xref: /linux/arch/arm64/kernel/cpufeature.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94 
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97 
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT	\
100 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103 				 COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107 
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111 
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113 
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116 
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118 
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124 
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130 
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136 
137 void dump_cpu_features(void)
138 {
139 	/* file-wide pr_fmt adds "CPU features: " prefix */
140 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142 
143 #define __ARM64_MAX_POSITIVE(reg, field)				\
144 		((reg##_##field##_SIGNED ?				\
145 		  BIT(reg##_##field##_WIDTH - 1) :			\
146 		  BIT(reg##_##field##_WIDTH)) - 1)
147 
148 #define __ARM64_MIN_NEGATIVE(reg, field)  BIT(reg##_##field##_WIDTH - 1)
149 
150 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value)		\
151 		.sys_reg = SYS_##reg,					\
152 		.field_pos = reg##_##field##_SHIFT,			\
153 		.field_width = reg##_##field##_WIDTH,			\
154 		.sign = reg##_##field##_SIGNED,				\
155 		.min_field_value = min_value,				\
156 		.max_field_value = max_value,
157 
158 /*
159  * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
160  * an implicit maximum that depends on the sign-ess of the field.
161  *
162  * An unsigned field will be capped at all ones, while a signed field
163  * will be limited to the positive half only.
164  */
165 #define ARM64_CPUID_FIELDS(reg, field, min_value)			\
166 	__ARM64_CPUID_FIELDS(reg, field,				\
167 			     SYS_FIELD_VALUE(reg, field, min_value),	\
168 			     __ARM64_MAX_POSITIVE(reg, field))
169 
170 /*
171  * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
172  * implicit minimal value to max_value. This should be used when
173  * matching a non-implemented property.
174  */
175 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value)			\
176 	__ARM64_CPUID_FIELDS(reg, field,				\
177 			     __ARM64_MIN_NEGATIVE(reg, field),		\
178 			     SYS_FIELD_VALUE(reg, field, max_value))
179 
180 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
181 	{						\
182 		.sign = SIGNED,				\
183 		.visible = VISIBLE,			\
184 		.strict = STRICT,			\
185 		.type = TYPE,				\
186 		.shift = SHIFT,				\
187 		.width = WIDTH,				\
188 		.safe_val = SAFE_VAL,			\
189 	}
190 
191 /* Define a feature with unsigned values */
192 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
193 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
194 
195 /* Define a feature with a signed value */
196 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
197 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
198 
199 #define ARM64_FTR_END					\
200 	{						\
201 		.width = 0,				\
202 	}
203 
204 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
205 
206 static bool __system_matches_cap(unsigned int n);
207 
208 /*
209  * NOTE: Any changes to the visibility of features should be kept in
210  * sync with the documentation of the CPU feature register ABI.
211  */
212 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
213 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
214 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
219 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
222 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
227 	ARM64_FTR_END,
228 };
229 
230 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
231 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
238 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
240 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
245 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
247 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
249 	ARM64_FTR_END,
250 };
251 
252 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
253 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
254 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
255 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
256 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
257 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
258 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
259 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
260 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
261 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
262 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
263 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
264 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
265 	ARM64_FTR_END,
266 };
267 
268 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
269 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
270 	ARM64_FTR_END,
271 };
272 
273 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
274 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
276 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
280 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
281 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
282 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
284 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
285 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
287 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
288 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
290 	ARM64_FTR_END,
291 };
292 
293 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
294 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
295 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
296 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
297 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
298 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
299 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
300 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
301 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
302 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
303 	ARM64_FTR_END,
304 };
305 
306 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
307 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
308 	ARM64_FTR_END,
309 };
310 
311 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
312 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
313 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
314 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
315 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
316 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
317 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
318 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
319 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
320 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
321 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
322 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
323 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
324 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
325 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
326 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
327 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
328 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
329 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
330 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
331 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
332 	ARM64_FTR_END,
333 };
334 
335 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
336 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
337 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
338 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
339 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
340 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
341 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
342 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
343 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
344 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
345 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
346 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
347 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
348 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
349 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
350 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
351 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
352 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
353 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
354 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
355 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
356 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
357 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
358 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
359 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
360 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
362 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
364 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
366 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
368 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
370 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
372 	ARM64_FTR_END,
373 };
374 
375 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
376 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
377 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
378 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
379 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
380 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
381 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
382 	ARM64_FTR_END,
383 };
384 
385 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
386 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
387 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
388 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
389 	/*
390 	 * Page size not being supported at Stage-2 is not fatal. You
391 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
392 	 * your favourite nesting hypervisor.
393 	 *
394 	 * There is a small corner case where the hypervisor explicitly
395 	 * advertises a given granule size at Stage-2 (value 2) on some
396 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
397 	 * vCPUs. Although this is not forbidden by the architecture, it
398 	 * indicates that the hypervisor is being silly (or buggy).
399 	 *
400 	 * We make no effort to cope with this and pretend that if these
401 	 * fields are inconsistent across vCPUs, then it isn't worth
402 	 * trying to bring KVM up.
403 	 */
404 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
405 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
406 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
407 	/*
408 	 * We already refuse to boot CPUs that don't support our configured
409 	 * page size, so we can only detect mismatches for a page size other
410 	 * than the one we're currently using. Unfortunately, SoCs like this
411 	 * exist in the wild so, even though we don't like it, we'll have to go
412 	 * along with it and treat them as non-strict.
413 	 */
414 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
415 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
416 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
417 
418 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
419 	/* Linux shouldn't care about secure memory */
420 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
421 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
422 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
423 	/*
424 	 * Differing PARange is fine as long as all peripherals and memory are mapped
425 	 * within the minimum PARange of all CPUs
426 	 */
427 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
428 	ARM64_FTR_END,
429 };
430 
431 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
432 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
433 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
434 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
435 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
436 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
437 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
438 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
439 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
440 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
441 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
442 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
443 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
444 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
445 	ARM64_FTR_END,
446 };
447 
448 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
449 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
450 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
451 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
453 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
454 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
455 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
456 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
457 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
459 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
460 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
461 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
462 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
463 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
464 	ARM64_FTR_END,
465 };
466 
467 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
468 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
469 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
470 	ARM64_FTR_END,
471 };
472 
473 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
474 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
475 	ARM64_FTR_END,
476 };
477 
478 static const struct arm64_ftr_bits ftr_ctr[] = {
479 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
480 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
481 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
482 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
483 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
484 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
485 	/*
486 	 * Linux can handle differing I-cache policies. Userspace JITs will
487 	 * make use of *minLine.
