
486 		break;
487 	default:
488 		BUG();
489 	}
490 
491 	return ret;
492 }
493 
494 static void __init sort_ftr_regs(void)
495 {
496 	int i;
497 
498 	/* Check that the array is sorted so that we can do the binary search */
499 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
500 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
501 }
502 
503 /*
504  * Initialise the CPU feature register from Boot CPU values.
505  * Also initiliases the strict_mask for the register.
506  * Any bits that are not covered by an arm64_ftr_bits entry are considered
507  * RES0 for the system-wide value, and must strictly match.
508  */
509 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
510 {
511 	u64 val = 0;
512 	u64 strict_mask = ~0x0ULL;
513 	u64 user_mask = 0;
514 	u64 valid_mask = 0;
515 
516 	const struct arm64_ftr_bits *ftrp;
517 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
518 
519 	BUG_ON(!reg);
520 
521 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
522 		u64 ftr_mask = arm64_ftr_mask(ftrp);
523 		s64 ftr_new = arm64_ftr_value(ftrp, new);
524 
525 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
526 
527 		valid_mask |= ftr_mask;
528 		if (!ftrp->strict)
529 			strict_mask &= ~ftr_mask;
530 		if (ftrp->visible)
531 			user_mask |= ftr_mask;
532 		else
533 			reg->user_val = arm64_ftr_set_value(ftrp,
534 							    reg->user_val,
535 							    ftrp->safe_val);
536 	}
537 
538 	val &= valid_mask;
539 
540 	reg->sys_val = val;
541 	reg->strict_mask = strict_mask;
542 	reg->user_mask = user_mask;
543 }
544 
545 extern const struct arm64_cpu_capabilities arm64_errata[];
546 static const struct arm64_cpu_capabilities arm64_features[];
547 
548 static void __init
549 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
550 {
551 	for (; caps->matches; caps++) {
552 		if (WARN(caps->capability >= ARM64_NCAPS,
553 			"Invalid capability %d\n", caps->capability))
554 			continue;
555 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
556 			"Duplicate entry for capability %d\n",
557 			caps->capability))
558 			continue;
559 		cpu_hwcaps_ptrs[caps->capability] = caps;
560 	}
561 }
562 
563 static void __init init_cpu_hwcaps_indirect_list(void)
564 {
565 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
566 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
567 }
568 
569 static void __init setup_boot_cpu_capabilities(void);
570 
571 void __init init_cpu_features(struct cpuinfo_arm64 *info)
572 {
573 	/* Before we start using the tables, make sure it is sorted */
574 	sort_ftr_regs();
575 
576 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
577 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
578 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
579 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
580 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
581 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
582 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
583 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
584 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
585 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
586 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
587 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
588 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
589 
590 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
591 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
592 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
593 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
594 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
595 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
596 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
597 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
598 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
599 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
600 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
601 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
602 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
603 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
604 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
605 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
606 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
607 	}
608 
609 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
610 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
611 		sve_init_vq_map();
612 	}
613 
614 	/*
615 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
616 	 * before we handle the boot CPU below.
617 	 */
618 	init_cpu_hwcaps_indirect_list();
619 
620 	/*
621 	 * Detect and enable early CPU capabilities based on the boot CPU,
622 	 * after we have initialised the CPU feature infrastructure.
623 	 */
624 	setup_boot_cpu_capabilities();
625 }
626 
627 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
628 {
629 	const struct arm64_ftr_bits *ftrp;
630 
631 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
632 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
633 		s64 ftr_new = arm64_ftr_value(ftrp, new);
634 
635 		if (ftr_cur == ftr_new)
636 			continue;
637 		/* Find a safe value */
638 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
639 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
640 	}
641 
642 }
643 
644 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
645 {
646 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
647 
648 	BUG_ON(!regp);
649 	update_cpu_ftr_reg(regp, val);
650 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
651 		return 0;
652 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
653 			regp->name, boot, cpu, val);
654 	return 1;
655 }
656 
657 /*
658  * Update system wide CPU feature registers with the values from a
659  * non-boot CPU. Also performs SANITY checks to make sure that there
660  * aren't any insane variations from that of the boot CPU.
661  */
662 void update_cpu_features(int cpu,
663 			 struct cpuinfo_arm64 *info,
664 			 struct cpuinfo_arm64 *boot)
665 {
666 	int taint = 0;
667 
668 	/*
669 	 * The kernel can handle differing I-cache policies, but otherwise
670 	 * caches should look identical. Userspace JITs will make use of
671 	 * *minLine.
672 	 */
673 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
674 				      info->reg_ctr, boot->reg_ctr);
675 
676 	/*
677 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
678 	 * could result in too much or too little memory being zeroed if a
679 	 * process is preempted and migrated between CPUs.
680 	 */
681 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
682 				      info->reg_dczid, boot->reg_dczid);
683 
684 	/* If different, timekeeping will be broken (especially with KVM) */
685 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
686 				      info->reg_cntfrq, boot->reg_cntfrq);
687 
688 	/*
689 	 * The kernel uses self-hosted debug features and expects CPUs to
690 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
691 	 * and BRPs to be identical.
692 	 * ID_AA64DFR1 is currently RES0.
693 	 */
694 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
695 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
696 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
697 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
698 	/*
699 	 * Even in big.LITTLE, processors should be identical instruction-set
700 	 * wise.
701 	 */
702 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
703 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
704 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
705 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
706 
707 	/*
708 	 * Differing PARange support is fine as long as all peripherals and
709 	 * memory are mapped within the minimum PARange of all CPUs.
710 	 * Linux should not care about secure memory.
711 	 */
712 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
713 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
714 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
715 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
716 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
717 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
718 
719 	/*
720 	 * EL3 is not our concern.
721 	 */
722 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
723 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
724 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
725 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
726 
727 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
728 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
729 
730 	/*
731 	 * If we have AArch32, we care about 32-bit features for compat.
732 	 * If the system doesn't support AArch32, don't update them.