488 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
489 	 */
490 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
491 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
492 	ARM64_FTR_END,
493 };
494 
495 static struct arm64_ftr_override __ro_after_init no_override = { };
496 
497 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
498 	.name		= "SYS_CTR_EL0",
499 	.ftr_bits	= ftr_ctr,
500 	.override	= &no_override,
501 };
502 
503 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
504 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
505 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
506 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
507 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
508 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
509 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
510 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
511 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
512 	ARM64_FTR_END,
513 };
514 
515 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
516 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
517 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
518 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
519 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
520 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
521 	/*
522 	 * We can instantiate multiple PMU instances with different levels
523 	 * of support.
524 	 */
525 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
526 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
527 	ARM64_FTR_END,
528 };
529 
530 static const struct arm64_ftr_bits ftr_mvfr0[] = {
531 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
532 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
533 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
534 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
535 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
536 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
537 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
538 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
539 	ARM64_FTR_END,
540 };
541 
542 static const struct arm64_ftr_bits ftr_mvfr1[] = {
543 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
544 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
545 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
546 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
547 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
548 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
549 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
550 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
551 	ARM64_FTR_END,
552 };
553 
554 static const struct arm64_ftr_bits ftr_mvfr2[] = {
555 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
556 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
557 	ARM64_FTR_END,
558 };
559 
560 static const struct arm64_ftr_bits ftr_dczid[] = {
561 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
562 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
563 	ARM64_FTR_END,
564 };
565 
566 static const struct arm64_ftr_bits ftr_gmid[] = {
567 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
568 	ARM64_FTR_END,
569 };
570 
571 static const struct arm64_ftr_bits ftr_id_isar0[] = {
572 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
573 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
574 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
575 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
576 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
577 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
578 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
579 	ARM64_FTR_END,
580 };
581 
582 static const struct arm64_ftr_bits ftr_id_isar5[] = {
583 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
584 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
585 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
586 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
587 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
588 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
589 	ARM64_FTR_END,
590 };
591 
592 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
593 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
594 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
595 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
596 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
597 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
598 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
599 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
600 
601 	/*
602 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
603 	 * external abort on speculative read. It is safe to assume that an
604 	 * SError might be generated than it will not be. Hence it has been
605 	 * classified as FTR_HIGHER_SAFE.
606 	 */
607 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
608 	ARM64_FTR_END,
609 };
610 
611 static const struct arm64_ftr_bits ftr_id_isar4[] = {
612 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
613 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
614 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
615 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
616 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
617 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
618 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
619 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
620 	ARM64_FTR_END,
621 };
622 
623 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
624 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
625 	ARM64_FTR_END,
626 };
627 
628 static const struct arm64_ftr_bits ftr_id_isar6[] = {
629 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
630 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
631 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
632 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
633 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
634 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
635 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
636 	ARM64_FTR_END,
637 };
638 
639 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
640 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
641 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
642 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
643 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
644 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
645 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
646 	ARM64_FTR_END,
647 };
648 
649 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
650 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
651 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
652 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
653 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
654 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
655 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
656 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
657 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
658 	ARM64_FTR_END,
659 };
660 
661 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
662 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
663 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
664 	ARM64_FTR_END,
665 };
666 
667 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
668 	/* [31:28] TraceFilt */
669 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
670 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
671 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
672 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
673 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
674 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
675 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
676 	ARM64_FTR_END,
677 };
678 
679 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
680 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
681 	ARM64_FTR_END,
682 };
683 
684 /*
685  * Common ftr bits for a 32bit register with all hidden, strict
686  * attributes, with 4bit feature fields and a default safe value of
687  * 0. Covers the following 32bit registers:
688  * id_isar[1-3], id_mmfr[1-3]
689  */
690 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
691 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
692 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
693 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
694 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
695 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
696 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
697 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
698 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
699 	ARM64_FTR_END,
700 };
701 
702 /* Table for a single 32bit feature value */
703 static const struct arm64_ftr_bits ftr_single32[] = {
704 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
705 	ARM64_FTR_END,
706 };
707 
708 static const struct arm64_ftr_bits ftr_raz[] = {
709 	ARM64_FTR_END,
710 };
711 
712 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
713 		.sys_id = id,					\
714 		.reg = 	&(struct arm64_ftr_reg){		\
715 			.name = id_str,				\
716 			.override = (ovr),			\
717 			.ftr_bits = &((table)[0]),		\
718 	}}
719 
720 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
721 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
722 
723 #define ARM64_FTR_REG(id, table)		\
724 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
725 
726 struct arm64_ftr_override id_aa64mmfr0_override;
727 struct arm64_ftr_override id_aa64mmfr1_override;
728 struct arm64_ftr_override id_aa64mmfr2_override;
729 struct arm64_ftr_override id_aa64pfr0_override;
730 struct arm64_ftr_override id_aa64pfr1_override;
731 struct arm64_ftr_override id_aa64zfr0_override;
732 struct arm64_ftr_override id_aa64smfr0_override;
733 struct arm64_ftr_override id_aa64isar1_override;
734 struct arm64_ftr_override id_aa64isar2_override;
735 
736 struct arm64_ftr_override arm64_sw_feature_override;
737 
738 static const struct __ftr_reg_entry {
739 	u32			sys_id;
740 	struct arm64_ftr_reg 	*reg;
741 } arm64_ftr_regs[] = {
742 
743 	/* Op1 = 0, CRn = 0, CRm = 1 */
744 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
745 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
746 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
747 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
748 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
749 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
750 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
751 
752 	/* Op1 = 0, CRn = 0, CRm = 2 */
753 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
754 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
755 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
756 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
757 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
758 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
759 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
760 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
761 
762 	/* Op1 = 0, CRn = 0, CRm = 3 */
763 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
764 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
765 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
766 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
767 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
768 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
769 
770 	/* Op1 = 0, CRn = 0, CRm = 4 */
771 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
772 			       &id_aa64pfr0_override),
773 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
774 			       &id_aa64pfr1_override),
775 	ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
776 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
777 			       &id_aa64zfr0_override),
778 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
779 			       &id_aa64smfr0_override),
780 	ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
781 
782 	/* Op1 = 0, CRn = 0, CRm = 5 */
783 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
784 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
785 
786 	/* Op1 = 0, CRn = 0, CRm = 6 */
787 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
788 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
789 			       &id_aa64isar1_override),
790 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
791 			       &id_aa64isar2_override),
792 	ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
793 
794 	/* Op1 = 0, CRn = 0, CRm = 7 */
795 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
796 			       &id_aa64mmfr0_override),
797 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
798 			       &id_aa64mmfr1_override),
799 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
800 			       &id_aa64mmfr2_override),
801 	ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
802 	ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
803 
804 	/* Op1 = 1, CRn = 0, CRm = 0 */
805 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
806 
807 	/* Op1 = 3, CRn = 0, CRm = 0 */
808 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
809 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
810 
811 	/* Op1 = 3, CRn = 14, CRm = 0 */
812 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
813 };
814 
815 static int search_cmp_ftr_reg(const void *id, const void *regp)
816 {
817 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
818 }
819 
820 /*
821  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
822  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
823  * ascending order of sys_id, we use binary search to find a matching
824  * entry.