733 	 */
734 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
735 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
736 
737 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
738 					info->reg_id_dfr0, boot->reg_id_dfr0);
739 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
740 					info->reg_id_isar0, boot->reg_id_isar0);
741 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
742 					info->reg_id_isar1, boot->reg_id_isar1);
743 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
744 					info->reg_id_isar2, boot->reg_id_isar2);
745 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
746 					info->reg_id_isar3, boot->reg_id_isar3);
747 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
748 					info->reg_id_isar4, boot->reg_id_isar4);
749 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
750 					info->reg_id_isar5, boot->reg_id_isar5);
751 
752 		/*
753 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
754 		 * ACTLR formats could differ across CPUs and therefore would have to
755 		 * be trapped for virtualization anyway.
756 		 */
757 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
758 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
759 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
760 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
761 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
762 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
763 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
764 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
765 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
766 					info->reg_id_pfr0, boot->reg_id_pfr0);
767 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
768 					info->reg_id_pfr1, boot->reg_id_pfr1);
769 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
770 					info->reg_mvfr0, boot->reg_mvfr0);
771 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
772 					info->reg_mvfr1, boot->reg_mvfr1);
773 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
774 					info->reg_mvfr2, boot->reg_mvfr2);
775 	}
776 
777 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
778 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
779 					info->reg_zcr, boot->reg_zcr);
780 
781 		/* Probe vector lengths, unless we already gave up on SVE */
782 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
783 		    !sys_caps_initialised)
784 			sve_update_vq_map();
785 	}
786 
787 	/*
788 	 * Mismatched CPU features are a recipe for disaster. Don't even
789 	 * pretend to support them.
790 	 */
791 	if (taint) {
792 		pr_warn_once("Unsupported CPU feature variation detected.\n");
793 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
794 	}
795 }
796 
797 u64 read_sanitised_ftr_reg(u32 id)
798 {
799 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
800 
801 	/* We shouldn't get a request for an unsupported register */
802 	BUG_ON(!regp);
803 	return regp->sys_val;
804 }
805 
806 #define read_sysreg_case(r)	\
807 	case r:		return read_sysreg_s(r)
808 
809 /*
810  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
811  * Read the system register on the current CPU
812  */
813 static u64 __read_sysreg_by_encoding(u32 sys_id)
814 {
815 	switch (sys_id) {
816 	read_sysreg_case(SYS_ID_PFR0_EL1);
817 	read_sysreg_case(SYS_ID_PFR1_EL1);
818 	read_sysreg_case(SYS_ID_DFR0_EL1);
819 	read_sysreg_case(SYS_ID_MMFR0_EL1);
820 	read_sysreg_case(SYS_ID_MMFR1_EL1);
821 	read_sysreg_case(SYS_ID_MMFR2_EL1);
822 	read_sysreg_case(SYS_ID_MMFR3_EL1);
823 	read_sysreg_case(SYS_ID_ISAR0_EL1);
824 	read_sysreg_case(SYS_ID_ISAR1_EL1);
825 	read_sysreg_case(SYS_ID_ISAR2_EL1);
826 	read_sysreg_case(SYS_ID_ISAR3_EL1);
827 	read_sysreg_case(SYS_ID_ISAR4_EL1);
828 	read_sysreg_case(SYS_ID_ISAR5_EL1);
829 	read_sysreg_case(SYS_MVFR0_EL1);
830 	read_sysreg_case(SYS_MVFR1_EL1);
831 	read_sysreg_case(SYS_MVFR2_EL1);
832 
833 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
834 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
835 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
836 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
837 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
838 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
839 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
840 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
841 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
842 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
843 
844 	read_sysreg_case(SYS_CNTFRQ_EL0);
845 	read_sysreg_case(SYS_CTR_EL0);
846 	read_sysreg_case(SYS_DCZID_EL0);
847 
848 	default:
849 		BUG();
850 		return 0;
851 	}
852 }
853 
854 #include <linux/irqchip/arm-gic-v3.h>
855 
856 static bool
857 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
858 {
859 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
860 
861 	return val >= entry->min_field_value;
862 }
863 
864 static bool
865 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
866 {
867 	u64 val;
868 
869 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
870 	if (scope == SCOPE_SYSTEM)
871 		val = read_sanitised_ftr_reg(entry->sys_reg);
872 	else
873 		val = __read_sysreg_by_encoding(entry->sys_reg);
874 
875 	return feature_matches(val, entry);
876 }
877 
878 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
879 {
880 	bool has_sre;
881 
882 	if (!has_cpuid_feature(entry, scope))
883 		return false;
884 
885 	has_sre = gic_enable_sre();
886 	if (!has_sre)
887 		pr_warn_once("%s present but disabled by higher exception level\n",
888 			     entry->desc);
889 
890 	return has_sre;
891 }
892 
893 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
894 {
895 	u32 midr = read_cpuid_id();
896 
897 	/* Cavium ThunderX pass 1.x and 2.x */
898 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
899 		MIDR_CPU_VAR_REV(0, 0),
900 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
901 }
902 
903 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
904 {
905 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
906 
907 	return cpuid_feature_extract_signed_field(pfr0,
908 					ID_AA64PFR0_FP_SHIFT) < 0;
909 }
910 
911 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
912 			  int scope)
913 {
914 	u64 ctr;
915 
916 	if (scope == SCOPE_SYSTEM)
917 		ctr = arm64_ftr_reg_ctrel0.sys_val;
918 	else
919 		ctr = read_cpuid_effective_cachetype();
920 
921 	return ctr & BIT(CTR_IDC_SHIFT);
922 }
923 
924 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
925 {
926 	/*
927 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
928 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
929 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
930 	 * value.
931 	 */
932 	if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
933 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
934 }
935 
936 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
937 			  int scope)
938 {
939 	u64 ctr;
940 
941 	if (scope == SCOPE_SYSTEM)
942 		ctr = arm64_ftr_reg_ctrel0.sys_val;
943 	else
944 		ctr = read_cpuid_cachetype();
945 
946 	return ctr & BIT(CTR_DIC_SHIFT);
947 }
948 
949 static bool __maybe_unused
950 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
951 {
952 	/*
953 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
954 	 * may share TLB entries with a CPU stuck in the crashed
955 	 * kernel.
956 	 */
957 	 if (is_kdump_kernel())
958 		return false;
959 
960 	return has_cpuid_feature(entry, scope);
961 }
962 
963 static bool __meltdown_safe = true;
964 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
965 
966 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
967 				int scope)
968 {
969 	/* List of CPUs that are not vulnerable and don't need KPTI */
970 	static const struct midr_range kpti_safe_list[] = {
971 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
972 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
973 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
974 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
975 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
976 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
977 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
978 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
979 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
980 		{ /* sentinel */ }
981 	};
982 	char const *str = "kpti command line option";
983 	bool meltdown_safe;
984 
985 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
986 
987 	/* Defer to CPU feature registers */
988 	if (has_cpuid_feature(entry, scope))
989 		meltdown_safe = true;
990 
991 	if (!meltdown_safe)
992 		__meltdown_safe = false;
993 
994 	/*
995 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
996 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
997 	 * ends as well as you might imagine. Don't even try.
998 	 */
999 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1000 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1001 		__kpti_forced = -1;
1002 	}
1003 
1004 	/* Useful for KASLR robustness */
1005 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
1006 		if (!__kpti_forced) {
1007 			str = "KASLR";
1008 			__kpti_forced = 1;
1009 		}
1010 	}
1011 
1012 	if (cpu_mitigations_off() && !__kpti_forced) {
1013 		str = "mitigations=off";
1014 		__kpti_forced = -1;
1015 	}
1016 
1017 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1018 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1019 		return false;
1020 	}
1021 
1022 	/* Forced? */
1023 	if (__kpti_forced) {
1024 		pr_info_once("kernel page table isolation forced %s by %s\n",
1025 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1026 		return __kpti_forced > 0;
1027 	}
1028 
1029 	return !meltdown_safe;
1030 }
1031 
1032 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1033 static void
1034 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1035 {
1036 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1037 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1038 	kpti_remap_fn *remap_fn;
1039 
1040 	static bool kpti_applied = false;
1041 	int cpu = smp_processor_id();
1042 
1043 	/*
1044 	 * We don't need to rewrite the page-tables if either we've done
1045 	 * it already or we have KASLR enabled and therefore have not
1046 	 * created any global mappings at all.
1047 	 */
1048 	if (kpti_applied || kaslr_offset() > 0)
1049 		return;
1050 
1051 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1052 
1053 	cpu_install_idmap();
1054 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1055 	cpu_uninstall_idmap();
1056 
1057 	if (!cpu)
1058 		kpti_applied = true;
1059 
1060 	return;
1061 }
1062 #else
1063 static void
1064 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1065 {
1066 }
1067 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1068 
1069 static int __init parse_kpti(char *str)
1070 {
1071 	bool enabled;
1072 	int ret = strtobool(str, &enabled);
1073 
1074 	if (ret)
1075 		return ret;
1076 
1077 	__kpti_forced = enabled ? 1 : -1;
1078 	return 0;
1079 }
1080 early_param("kpti", parse_kpti);
1081 
1082 #ifdef CONFIG_ARM64_HW_AFDBM
1083 static inline void __cpu_enable_hw_dbm(void)
1084 {
1085 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1086 
1087 	write_sysreg(tcr, tcr_el1);
1088 	isb();
1089 }
1090 
1091 static bool cpu_has_broken_dbm(void)
1092 {
1093 	/* List of CPUs which have broken DBM support. */
1094 	static const struct midr_range cpus[] = {
1095 #ifdef CONFIG_ARM64_ERRATUM_1024718
1096 		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1097 #endif
1098 		{},
1099 	};
1100 
1101 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1102 }
1103 
1104 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1105 {
1106 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1107 	       !cpu_has_broken_dbm();
1108 }
1109 
1110 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1111 {
1112 	if (cpu_can_use_dbm(cap))
1113 		__cpu_enable_hw_dbm();
1114 }
1115 
1116 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1117 		       int __unused)
1118 {
1119 	static bool detected = false;
1120 	/*
1121 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1122 	 * run a mix of CPUs with and without the feature. So, we
1123 	 * unconditionally enable the capability to allow any late CPU
1124 	 * to use the feature. We only enable the control bits on the
1125 	 * CPU, if it actually supports.
1126 	 *
1127 	 * We have to make sure we print the "feature" detection only
1128 	 * when at least one CPU actually uses it. So check if this CPU
1129 	 * can actually use it and print the message exactly once.
1130 	 *
1131 	 * This is safe as all CPUs (including secondary CPUs - due to the
1132 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1133 	 * goes through the "matches" check exactly once. Also if a CPU
1134 	 * matches the criteria, it is guaranteed that the CPU will turn
1135 	 * the DBM on, as the capability is unconditionally enabled.
1136 	 */
1137 	if (!detected && cpu_can_use_dbm(cap)) {
1138 		detected = true;
1139 		pr_info("detected: Hardware dirty bit management\n");
1140 	}
1141 
1142 	return true;
1143 }
1144 
1145 #endif
1146 
1147 #ifdef CONFIG_ARM64_VHE
1148 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1149 {
1150 	return is_kernel_in_hyp_mode();
1151 }
1152 
1153 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1154 {
1155 	/*
1156 	 * Copy register values that aren't redirected by hardware.
1157 	 *
1158 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1159 	 * this value to tpidr_el2 before we patch the code. Once we've done
1160 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1161 	 * do anything here.