825  *
826  * returns - Upon success,  matching ftr_reg entry for id.
827  *         - NULL on failure. It is upto the caller to decide
828  *	     the impact of a failure.
829  */
830 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
831 {
832 	const struct __ftr_reg_entry *ret;
833 
834 	ret = bsearch((const void *)(unsigned long)sys_id,
835 			arm64_ftr_regs,
836 			ARRAY_SIZE(arm64_ftr_regs),
837 			sizeof(arm64_ftr_regs[0]),
838 			search_cmp_ftr_reg);
839 	if (ret)
840 		return ret->reg;
841 	return NULL;
842 }
843 
844 /*
845  * get_arm64_ftr_reg - Looks up a feature register entry using
846  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
847  *
848  * returns - Upon success,  matching ftr_reg entry for id.
849  *         - NULL on failure but with an WARN_ON().
850  */
851 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
852 {
853 	struct arm64_ftr_reg *reg;
854 
855 	reg = get_arm64_ftr_reg_nowarn(sys_id);
856 
857 	/*
858 	 * Requesting a non-existent register search is an error. Warn
859 	 * and let the caller handle it.
860 	 */
861 	WARN_ON(!reg);
862 	return reg;
863 }
864 
865 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
866 			       s64 ftr_val)
867 {
868 	u64 mask = arm64_ftr_mask(ftrp);
869 
870 	reg &= ~mask;
871 	reg |= (ftr_val << ftrp->shift) & mask;
872 	return reg;
873 }
874 
875 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
876 				s64 cur)
877 {
878 	s64 ret = 0;
879 
880 	switch (ftrp->type) {
881 	case FTR_EXACT:
882 		ret = ftrp->safe_val;
883 		break;
884 	case FTR_LOWER_SAFE:
885 		ret = min(new, cur);
886 		break;
887 	case FTR_HIGHER_OR_ZERO_SAFE:
888 		if (!cur || !new)
889 			break;
890 		fallthrough;
891 	case FTR_HIGHER_SAFE:
892 		ret = max(new, cur);
893 		break;
894 	default:
895 		BUG();
896 	}
897 
898 	return ret;
899 }
900 
901 static void __init sort_ftr_regs(void)
902 {
903 	unsigned int i;
904 
905 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
906 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
907 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
908 		unsigned int j = 0;
909 
910 		/*
911 		 * Features here must be sorted in descending order with respect
912 		 * to their shift values and should not overlap with each other.
913 		 */
914 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
915 			unsigned int width = ftr_reg->ftr_bits[j].width;
916 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
917 			unsigned int prev_shift;
918 
919 			WARN((shift  + width) > 64,
920 				"%s has invalid feature at shift %d\n",
921 				ftr_reg->name, shift);
922 
923 			/*
924 			 * Skip the first feature. There is nothing to
925 			 * compare against for now.
926 			 */
927 			if (j == 0)
928 				continue;
929 
930 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
931 			WARN((shift + width) > prev_shift,
932 				"%s has feature overlap at shift %d\n",
933 				ftr_reg->name, shift);
934 		}
935 
936 		/*
937 		 * Skip the first register. There is nothing to
938 		 * compare against for now.
939 		 */
940 		if (i == 0)
941 			continue;
942 		/*
943 		 * Registers here must be sorted in ascending order with respect
944 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
945 		 * to work correctly.
946 		 */
947 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
948 	}
949 }
950 
951 /*
952  * Initialise the CPU feature register from Boot CPU values.
953  * Also initiliases the strict_mask for the register.
954  * Any bits that are not covered by an arm64_ftr_bits entry are considered
955  * RES0 for the system-wide value, and must strictly match.
956  */
957 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
958 {
959 	u64 val = 0;
960 	u64 strict_mask = ~0x0ULL;
961 	u64 user_mask = 0;
962 	u64 valid_mask = 0;
963 
964 	const struct arm64_ftr_bits *ftrp;
965 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
966 
967 	if (!reg)
968 		return;
969 
970 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
971 		u64 ftr_mask = arm64_ftr_mask(ftrp);
972 		s64 ftr_new = arm64_ftr_value(ftrp, new);
973 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
974 
975 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
976 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
977 			char *str = NULL;
978 
979 			if (ftr_ovr != tmp) {
980 				/* Unsafe, remove the override */
981 				reg->override->mask &= ~ftr_mask;
982 				reg->override->val &= ~ftr_mask;
983 				tmp = ftr_ovr;
984 				str = "ignoring override";
985 			} else if (ftr_new != tmp) {
986 				/* Override was valid */
987 				ftr_new = tmp;
988 				str = "forced";
989 			} else if (ftr_ovr == tmp) {
990 				/* Override was the safe value */
991 				str = "already set";
992 			}
993 
994 			if (str)
995 				pr_warn("%s[%d:%d]: %s to %llx\n",
996 					reg->name,
997 					ftrp->shift + ftrp->width - 1,
998 					ftrp->shift, str,
999 					tmp & (BIT(ftrp->width) - 1));
1000 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1001 			reg->override->val &= ~ftr_mask;
1002 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
1003 				reg->name,
1004 				ftrp->shift + ftrp->width - 1,
1005 				ftrp->shift);
1006 		}
1007 
1008 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
1009 
1010 		valid_mask |= ftr_mask;
1011 		if (!ftrp->strict)
1012 			strict_mask &= ~ftr_mask;
1013 		if (ftrp->visible)
1014 			user_mask |= ftr_mask;
1015 		else
1016 			reg->user_val = arm64_ftr_set_value(ftrp,
1017 							    reg->user_val,
1018 							    ftrp->safe_val);
1019 	}
1020 
1021 	val &= valid_mask;
1022 
1023 	reg->sys_val = val;
1024 	reg->strict_mask = strict_mask;
1025 	reg->user_mask = user_mask;
1026 }
1027 
1028 extern const struct arm64_cpu_capabilities arm64_errata[];
1029 static const struct arm64_cpu_capabilities arm64_features[];
1030 
1031 static void __init
1032 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1033 {
1034 	for (; caps->matches; caps++) {
1035 		if (WARN(caps->capability >= ARM64_NCAPS,
1036 			"Invalid capability %d\n", caps->capability))
1037 			continue;
1038 		if (WARN(cpucap_ptrs[caps->capability],
1039 			"Duplicate entry for capability %d\n",
1040 			caps->capability))
1041 			continue;
1042 		cpucap_ptrs[caps->capability] = caps;
1043 	}
1044 }
1045 
1046 static void __init init_cpucap_indirect_list(void)
1047 {
1048 	init_cpucap_indirect_list_from_array(arm64_features);
1049 	init_cpucap_indirect_list_from_array(arm64_errata);
1050 }
1051 
1052 static void __init setup_boot_cpu_capabilities(void);
1053 
1054 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1055 {
1056 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1057 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1058 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1059 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1060 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1061 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1062 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1063 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1064 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1065 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1066 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1067 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1068 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1069 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1070 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1071 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1072 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1073 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1074 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1075 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1076 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1077 }
1078 
1079 #ifdef CONFIG_ARM64_PSEUDO_NMI
1080 static bool enable_pseudo_nmi;
1081 
1082 static int __init early_enable_pseudo_nmi(char *p)
1083 {
1084 	return kstrtobool(p, &enable_pseudo_nmi);
1085 }
1086 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1087 
1088 static __init void detect_system_supports_pseudo_nmi(void)
1089 {
1090 	struct device_node *np;
1091 
1092 	if (!enable_pseudo_nmi)
1093 		return;
1094 
1095 	/*
1096 	 * Detect broken MediaTek firmware that doesn't properly save and
1097 	 * restore GIC priorities.
1098 	 */
1099 	np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1100 	if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1101 		pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1102 		enable_pseudo_nmi = false;
1103 	}
1104 	of_node_put(np);
1105 }
1106 #else /* CONFIG_ARM64_PSEUDO_NMI */
1107 static inline void detect_system_supports_pseudo_nmi(void) { }
1108 #endif
1109 
1110 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1111 {
1112 	/* Before we start using the tables, make sure it is sorted */
1113 	sort_ftr_regs();
1114 
1115 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1116 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1117 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1118 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1119 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1120 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1121 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1122 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1123 	init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1124 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1125 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1126 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1127 	init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1128 	init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1129 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1130 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1131 	init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1132 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1133 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1134 	init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1135 
1136 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1137 		init_32bit_cpu_features(&info->aarch32);
1138 
1139 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1140 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1141 		unsigned long cpacr = cpacr_save_enable_kernel_sve();
1142 
1143 		vec_init_vq_map(ARM64_VEC_SVE);
1144 
1145 		cpacr_restore(cpacr);
1146 	}
1147 
1148 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1149 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1150 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1151 
1152 		/*
1153 		 * We mask out SMPS since even if the hardware
1154 		 * supports priorities the kernel does not at present
1155 		 * and we block access to them.
1156 		 */
1157 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1158 		vec_init_vq_map(ARM64_VEC_SME);
1159 
1160 		cpacr_restore(cpacr);
1161 	}
1162 
1163 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1164 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1165 }
1166 
1167 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1168 {
1169 	const struct arm64_ftr_bits *ftrp;
1170 
1171 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1172 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1173 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1174 
1175 		if (ftr_cur == ftr_new)
1176 			continue;
1177 		/* Find a safe value */
1178 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1179 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1180 	}
1181 
1182 }
1183 
1184 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1185 {
1186 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1187 
1188 	if (!regp)
1189 		return 0;
1190 
1191 	update_cpu_ftr_reg(regp, val);
1192 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1193 		return 0;
1194 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1195 			regp->name, boot, cpu, val);
1196 	return 1;
1197 }
1198 
1199 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1200 {
1201 	const struct arm64_ftr_bits *ftrp;
1202 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1203 
1204 	if (!regp)
1205 		return;
1206 
1207 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1208 		if (ftrp->shift == field) {
1209 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1210 			break;
1211 		}
1212 	}
1213 
1214 	/* Bogus field? */
1215 	WARN_ON(!ftrp->width);
1216 }
1217 
1218 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1219 					 struct cpuinfo_arm64 *boot)
1220 {
1221 	static bool boot_cpu_32bit_regs_overridden = false;
1222 
1223 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1224 		return;
1225 
1226 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1227 		return;
1228 
1229 	boot->aarch32 = info->aarch32;
1230 	init_32bit_cpu_features(&boot->aarch32);
1231 	boot_cpu_32bit_regs_overridden = true;
1232 }
1233 
1234 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1235 				     struct cpuinfo_32bit *boot)
1236 {
1237 	int taint = 0;
1238 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1239 
1240 	/*
1241 	 * If we don't have AArch32 at EL1, then relax the strictness of
1242 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1243 	 */
1244 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1245 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1246 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1247 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1248 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1249 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1250 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1251 	}
1252 
1253 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1254 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1255 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1256 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1257 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1258 				      info->reg_id_isar0, boot->reg_id_isar0);
1259 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1260 				      info->reg_id_isar1, boot->reg_id_isar1);
1261 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1262 				      info->reg_id_isar2, boot->reg_id_isar2);
1263 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1264 				      info->reg_id_isar3, boot->reg_id_isar3);
1265 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1266 				      info->reg_id_isar4, boot->reg_id_isar4);
1267 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1268 				      info->reg_id_isar5, boot->reg_id_isar5);
1269 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1270 				      info->reg_id_isar6, boot->reg_id_isar6);
1271 
1272 	/*
1273 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1274 	 * ACTLR formats could differ across CPUs and therefore would have to
1275 	 * be trapped for virtualization anyway.
1276 	 */
1277 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1278 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1279 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1280 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1281 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1282 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1283 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1284 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1285 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1286 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1287 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1288 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1289 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1290 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1291 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1292 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1293 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1294 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1295 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1296 				      info->reg_mvfr0, boot->reg_mvfr0);
1297 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1298 				      info->reg_mvfr1, boot->reg_mvfr1);
1299 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1300 				      info->reg_mvfr2, boot->reg_mvfr2);
1301 
1302 	return taint;
1303 }
1304 
1305 /*
1306  * Update system wide CPU feature registers with the values from a
1307  * non-boot CPU. Also performs SANITY checks to make sure that there
1308  * aren't any insane variations from that of the boot CPU.
1309  */
1310 void update_cpu_features(int cpu,
1311 			 struct cpuinfo_arm64 *info,
1312 			 struct cpuinfo_arm64 *boot)
1313 {
1314 	int taint = 0;
1315 
1316 	/*
1317 	 * The kernel can handle differing I-cache policies, but otherwise
1318 	 * caches should look identical. Userspace JITs will make use of
1319 	 * *minLine.
1320 	 */
1321 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1322 				      info->reg_ctr, boot->reg_ctr);
1323 
1324 	/*
1325 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1326 	 * could result in too much or too little memory being zeroed if a
1327 	 * process is preempted and migrated between CPUs.
1328 	 */
1329 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1330 				      info->reg_dczid, boot->reg_dczid);
1331 
1332 	/* If different, timekeeping will be broken (especially with KVM) */
1333 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1334 				      info->reg_cntfrq, boot->reg_cntfrq);
1335 
1336 	/*
1337 	 * The kernel uses self-hosted debug features and expects CPUs to
1338 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1339 	 * and BRPs to be identical.