1162 	 */
1163 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1164 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1165 }
1166 #endif
1167 
1168 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1169 {
1170 	u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1171 
1172 	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1173 	WARN_ON(val & (7 << 27 | 7 << 21));
1174 }
1175 
1176 #ifdef CONFIG_ARM64_SSBD
1177 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1178 {
1179 	if (user_mode(regs))
1180 		return 1;
1181 
1182 	if (instr & BIT(PSTATE_Imm_shift))
1183 		regs->pstate |= PSR_SSBS_BIT;
1184 	else
1185 		regs->pstate &= ~PSR_SSBS_BIT;
1186 
1187 	arm64_skip_faulting_instruction(regs, 4);
1188 	return 0;
1189 }
1190 
1191 static struct undef_hook ssbs_emulation_hook = {
1192 	.instr_mask	= ~(1U << PSTATE_Imm_shift),
1193 	.instr_val	= 0xd500401f | PSTATE_SSBS,
1194 	.fn		= ssbs_emulation_handler,
1195 };
1196 
1197 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1198 {
1199 	static bool undef_hook_registered = false;
1200 	static DEFINE_RAW_SPINLOCK(hook_lock);
1201 
1202 	raw_spin_lock(&hook_lock);
1203 	if (!undef_hook_registered) {
1204 		register_undef_hook(&ssbs_emulation_hook);
1205 		undef_hook_registered = true;
1206 	}
1207 	raw_spin_unlock(&hook_lock);
1208 
1209 	if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1210 		sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1211 		arm64_set_ssbd_mitigation(false);
1212 	} else {
1213 		arm64_set_ssbd_mitigation(true);
1214 	}
1215 }
1216 #endif /* CONFIG_ARM64_SSBD */
1217 
1218 #ifdef CONFIG_ARM64_PAN
1219 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1220 {
1221 	/*
1222 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1223 	 * is discarded once we return from the exception.
1224 	 */
1225 	WARN_ON_ONCE(in_interrupt());
1226 
1227 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1228 	asm(SET_PSTATE_PAN(1));
1229 }
1230 #endif /* CONFIG_ARM64_PAN */
1231 
1232 #ifdef CONFIG_ARM64_RAS_EXTN
1233 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1234 {
1235 	/* Firmware may have left a deferred SError in this register. */
1236 	write_sysreg_s(0, SYS_DISR_EL1);
1237 }
1238 #endif /* CONFIG_ARM64_RAS_EXTN */
1239 
1240 #ifdef CONFIG_ARM64_PTR_AUTH
1241 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1242 {
1243 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1244 				       SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1245 }
1246 #endif /* CONFIG_ARM64_PTR_AUTH */
1247 
1248 #ifdef CONFIG_ARM64_PSEUDO_NMI
1249 static bool enable_pseudo_nmi;
1250 
1251 static int __init early_enable_pseudo_nmi(char *p)
1252 {
1253 	return strtobool(p, &enable_pseudo_nmi);
1254 }
1255 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1256 
1257 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1258 				   int scope)
1259 {
1260 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1261 }
1262 #endif
1263 
1264 static const struct arm64_cpu_capabilities arm64_features[] = {
1265 	{
1266 		.desc = "GIC system register CPU interface",
1267 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1268 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1269 		.matches = has_useable_gicv3_cpuif,
1270 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1271 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1272 		.sign = FTR_UNSIGNED,
1273 		.min_field_value = 1,
1274 	},
1275 #ifdef CONFIG_ARM64_PAN
1276 	{
1277 		.desc = "Privileged Access Never",
1278 		.capability = ARM64_HAS_PAN,
1279 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1280 		.matches = has_cpuid_feature,
1281 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1282 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1283 		.sign = FTR_UNSIGNED,
1284 		.min_field_value = 1,
1285 		.cpu_enable = cpu_enable_pan,
1286 	},
1287 #endif /* CONFIG_ARM64_PAN */
1288 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1289 	{
1290 		.desc = "LSE atomic instructions",
1291 		.capability = ARM64_HAS_LSE_ATOMICS,
1292 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1293 		.matches = has_cpuid_feature,
1294 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1295 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1296 		.sign = FTR_UNSIGNED,
1297 		.min_field_value = 2,
1298 	},
1299 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1300 	{
1301 		.desc = "Software prefetching using PRFM",
1302 		.capability = ARM64_HAS_NO_HW_PREFETCH,
1303 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1304 		.matches = has_no_hw_prefetch,
1305 	},
1306 #ifdef CONFIG_ARM64_UAO
1307 	{
1308 		.desc = "User Access Override",
1309 		.capability = ARM64_HAS_UAO,
1310 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1311 		.matches = has_cpuid_feature,
1312 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1313 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
1314 		.min_field_value = 1,
1315 		/*
1316 		 * We rely on stop_machine() calling uao_thread_switch() to set
1317 		 * UAO immediately after patching.
1318 		 */
1319 	},
1320 #endif /* CONFIG_ARM64_UAO */
1321 #ifdef CONFIG_ARM64_PAN
1322 	{
1323 		.capability = ARM64_ALT_PAN_NOT_UAO,
1324 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1325 		.matches = cpufeature_pan_not_uao,
1326 	},
1327 #endif /* CONFIG_ARM64_PAN */
1328 #ifdef CONFIG_ARM64_VHE
1329 	{
1330 		.desc = "Virtualization Host Extensions",
1331 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1332 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1333 		.matches = runs_at_el2,
1334 		.cpu_enable = cpu_copy_el2regs,
1335 	},
1336 #endif	/* CONFIG_ARM64_VHE */
1337 	{
1338 		.desc = "32-bit EL0 Support",
1339 		.capability = ARM64_HAS_32BIT_EL0,
1340 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1341 		.matches = has_cpuid_feature,
1342 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1343 		.sign = FTR_UNSIGNED,
1344 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1345 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1346 	},
1347 	{
1348 		.desc = "Kernel page table isolation (KPTI)",
1349 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1350 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1351 		/*
1352 		 * The ID feature fields below are used to indicate that
1353 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1354 		 * more details.