1340 	 * ID_AA64DFR1 is currently RES0.
1341 	 */
1342 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1343 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1344 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1345 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1346 	/*
1347 	 * Even in big.LITTLE, processors should be identical instruction-set
1348 	 * wise.
1349 	 */
1350 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1351 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1352 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1353 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1354 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1355 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1356 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1357 				      info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1358 
1359 	/*
1360 	 * Differing PARange support is fine as long as all peripherals and
1361 	 * memory are mapped within the minimum PARange of all CPUs.
1362 	 * Linux should not care about secure memory.
1363 	 */
1364 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1365 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1366 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1367 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1368 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1369 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1370 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1371 				      info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1372 
1373 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1374 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1375 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1376 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1377 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1378 				      info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1379 
1380 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1381 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1382 
1383 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1384 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1385 
1386 	taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1387 				      info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1388 
1389 	/* Probe vector lengths */
1390 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1391 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1392 		if (!system_capabilities_finalized()) {
1393 			unsigned long cpacr = cpacr_save_enable_kernel_sve();
1394 
1395 			vec_update_vq_map(ARM64_VEC_SVE);
1396 
1397 			cpacr_restore(cpacr);
1398 		}
1399 	}
1400 
1401 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1402 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1403 		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1404 
1405 		/*
1406 		 * We mask out SMPS since even if the hardware
1407 		 * supports priorities the kernel does not at present
1408 		 * and we block access to them.
1409 		 */
1410 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1411 
1412 		/* Probe vector lengths */
1413 		if (!system_capabilities_finalized())
1414 			vec_update_vq_map(ARM64_VEC_SME);
1415 
1416 		cpacr_restore(cpacr);
1417 	}
1418 
1419 	/*
1420 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1421 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1422 	 * value is the same on all CPUs.
1423 	 */
1424 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1425 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1426 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1427 					      info->reg_gmid, boot->reg_gmid);
1428 	}
1429 
1430 	/*
1431 	 * If we don't have AArch32 at all then skip the checks entirely
1432 	 * as the register values may be UNKNOWN and we're not going to be
1433 	 * using them for anything.
1434 	 *
1435 	 * This relies on a sanitised view of the AArch64 ID registers
1436 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1437 	 */
1438 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1439 		lazy_init_32bit_cpu_features(info, boot);
1440 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1441 						   &boot->aarch32);
1442 	}
1443 
1444 	/*
1445 	 * Mismatched CPU features are a recipe for disaster. Don't even
1446 	 * pretend to support them.
1447 	 */
1448 	if (taint) {
1449 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1450 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1451 	}
1452 }
1453 
1454 u64 read_sanitised_ftr_reg(u32 id)
1455 {
1456 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1457 
1458 	if (!regp)
1459 		return 0;
1460 	return regp->sys_val;
1461 }
1462 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1463 
1464 #define read_sysreg_case(r)	\
1465 	case r:		val = read_sysreg_s(r); break;
1466 
1467 /*
1468  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1469  * Read the system register on the current CPU
1470  */
1471 u64 __read_sysreg_by_encoding(u32 sys_id)
1472 {
1473 	struct arm64_ftr_reg *regp;
1474 	u64 val;
1475 
1476 	switch (sys_id) {
1477 	read_sysreg_case(SYS_ID_PFR0_EL1);
1478 	read_sysreg_case(SYS_ID_PFR1_EL1);
1479 	read_sysreg_case(SYS_ID_PFR2_EL1);
1480 	read_sysreg_case(SYS_ID_DFR0_EL1);
1481 	read_sysreg_case(SYS_ID_DFR1_EL1);
1482 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1483 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1484 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1485 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1486 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1487 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1488 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1489 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1490 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1491 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1492 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1493 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1494 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1495 	read_sysreg_case(SYS_MVFR0_EL1);
1496 	read_sysreg_case(SYS_MVFR1_EL1);
1497 	read_sysreg_case(SYS_MVFR2_EL1);
1498 
1499 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1500 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1501 	read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1502 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1503 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1504 	read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1505 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1506 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1507 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1508 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1509 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1510 	read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1511 	read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1512 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1513 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1514 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1515 	read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1516 
1517 	read_sysreg_case(SYS_CNTFRQ_EL0);
1518 	read_sysreg_case(SYS_CTR_EL0);
1519 	read_sysreg_case(SYS_DCZID_EL0);
1520 
1521 	default:
1522 		BUG();
1523 		return 0;
1524 	}
1525 
1526 	regp  = get_arm64_ftr_reg(sys_id);
1527 	if (regp) {
1528 		val &= ~regp->override->mask;
1529 		val |= (regp->override->val & regp->override->mask);
1530 	}
1531 
1532 	return val;
1533 }
1534 
1535 #include <linux/irqchip/arm-gic-v3.h>
1536 
1537 static bool
1538 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1539 {
1540 	return true;
1541 }
1542 
1543 static bool
1544 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1545 {
1546 	int val, min, max;
1547 	u64 tmp;
1548 
1549 	val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1550 						entry->field_width,
1551 						entry->sign);
1552 
1553 	tmp = entry->min_field_value;
1554 	tmp <<= entry->field_pos;
1555 
1556 	min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1557 						entry->field_width,
1558 						entry->sign);
1559 
1560 	tmp = entry->max_field_value;
1561 	tmp <<= entry->field_pos;
1562 
1563 	max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1564 						entry->field_width,
1565 						entry->sign);
1566 
1567 	return val >= min && val <= max;
1568 }
1569 
1570 static u64
1571 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1572 {
1573 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1574 	if (scope == SCOPE_SYSTEM)
1575 		return read_sanitised_ftr_reg(entry->sys_reg);
1576 	else
1577 		return __read_sysreg_by_encoding(entry->sys_reg);
1578 }
1579 
1580 static bool
1581 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1582 {
1583 	int mask;
1584 	struct arm64_ftr_reg *regp;
1585 	u64 val = read_scoped_sysreg(entry, scope);
1586 
1587 	regp = get_arm64_ftr_reg(entry->sys_reg);
1588 	if (!regp)
1589 		return false;
1590 
1591 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1592 							  entry->field_pos,
1593 							  entry->field_width);
1594 	if (!mask)
1595 		return false;
1596 
1597 	return feature_matches(val, entry);
1598 }
1599 
1600 static bool
1601 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1602 {
1603 	u64 val = read_scoped_sysreg(entry, scope);
1604 	return feature_matches(val, entry);
1605 }
1606 
1607 const struct cpumask *system_32bit_el0_cpumask(void)
1608 {
1609 	if (!system_supports_32bit_el0())
1610 		return cpu_none_mask;
1611 
1612 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1613 		return cpu_32bit_el0_mask;
1614 
1615 	return cpu_possible_mask;
1616 }
1617 
1618 static int __init parse_32bit_el0_param(char *str)
1619 {
1620 	allow_mismatched_32bit_el0 = true;
1621 	return 0;
1622 }
1623 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1624 
1625 static ssize_t aarch32_el0_show(struct device *dev,
1626 				struct device_attribute *attr, char *buf)
1627 {
1628 	const struct cpumask *mask = system_32bit_el0_cpumask();
1629 
1630 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1631 }
1632 static const DEVICE_ATTR_RO(aarch32_el0);
1633 
1634 static int __init aarch32_el0_sysfs_init(void)
1635 {
1636 	struct device *dev_root;
1637 	int ret = 0;
1638 
1639 	if (!allow_mismatched_32bit_el0)
1640 		return 0;
1641 
1642 	dev_root = bus_get_dev_root(&cpu_subsys);
1643 	if (dev_root) {
1644 		ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1645 		put_device(dev_root);
1646 	}
1647 	return ret;
1648 }
1649 device_initcall(aarch32_el0_sysfs_init);
1650 
1651 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1652 {
1653 	if (!has_cpuid_feature(entry, scope))
1654 		return allow_mismatched_32bit_el0;
1655 
1656 	if (scope == SCOPE_SYSTEM)
1657 		pr_info("detected: 32-bit EL0 Support\n");
1658 
1659 	return true;
1660 }
1661 
1662 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1663 {
1664 	bool has_sre;
1665 
1666 	if (!has_cpuid_feature(entry, scope))
1667 		return false;
1668 
1669 	has_sre = gic_enable_sre();
1670 	if (!has_sre)
1671 		pr_warn_once("%s present but disabled by higher exception level\n",
1672 			     entry->desc);
1673 
1674 	return has_sre;
1675 }
1676 
1677 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1678 			  int scope)
1679 {
1680 	u64 ctr;
1681 
1682 	if (scope == SCOPE_SYSTEM)
1683 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1684 	else
1685 		ctr = read_cpuid_effective_cachetype();
1686 
1687 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1688 }
1689 
1690 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1691 {
1692 	/*
1693 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1694 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1695 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1696 	 * value.
1697 	 */
1698 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1699 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1700 }
1701 
1702 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1703 			  int scope)
1704 {
1705 	u64 ctr;
1706 
1707 	if (scope == SCOPE_SYSTEM)
1708 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1709 	else
1710 		ctr = read_cpuid_cachetype();
1711 
1712 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1713 }
1714 
1715 static bool __maybe_unused
1716 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1717 {
1718 	/*
1719 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1720 	 * may share TLB entries with a CPU stuck in the crashed
1721 	 * kernel.
1722 	 */
1723 	if (is_kdump_kernel())
1724 		return false;
1725 
1726 	if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1727 		return false;
1728 
1729 	return has_cpuid_feature(entry, scope);
1730 }
1731 
1732 static bool __meltdown_safe = true;
1733 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1734 
1735 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1736 				int scope)
1737 {
1738 	/* List of CPUs that are not vulnerable and don't need KPTI */
1739 	static const struct midr_range kpti_safe_list[] = {
1740 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1741 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1742 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1743 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1744 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1745 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1746 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1747 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1748 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1749 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1750 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1751 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1752 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1753 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1754 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1755 		{ /* sentinel */ }
1756 	};
1757 	char const *str = "kpti command line option";
1758 	bool meltdown_safe;
1759 
1760 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1761 
1762 	/* Defer to CPU feature registers */
1763 	if (has_cpuid_feature(entry, scope))
1764 		meltdown_safe = true;
1765 
1766 	if (!meltdown_safe)
1767 		__meltdown_safe = false;
1768 
1769 	/*
1770 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1771 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1772 	 * ends as well as you might imagine. Don't even try. We cannot rely
1773 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1774 	 * because cpucap detection order may change. However, since we know
1775 	 * affected CPUs are always in a homogeneous configuration, it is
1776 	 * safe to rely on this_cpu_has_cap() here.
1777 	 */
1778 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1779 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1780 		__kpti_forced = -1;
1781 	}
1782 
1783 	/* Useful for KASLR robustness */
1784 	if (kaslr_enabled() && kaslr_requires_kpti()) {
1785 		if (!__kpti_forced) {
1786 			str = "KASLR";
1787 			__kpti_forced = 1;
1788 		}
1789 	}
1790 
1791 	if (cpu_mitigations_off() && !__kpti_forced) {
1792 		str = "mitigations=off";
1793 		__kpti_forced = -1;
1794 	}
1795 
1796 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1797 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1798 		return false;
1799 	}
1800 
1801 	/* Forced? */
1802 	if (__kpti_forced) {
1803 		pr_info_once("kernel page table isolation forced %s by %s\n",
1804 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1805 		return __kpti_forced > 0;
1806 	}
1807 
1808 	return !meltdown_safe;
1809 }
1810 
1811 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1812 {
1813 	/*
1814 	 * Although the Apple M2 family appears to support NV1, the
1815 	 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1816 	 * that it doesn't support NV1 at all.
1817 	 */
1818 	static const struct midr_range nv1_ni_list[] = {
1819 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1820 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1821 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1822 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1823 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1824 		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1825 		{}
1826 	};
1827 
1828 	return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1829 		!(has_cpuid_feature(entry, scope) ||
1830 		  is_midr_in_range_list(read_cpuid_id(), nv1_ni_list)));
1831 }
1832 
1833 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1834 static bool has_lpa2_at_stage1(u64 mmfr0)
1835 {
1836 	unsigned int tgran;
1837 
1838 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1839 					ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1840 	return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1841 }
1842 
1843 static bool has_lpa2_at_stage2(u64 mmfr0)
1844 {
1845 	unsigned int tgran;
1846 
1847 	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1848 					ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1849 	return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1850 }
1851 
1852 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1853 {
1854 	u64 mmfr0;
1855 
1856 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1857 	return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1858 }
1859 #else
1860 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1861 {
1862 	return false;
1863 }
1864 #endif
1865 
1866 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1867 #define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1868 
1869 extern
1870 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1871 			     phys_addr_t size, pgprot_t prot,
1872 			     phys_addr_t (*pgtable_alloc)(int), int flags);
1873 
1874 static phys_addr_t __initdata kpti_ng_temp_alloc;
1875 
1876 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1877 {
1878 	kpti_ng_temp_alloc -= PAGE_SIZE;
1879 	return kpti_ng_temp_alloc;
1880 }
1881 
1882 static int __init __kpti_install_ng_mappings(void *__unused)
1883 {
1884 	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1885 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1886 	kpti_remap_fn *remap_fn;
1887 
1888 	int cpu = smp_processor_id();
1889 	int levels = CONFIG_PGTABLE_LEVELS;
1890 	int order = order_base_2(levels);
1891 	u64 kpti_ng_temp_pgd_pa = 0;
1892 	pgd_t *kpti_ng_temp_pgd;
1893 	u64 alloc = 0;
1894 
1895 	if (levels == 5 && !pgtable_l5_enabled())
1896 		levels = 4;
1897 	else if (levels == 4 && !pgtable_l4_enabled())
1898 		levels = 3;
1899 
1900 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1901 
1902 	if (!cpu) {
1903 		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1904 		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1905 		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1906 
1907 		//
1908 		// Create a minimal page table hierarchy that permits us to map
1909 		// the swapper page tables temporarily as we traverse them.