1355 		 */
1356 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1357 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
1358 		.min_field_value = 1,
1359 		.matches = unmap_kernel_at_el0,
1360 		.cpu_enable = kpti_install_ng_mappings,
1361 	},
1362 	{
1363 		/* FP/SIMD is not implemented */
1364 		.capability = ARM64_HAS_NO_FPSIMD,
1365 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1366 		.min_field_value = 0,
1367 		.matches = has_no_fpsimd,
1368 	},
1369 #ifdef CONFIG_ARM64_PMEM
1370 	{
1371 		.desc = "Data cache clean to Point of Persistence",
1372 		.capability = ARM64_HAS_DCPOP,
1373 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1374 		.matches = has_cpuid_feature,
1375 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1376 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1377 		.min_field_value = 1,
1378 	},
1379 	{
1380 		.desc = "Data cache clean to Point of Deep Persistence",
1381 		.capability = ARM64_HAS_DCPODP,
1382 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1383 		.matches = has_cpuid_feature,
1384 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1385 		.sign = FTR_UNSIGNED,
1386 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1387 		.min_field_value = 2,
1388 	},
1389 #endif
1390 #ifdef CONFIG_ARM64_SVE
1391 	{
1392 		.desc = "Scalable Vector Extension",
1393 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1394 		.capability = ARM64_SVE,
1395 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1396 		.sign = FTR_UNSIGNED,
1397 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1398 		.min_field_value = ID_AA64PFR0_SVE,
1399 		.matches = has_cpuid_feature,
1400 		.cpu_enable = sve_kernel_enable,
1401 	},
1402 #endif /* CONFIG_ARM64_SVE */
1403 #ifdef CONFIG_ARM64_RAS_EXTN
1404 	{
1405 		.desc = "RAS Extension Support",
1406 		.capability = ARM64_HAS_RAS_EXTN,
1407 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1408 		.matches = has_cpuid_feature,
1409 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1410 		.sign = FTR_UNSIGNED,
1411 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1412 		.min_field_value = ID_AA64PFR0_RAS_V1,
1413 		.cpu_enable = cpu_clear_disr,
1414 	},
1415 #endif /* CONFIG_ARM64_RAS_EXTN */
1416 	{
1417 		.desc = "Data cache clean to the PoU not required for I/D coherence",
1418 		.capability = ARM64_HAS_CACHE_IDC,
1419 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1420 		.matches = has_cache_idc,
1421 		.cpu_enable = cpu_emulate_effective_ctr,
1422 	},
1423 	{
1424 		.desc = "Instruction cache invalidation not required for I/D coherence",
1425 		.capability = ARM64_HAS_CACHE_DIC,
1426 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1427 		.matches = has_cache_dic,
1428 	},
1429 	{
1430 		.desc = "Stage-2 Force Write-Back",
1431 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1432 		.capability = ARM64_HAS_STAGE2_FWB,
1433 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1434 		.sign = FTR_UNSIGNED,
1435 		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
1436 		.min_field_value = 1,
1437 		.matches = has_cpuid_feature,
1438 		.cpu_enable = cpu_has_fwb,
1439 	},
1440 #ifdef CONFIG_ARM64_HW_AFDBM
1441 	{
1442 		/*
1443 		 * Since we turn this on always, we don't want the user to
1444 		 * think that the feature is available when it may not be.
1445 		 * So hide the description.
1446 		 *
1447 		 * .desc = "Hardware pagetable Dirty Bit Management",
1448 		 *
1449 		 */
1450 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1451 		.capability = ARM64_HW_DBM,
1452 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1453 		.sign = FTR_UNSIGNED,
1454 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1455 		.min_field_value = 2,
1456 		.matches = has_hw_dbm,
1457 		.cpu_enable = cpu_enable_hw_dbm,
1458 	},
1459 #endif
1460 	{
1461 		.desc = "CRC32 instructions",
1462 		.capability = ARM64_HAS_CRC32,
1463 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1464 		.matches = has_cpuid_feature,
1465 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1466 		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1467 		.min_field_value = 1,
1468 	},
1469 #ifdef CONFIG_ARM64_SSBD
1470 	{
1471 		.desc = "Speculative Store Bypassing Safe (SSBS)",
1472 		.capability = ARM64_SSBS,
1473 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1474 		.matches = has_cpuid_feature,
1475 		.sys_reg = SYS_ID_AA64PFR1_EL1,
1476 		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
1477 		.sign = FTR_UNSIGNED,
1478 		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1479 		.cpu_enable = cpu_enable_ssbs,
1480 	},
1481 #endif
1482 #ifdef CONFIG_ARM64_CNP
1483 	{
1484 		.desc = "Common not Private translations",
1485 		.capability = ARM64_HAS_CNP,
1486 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1487 		.matches = has_useable_cnp,
1488 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1489 		.sign = FTR_UNSIGNED,
1490 		.field_pos = ID_AA64MMFR2_CNP_SHIFT,
1491 		.min_field_value = 1,
1492 		.cpu_enable = cpu_enable_cnp,
1493 	},
1494 #endif
1495 	{
1496 		.desc = "Speculation barrier (SB)",
1497 		.capability = ARM64_HAS_SB,
1498 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1499 		.matches = has_cpuid_feature,
1500 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1501 		.field_pos = ID_AA64ISAR1_SB_SHIFT,
1502 		.sign = FTR_UNSIGNED,
1503 		.min_field_value = 1,
1504 	},
1505 #ifdef CONFIG_ARM64_PTR_AUTH
1506 	{
1507 		.desc = "Address authentication (architected algorithm)",
1508 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1509 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1510 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1511 		.sign = FTR_UNSIGNED,
1512 		.field_pos = ID_AA64ISAR1_APA_SHIFT,
1513 		.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1514 		.matches = has_cpuid_feature,
1515 		.cpu_enable = cpu_enable_address_auth,
1516 	},
1517 	{
1518 		.desc = "Address authentication (IMP DEF algorithm)",
1519 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1520 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1521 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1522 		.sign = FTR_UNSIGNED,
1523 		.field_pos = ID_AA64ISAR1_API_SHIFT,
1524 		.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1525 		.matches = has_cpuid_feature,
1526 		.cpu_enable = cpu_enable_address_auth,
1527 	},
1528 	{
1529 		.desc = "Generic authentication (architected algorithm)",
1530 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1531 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1532 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1533 		.sign = FTR_UNSIGNED,
1534 		.field_pos = ID_AA64ISAR1_GPA_SHIFT,
1535 		.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1536 		.matches = has_cpuid_feature,
1537 	},
1538 	{
1539 		.desc = "Generic authentication (IMP DEF algorithm)",
1540 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1541 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1542 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1543 		.sign = FTR_UNSIGNED,
1544 		.field_pos = ID_AA64ISAR1_GPI_SHIFT,
1545 		.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1546 		.matches = has_cpuid_feature,
1547 	},
1548 #endif /* CONFIG_ARM64_PTR_AUTH */
1549 #ifdef CONFIG_ARM64_PSEUDO_NMI
1550 	{
1551 		/*
1552 		 * Depends on having GICv3
1553 		 */
1554 		.desc = "IRQ priority masking",
1555 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
1556 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1557 		.matches = can_use_gic_priorities,
1558 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1559 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1560 		.sign = FTR_UNSIGNED,
1561 		.min_field_value = 1,
1562 	},
1563 #endif
1564 	{},
1565 };
1566 
1567 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)				\
1568 		.matches = has_cpuid_feature,					\
1569 		.sys_reg = reg,							\
1570 		.field_pos = field,						\
1571 		.sign = s,							\
1572 		.min_field_value = min_value,
1573 
1574 #define __HWCAP_CAP(name, cap_type, cap)					\
1575 		.desc = name,							\
1576 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
1577 		.hwcap_type = cap_type,						\
1578 		.hwcap = cap,							\
1579 
1580 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)			\
1581 	{									\
1582 		__HWCAP_CAP(#cap, cap_type, cap)				\
1583 		HWCAP_CPUID_MATCH(reg, field, s, min_value)			\
1584 	}
1585 
1586 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
1587 	{									\
1588 		__HWCAP_CAP(#cap, cap_type, cap)				\
1589 		.matches = cpucap_multi_entry_cap_matches,			\
1590 		.match_list = list,						\
1591 	}
1592 
1593 #ifdef CONFIG_ARM64_PTR_AUTH
1594 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1595 	{
1596 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1597 				  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1598 	},
1599 	{
1600 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1601 				  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1602 	},
1603 	{},
1604 };
1605 
1606 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1607 	{
1608 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1609 				  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1610 	},
1611 	{
1612 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1613 				  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1614 	},
1615 	{},
1616 };
1617 #endif
1618 
1619 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1620 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1621 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1622 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1623 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1624 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1625 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1626 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1627 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1628 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1629 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1630 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1631 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1632 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1633 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1634 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1635 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1636 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1637 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1638 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1639 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1640 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1641 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1642 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1643 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1644 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1645 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1646 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1647 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1648 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1649 #ifdef CONFIG_ARM64_SVE
1650 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1651 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1652 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1653 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1654 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1655 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1656 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1657 #endif
1658 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1659 #ifdef CONFIG_ARM64_PTR_AUTH
1660 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1661 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1662 #endif
1663 	{},
1664 };
1665 
1666 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1667 #ifdef CONFIG_COMPAT
1668 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1669 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1670 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1671 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1672 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1673 #endif
1674 	{},
1675 };
1676 
1677 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1678 {
1679 	switch (cap->hwcap_type) {
1680 	case CAP_HWCAP:
1681 		cpu_set_feature(cap->hwcap);
1682 		break;
1683 #ifdef CONFIG_COMPAT
1684 	case CAP_COMPAT_HWCAP:
1685 		compat_elf_hwcap |= (u32)cap->hwcap;
1686 		break;
1687 	case CAP_COMPAT_HWCAP2:
1688 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1689 		break;
1690 #endif
1691 	default:
1692 		WARN_ON(1);
1693 		break;
1694 	}
1695 }
1696 
1697 /* Check if we have a particular HWCAP enabled */
1698 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1699 {
1700 	bool rc;
1701 
1702 	switch (cap->hwcap_type) {
1703 	case CAP_HWCAP:
1704 		rc = cpu_have_feature(cap->hwcap);
1705 		break;
1706 #ifdef CONFIG_COMPAT
1707 	case CAP_COMPAT_HWCAP:
1708 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1709 		break;
1710 	case CAP_COMPAT_HWCAP2:
1711 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1712 		break;
1713 #endif
1714 	default:
1715 		WARN_ON(1);
1716 		rc = false;
1717 	}
1718 
1719 	return rc;
1720 }
1721 
1722 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1723 {
1724 	/* We support emulation of accesses to CPU ID feature registers */
1725 	cpu_set_named_feature(CPUID);
1726 	for (; hwcaps->matches; hwcaps++)
1727 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1728 			cap_set_elf_hwcap(hwcaps);
1729 }
1730 
1731 static void update_cpu_capabilities(u16 scope_mask)
1732 {
1733 	int i;
1734 	const struct arm64_cpu_capabilities *caps;
1735 
1736 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1737 	for (i = 0; i < ARM64_NCAPS; i++) {
1738 		caps = cpu_hwcaps_ptrs[i];
1739 		if (!caps || !(caps->type & scope_mask) ||
1740 		    cpus_have_cap(caps->capability) ||
1741 		    !caps->matches(caps, cpucap_default_scope(caps)))
1742 			continue;
1743 
1744 		if (caps->desc)
1745 			pr_info("detected: %s\n", caps->desc);
1746 		cpus_set_cap(caps->capability);
1747 
1748 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
1749 			set_bit(caps->capability, boot_capabilities);
1750 	}
1751 }
1752 
1753 /*
1754  * Enable all the available capabilities on this CPU. The capabilities
1755  * with BOOT_CPU scope are handled separately and hence skipped here.
1756  */
1757 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1758 {
1759 	int i;
1760 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1761 
1762 	for_each_available_cap(i) {
1763 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1764 
1765 		if (WARN_ON(!cap))
1766 			continue;
1767 
1768 		if (!(cap->type & non_boot_scope))
1769 			continue;
1770 
1771 		if (cap->cpu_enable)
1772 			cap->cpu_enable(cap);
1773 	}
1774 	return 0;
1775 }
1776 
1777 /*
1778  * Run through the enabled capabilities and enable() it on all active
1779  * CPUs
1780  */
1781 static void __init enable_cpu_capabilities(u16 scope_mask)
1782 {
1783 	int i;
1784 	const struct arm64_cpu_capabilities *caps;
1785 	bool boot_scope;
1786 
1787 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1788 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1789 
1790 	for (i = 0; i < ARM64_NCAPS; i++) {
1791 		unsigned int num;
1792 
1793 		caps = cpu_hwcaps_ptrs[i];
1794 		if (!caps || !(caps->type & scope_mask))
1795 			continue;
1796 		num = caps->capability;
1797 		if (!cpus_have_cap(num))
1798 			continue;
1799 
1800 		/* Ensure cpus_have_const_cap(num) works */
1801 		static_branch_enable(&cpu_hwcap_keys[num]);
1802 
1803 		if (boot_scope && caps->cpu_enable)
1804 			/*
1805 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1806 			 * before any secondary CPU boots. Thus, each secondary
1807 			 * will enable the capability as appropriate via
1808 			 * check_local_cpu_capabilities(). The only exception is
1809 			 * the boot CPU, for which the capability must be
1810 			 * enabled here. This approach avoids costly
1811 			 * stop_machine() calls for this case.