1910 		//
1911 		// The physical pages are laid out as follows:
1912 		//
1913 		// +--------+-/-------+-/------ +-/------ +-\\\--------+
1914 		// :  PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[]  :
1915 		// +--------+-\-------+-\------ +-\------ +-///--------+
1916 		//      ^
1917 		// The first page is mapped into this hierarchy at a PMD_SHIFT
1918 		// aligned virtual address, so that we can manipulate the PTE
1919 		// level entries while the mapping is active. The first entry
1920 		// covers the PTE[] page itself, the remaining entries are free
1921 		// to be used as a ad-hoc fixmap.
1922 		//
1923 		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1924 					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1925 					kpti_ng_pgd_alloc, 0);
1926 	}
1927 
1928 	cpu_install_idmap();
1929 	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1930 	cpu_uninstall_idmap();
1931 
1932 	if (!cpu) {
1933 		free_pages(alloc, order);
1934 		arm64_use_ng_mappings = true;
1935 	}
1936 
1937 	return 0;
1938 }
1939 
1940 static void __init kpti_install_ng_mappings(void)
1941 {
1942 	/* Check whether KPTI is going to be used */
1943 	if (!arm64_kernel_unmapped_at_el0())
1944 		return;
1945 
1946 	/*
1947 	 * We don't need to rewrite the page-tables if either we've done
1948 	 * it already or we have KASLR enabled and therefore have not
1949 	 * created any global mappings at all.
1950 	 */
1951 	if (arm64_use_ng_mappings)
1952 		return;
1953 
1954 	stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1955 }
1956 
1957 #else
1958 static inline void kpti_install_ng_mappings(void)
1959 {
1960 }
1961 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1962 
1963 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1964 {
1965 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1966 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1967 
1968 		__this_cpu_write(this_cpu_vector, v);
1969 	}
1970 
1971 }
1972 
1973 static int __init parse_kpti(char *str)
1974 {
1975 	bool enabled;
1976 	int ret = kstrtobool(str, &enabled);
1977 
1978 	if (ret)
1979 		return ret;
1980 
1981 	__kpti_forced = enabled ? 1 : -1;
1982 	return 0;
1983 }
1984 early_param("kpti", parse_kpti);
1985 
1986 #ifdef CONFIG_ARM64_HW_AFDBM
1987 static struct cpumask dbm_cpus __read_mostly;
1988 
1989 static inline void __cpu_enable_hw_dbm(void)
1990 {
1991 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1992 
1993 	write_sysreg(tcr, tcr_el1);
1994 	isb();
1995 	local_flush_tlb_all();
1996 }
1997 
1998 static bool cpu_has_broken_dbm(void)
1999 {
2000 	/* List of CPUs which have broken DBM support. */
2001 	static const struct midr_range cpus[] = {
2002 #ifdef CONFIG_ARM64_ERRATUM_1024718
2003 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2004 		/* Kryo4xx Silver (rdpe => r1p0) */
2005 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2006 #endif
2007 #ifdef CONFIG_ARM64_ERRATUM_2051678
2008 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2009 #endif
2010 		{},
2011 	};
2012 
2013 	return is_midr_in_range_list(read_cpuid_id(), cpus);
2014 }
2015 
2016 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2017 {
2018 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2019 	       !cpu_has_broken_dbm();
2020 }
2021 
2022 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2023 {
2024 	if (cpu_can_use_dbm(cap)) {
2025 		__cpu_enable_hw_dbm();
2026 		cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2027 	}
2028 }
2029 
2030 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2031 		       int __unused)
2032 {
2033 	/*
2034 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
2035 	 * run a mix of CPUs with and without the feature. So, we
2036 	 * unconditionally enable the capability to allow any late CPU
2037 	 * to use the feature. We only enable the control bits on the
2038 	 * CPU, if it is supported.
2039 	 */
2040 
2041 	return true;
2042 }
2043 
2044 #endif
2045 
2046 #ifdef CONFIG_ARM64_AMU_EXTN
2047 
2048 /*
2049  * The "amu_cpus" cpumask only signals that the CPU implementation for the
2050  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2051  * information regarding all the events that it supports. When a CPU bit is
2052  * set in the cpumask, the user of this feature can only rely on the presence
2053  * of the 4 fixed counters for that CPU. But this does not guarantee that the
2054  * counters are enabled or access to these counters is enabled by code
2055  * executed at higher exception levels (firmware).
2056  */
2057 static struct cpumask amu_cpus __read_mostly;
2058 
2059 bool cpu_has_amu_feat(int cpu)
2060 {
2061 	return cpumask_test_cpu(cpu, &amu_cpus);
2062 }
2063 
2064 int get_cpu_with_amu_feat(void)
2065 {
2066 	return cpumask_any(&amu_cpus);
2067 }
2068 
2069 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2070 {
2071 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2072 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2073 
2074 		/* 0 reference values signal broken/disabled counters */
2075 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2076 			update_freq_counters_refs();
2077 	}
2078 }
2079 
2080 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2081 		    int __unused)
2082 {
2083 	/*
2084 	 * The AMU extension is a non-conflicting feature: the kernel can
2085 	 * safely run a mix of CPUs with and without support for the
2086 	 * activity monitors extension. Therefore, unconditionally enable
2087 	 * the capability to allow any late CPU to use the feature.
2088 	 *
2089 	 * With this feature unconditionally enabled, the cpu_enable
2090 	 * function will be called for all CPUs that match the criteria,
2091 	 * including secondary and hotplugged, marking this feature as
2092 	 * present on that respective CPU. The enable function will also
2093 	 * print a detection message.
2094 	 */
2095 
2096 	return true;
2097 }
2098 #else
2099 int get_cpu_with_amu_feat(void)
2100 {
2101 	return nr_cpu_ids;
2102 }
2103 #endif
2104 
2105 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2106 {
2107 	return is_kernel_in_hyp_mode();
2108 }
2109 
2110 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2111 {
2112 	/*
2113 	 * Copy register values that aren't redirected by hardware.
2114 	 *
2115 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2116 	 * this value to tpidr_el2 before we patch the code. Once we've done
2117 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2118 	 * do anything here.