1812 			 */
1813 			caps->cpu_enable(caps);
1814 	}
1815 
1816 	/*
1817 	 * For all non-boot scope capabilities, use stop_machine()
1818 	 * as it schedules the work allowing us to modify PSTATE,
1819 	 * instead of on_each_cpu() which uses an IPI, giving us a
1820 	 * PSTATE that disappears when we return.
1821 	 */
1822 	if (!boot_scope)
1823 		stop_machine(cpu_enable_non_boot_scope_capabilities,
1824 			     NULL, cpu_online_mask);
1825 }
1826 
1827 /*
1828  * Run through the list of capabilities to check for conflicts.
1829  * If the system has already detected a capability, take necessary
1830  * action on this CPU.
1831  *
1832  * Returns "false" on conflicts.
1833  */
1834 static bool verify_local_cpu_caps(u16 scope_mask)
1835 {
1836 	int i;
1837 	bool cpu_has_cap, system_has_cap;
1838 	const struct arm64_cpu_capabilities *caps;
1839 
1840 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1841 
1842 	for (i = 0; i < ARM64_NCAPS; i++) {
1843 		caps = cpu_hwcaps_ptrs[i];
1844 		if (!caps || !(caps->type & scope_mask))
1845 			continue;
1846 
1847 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1848 		system_has_cap = cpus_have_cap(caps->capability);
1849 
1850 		if (system_has_cap) {
1851 			/*
1852 			 * Check if the new CPU misses an advertised feature,
1853 			 * which is not safe to miss.
1854 			 */
1855 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1856 				break;
1857 			/*
1858 			 * We have to issue cpu_enable() irrespective of
1859 			 * whether the CPU has it or not, as it is enabeld
1860 			 * system wide. It is upto the call back to take
1861 			 * appropriate action on this CPU.
1862 			 */
1863 			if (caps->cpu_enable)
1864 				caps->cpu_enable(caps);
1865 		} else {
1866 			/*
1867 			 * Check if the CPU has this capability if it isn't
1868 			 * safe to have when the system doesn't.
1869 			 */
1870 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1871 				break;
1872 		}
1873 	}
1874 
1875 	if (i < ARM64_NCAPS) {
1876 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1877 			smp_processor_id(), caps->capability,
1878 			caps->desc, system_has_cap, cpu_has_cap);
1879 		return false;
1880 	}
1881 
1882 	return true;
1883 }
1884 
1885 /*
1886  * Check for CPU features that are used in early boot
1887  * based on the Boot CPU value.
1888  */
1889 static void check_early_cpu_features(void)
1890 {
1891 	verify_cpu_asid_bits();
1892 	/*
1893 	 * Early features are used by the kernel already. If there
1894 	 * is a conflict, we cannot proceed further.
1895 	 */
1896 	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1897 		cpu_panic_kernel();
1898 }
1899 
1900 static void
1901 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1902 {
1903 
1904 	for (; caps->matches; caps++)
1905 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1906 			pr_crit("CPU%d: missing HWCAP: %s\n",
1907 					smp_processor_id(), caps->desc);
1908 			cpu_die_early();
1909 		}
1910 }
1911 
1912 static void verify_sve_features(void)
1913 {
1914 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1915 	u64 zcr = read_zcr_features();
1916 
1917 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1918 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1919 
1920 	if (len < safe_len || sve_verify_vq_map()) {
1921 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
1922 			smp_processor_id());
1923 		cpu_die_early();
1924 	}
1925 
1926 	/* Add checks on other ZCR bits here if necessary */
1927 }
1928 
1929 
1930 /*
1931  * Run through the enabled system capabilities and enable() it on this CPU.
1932  * The capabilities were decided based on the available CPUs at the boot time.
1933  * Any new CPU should match the system wide status of the capability. If the
1934  * new CPU doesn't have a capability which the system now has enabled, we
1935  * cannot do anything to fix it up and could cause unexpected failures. So
1936  * we park the CPU.
1937  */
1938 static void verify_local_cpu_capabilities(void)
1939 {
1940 	/*
1941 	 * The capabilities with SCOPE_BOOT_CPU are checked from
1942 	 * check_early_cpu_features(), as they need to be verified
1943 	 * on all secondary CPUs.
1944 	 */
1945 	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1946 		cpu_die_early();
1947 
1948 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1949 
1950 	if (system_supports_32bit_el0())
1951 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1952 
1953 	if (system_supports_sve())
1954 		verify_sve_features();
1955 }
1956 
1957 void check_local_cpu_capabilities(void)
1958 {
1959 	/*
1960 	 * All secondary CPUs should conform to the early CPU features
1961 	 * in use by the kernel based on boot CPU.
1962 	 */
1963 	check_early_cpu_features();
1964 
1965 	/*
1966 	 * If we haven't finalised the system capabilities, this CPU gets
1967 	 * a chance to update the errata work arounds and local features.
1968 	 * Otherwise, this CPU should verify that it has all the system
1969 	 * advertised capabilities.
1970 	 */
1971 	if (!sys_caps_initialised)
1972 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
1973 	else
1974 		verify_local_cpu_capabilities();
1975 }
1976 
1977 static void __init setup_boot_cpu_capabilities(void)
1978 {
1979 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1980 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1981 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1982 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
1983 }
1984 
1985 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1986 EXPORT_SYMBOL(arm64_const_caps_ready);
1987 
1988 static void __init mark_const_caps_ready(void)
1989 {
1990 	static_branch_enable(&arm64_const_caps_ready);
1991 }
1992 
1993 bool this_cpu_has_cap(unsigned int n)
1994 {
1995 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
1996 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
1997 
1998 		if (cap)
1999 			return cap->matches(cap, SCOPE_LOCAL_CPU);
2000 	}
2001 
2002 	return false;
2003 }
2004 
2005 void cpu_set_feature(unsigned int num)
2006 {
2007 	WARN_ON(num >= MAX_CPU_FEATURES);
2008 	elf_hwcap |= BIT(num);
2009 }
2010 EXPORT_SYMBOL_GPL(cpu_set_feature);
2011 
2012 bool cpu_have_feature(unsigned int num)
2013 {
2014 	WARN_ON(num >= MAX_CPU_FEATURES);
2015 	return elf_hwcap & BIT(num);
2016 }
2017 EXPORT_SYMBOL_GPL(cpu_have_feature);
2018 
2019 unsigned long cpu_get_elf_hwcap(void)
2020 {
2021 	/*
2022 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
2023 	 * note that for userspace compatibility we guarantee that bits 62
2024 	 * and 63 will always be returned as 0.
2025 	 */
2026 	return lower_32_bits(elf_hwcap);
2027 }
2028 
2029 unsigned long cpu_get_elf_hwcap2(void)
2030 {
2031 	return upper_32_bits(elf_hwcap);
2032 }
2033 
2034 static void __init setup_system_capabilities(void)
2035 {
2036 	/*
2037 	 * We have finalised the system-wide safe feature
2038 	 * registers, finalise the capabilities that depend
2039 	 * on it. Also enable all the available capabilities,
2040 	 * that are not enabled already.
2041 	 */
2042 	update_cpu_capabilities(SCOPE_SYSTEM);
2043 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2044 }
2045 
2046 void __init setup_cpu_features(void)
2047 {
2048 	u32 cwg;
2049 
2050 	setup_system_capabilities();
2051 	mark_const_caps_ready();
2052 	setup_elf_hwcaps(arm64_elf_hwcaps);
2053 
2054 	if (system_supports_32bit_el0())
2055 		setup_elf_hwcaps(compat_elf_hwcaps);
2056 
2057 	if (system_uses_ttbr0_pan())
2058 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2059 
2060 	sve_setup();
2061 	minsigstksz_setup();
2062 
2063 	/* Advertise that we have computed the system capabilities */
2064 	set_sys_caps_initialised();
2065 
2066 	/*
2067 	 * Check for sane CTR_EL0.CWG value.
2068 	 */
2069 	cwg = cache_type_cwg();
2070 	if (!cwg)
2071 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
2072 			ARCH_DMA_MINALIGN);
2073 }
2074 
2075 static bool __maybe_unused
2076 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2077 {
2078 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
2079 }
2080 
2081 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2082 {
2083 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2084 }
2085 
2086 /*
2087  * We emulate only the following system register space.
2088  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2089  * See Table C5-6 System instruction encodings for System register accesses,
2090  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2091  */
2092 static inline bool __attribute_const__ is_emulated(u32 id)
2093 {
2094 	return (sys_reg_Op0(id) == 0x3 &&
2095 		sys_reg_CRn(id) == 0x0 &&
2096 		sys_reg_Op1(id) == 0x0 &&
2097 		(sys_reg_CRm(id) == 0 ||
2098 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2099 }
2100 
2101 /*
2102  * With CRm == 0, reg should be one of :
2103  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2104  */
2105 static inline int emulate_id_reg(u32 id, u64 *valp)
2106 {
2107 	switch (id) {
2108 	case SYS_MIDR_EL1:
2109 		*valp = read_cpuid_id();
2110 		break;
2111 	case SYS_MPIDR_EL1:
2112 		*valp = SYS_MPIDR_SAFE_VAL;
2113 		break;
2114 	case SYS_REVIDR_EL1:
2115 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
2116 		*valp = 0;
2117 		break;
2118 	default:
2119 		return -EINVAL;
2120 	}
2121 
2122 	return 0;
2123 }
2124 
2125 static int emulate_sys_reg(u32 id, u64 *valp)
2126 {
2127 	struct arm64_ftr_reg *regp;
2128 
2129 	if (!is_emulated(id))
2130 		return -EINVAL;
2131 
2132 	if (sys_reg_CRm(id) == 0)
2133 		return emulate_id_reg(id, valp);
2134 
2135 	regp = get_arm64_ftr_reg(id);
2136 	if (regp)
2137 		*valp = arm64_ftr_reg_user_value(regp);
2138 	else
2139 		/*
2140 		 * The untracked registers are either IMPLEMENTATION DEFINED
2141 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2142 		 */
2143 		*valp = 0;
2144 	return 0;
2145 }
2146 
2147 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2148 {
2149 	int rc;
2150 	u64 val;
2151 
2152 	rc = emulate_sys_reg(sys_reg, &val);
2153 	if (!rc) {
2154 		pt_regs_write_reg(regs, rt, val);
2155 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2156 	}
2157 	return rc;
2158 }
2159 
2160 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2161 {
2162 	u32 sys_reg, rt;
2163 
2164 	/*
2165 	 * sys_reg values are defined as used in mrs/msr instruction.
2166 	 * shift the imm value to get the encoding.
2167 	 */
2168 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2169 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2170 	return do_emulate_mrs(regs, sys_reg, rt);
2171 }
2172 
2173 static struct undef_hook mrs_hook = {
2174 	.instr_mask = 0xfff00000,
2175 	.instr_val  = 0xd5300000,
2176 	.pstate_mask = PSR_AA32_MODE_MASK,
2177 	.pstate_val = PSR_MODE_EL0t,
2178 	.fn = emulate_mrs,
2179 };
2180 
2181 static int __init enable_mrs_emulation(void)
2182 {
2183 	register_undef_hook(&mrs_hook);
2184 	return 0;
2185 }
2186 
2187 core_initcall(enable_mrs_emulation);
2188 
2189 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2190 			  char *buf)
2191 {
2192 	if (__meltdown_safe)
2193 		return sprintf(buf, "Not affected\n");
2194 
2195 	if (arm64_kernel_unmapped_at_el0())
2196 		return sprintf(buf, "Mitigation: PTI\n");
2197 
2198 	return sprintf(buf, "Vulnerable\n");
2199 }
2200