2119 	 */
2120 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2121 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2122 }
2123 
2124 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2125 				    int scope)
2126 {
2127 	if (kvm_get_mode() != KVM_MODE_NV)
2128 		return false;
2129 
2130 	if (!has_cpuid_feature(cap, scope)) {
2131 		pr_warn("unavailable: %s\n", cap->desc);
2132 		return false;
2133 	}
2134 
2135 	return true;
2136 }
2137 
2138 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2139 			  int __unused)
2140 {
2141 	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2142 }
2143 
2144 #ifdef CONFIG_ARM64_PAN
2145 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2146 {
2147 	/*
2148 	 * We modify PSTATE. This won't work from irq context as the PSTATE
2149 	 * is discarded once we return from the exception.
2150 	 */
2151 	WARN_ON_ONCE(in_interrupt());
2152 
2153 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2154 	set_pstate_pan(1);
2155 }
2156 #endif /* CONFIG_ARM64_PAN */
2157 
2158 #ifdef CONFIG_ARM64_RAS_EXTN
2159 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2160 {
2161 	/* Firmware may have left a deferred SError in this register. */
2162 	write_sysreg_s(0, SYS_DISR_EL1);
2163 }
2164 #endif /* CONFIG_ARM64_RAS_EXTN */
2165 
2166 #ifdef CONFIG_ARM64_PTR_AUTH
2167 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2168 {
2169 	int boot_val, sec_val;
2170 
2171 	/* We don't expect to be called with SCOPE_SYSTEM */
2172 	WARN_ON(scope == SCOPE_SYSTEM);
2173 	/*
2174 	 * The ptr-auth feature levels are not intercompatible with lower
2175 	 * levels. Hence we must match ptr-auth feature level of the secondary
2176 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2177 	 * from the sanitised register whereas direct register read is done for
2178 	 * the secondary CPUs.
2179 	 * The sanitised feature state is guaranteed to match that of the
2180 	 * boot CPU as a mismatched secondary CPU is parked before it gets
2181 	 * a chance to update the state, with the capability.
2182 	 */
2183 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2184 					       entry->field_pos, entry->sign);
2185 	if (scope & SCOPE_BOOT_CPU)
2186 		return boot_val >= entry->min_field_value;
2187 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2188 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2189 					      entry->field_pos, entry->sign);
2190 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2191 }
2192 
2193 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2194 				     int scope)
2195 {
2196 	bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2197 	bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2198 	bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2199 
2200 	return apa || apa3 || api;
2201 }
2202 
2203 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2204 			     int __unused)
2205 {
2206 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2207 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2208 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2209 
2210 	return gpa || gpa3 || gpi;
2211 }
2212 #endif /* CONFIG_ARM64_PTR_AUTH */
2213 
2214 #ifdef CONFIG_ARM64_E0PD
2215 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2216 {
2217 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2218 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2219 }
2220 #endif /* CONFIG_ARM64_E0PD */
2221 
2222 #ifdef CONFIG_ARM64_PSEUDO_NMI
2223 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2224 				   int scope)
2225 {
2226 	/*
2227 	 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2228 	 * feature, so will be detected earlier.
2229 	 */
2230 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2231 	if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2232 		return false;
2233 
2234 	return enable_pseudo_nmi;
2235 }
2236 
2237 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2238 				      int scope)
2239 {
2240 	/*
2241 	 * If we're not using priority masking then we won't be poking PMR_EL1,
2242 	 * and there's no need to relax synchronization of writes to it, and
2243 	 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2244 	 * that.
2245 	 *
2246 	 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2247 	 * feature, so will be detected earlier.
2248 	 */
2249 	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2250 	if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2251 		return false;
2252 
2253 	/*
2254 	 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2255 	 * hint for interrupt distribution, a DSB is not necessary when
2256 	 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2257 	 *
2258 	 * Linux itself doesn't use 1:N distribution, so has no need to
2259 	 * set PMHE. The only reason to have it set is if EL3 requires it
2260 	 * (and we can't change it).
2261 	 */
2262 	return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2263 }
2264 #endif
2265 
2266 #ifdef CONFIG_ARM64_BTI
2267 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2268 {
2269 	/*
2270 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2271 	 * function entry points using BR is a requirement for
2272 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2273 	 * So, be strict and forbid other BRs using other registers to
2274 	 * jump onto a PACIxSP instruction:
2275 	 */
2276 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2277 	isb();
2278 }
2279 #endif /* CONFIG_ARM64_BTI */
2280 
2281 #ifdef CONFIG_ARM64_MTE
2282 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2283 {
2284 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2285 
2286 	mte_cpu_setup();
2287 
2288 	/*
2289 	 * Clear the tags in the zero page. This needs to be done via the
2290 	 * linear map which has the Tagged attribute.
2291 	 */
2292 	if (try_page_mte_tagging(ZERO_PAGE(0))) {
2293 		mte_clear_page_tags(lm_alias(empty_zero_page));
2294 		set_page_mte_tagged(ZERO_PAGE(0));
2295 	}
2296 
2297 	kasan_init_hw_tags_cpu();
2298 }
2299 #endif /* CONFIG_ARM64_MTE */
2300 
2301 static void user_feature_fixup(void)
2302 {
2303 	if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2304 		struct arm64_ftr_reg *regp;
2305 
2306 		regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2307 		if (regp)
2308 			regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2309 	}
2310 
2311 	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2312 		struct arm64_ftr_reg *regp;
2313 
2314 		regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2315 		if (regp)
2316 			regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2317 	}
2318 }
2319 
2320 static void elf_hwcap_fixup(void)
2321 {
2322 #ifdef CONFIG_COMPAT
2323 	if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2324 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2325 #endif /* CONFIG_COMPAT */
2326 }
2327 
2328 #ifdef CONFIG_KVM
2329 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2330 {
2331 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2332 }
2333 #endif /* CONFIG_KVM */
2334 
2335 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2336 {
2337 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2338 }
2339 
2340 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2341 {
2342 	set_pstate_dit(1);
2343 }
2344 
2345 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2346 {
2347 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2348 }
2349 
2350 /* Internal helper functions to match cpu capability type */
2351 static bool
2352 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2353 {
2354 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2355 }
2356 
2357 static bool
2358 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2359 {
2360 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2361 }
2362 
2363 static bool
2364 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2365 {
2366 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2367 }
2368 
2369 static const struct arm64_cpu_capabilities arm64_features[] = {
2370 	{
2371 		.capability = ARM64_ALWAYS_BOOT,
2372 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2373 		.matches = has_always,
2374 	},
2375 	{
2376 		.capability = ARM64_ALWAYS_SYSTEM,
2377 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2378 		.matches = has_always,
2379 	},
2380 	{
2381 		.desc = "GIC system register CPU interface",
2382 		.capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2383 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2384 		.matches = has_useable_gicv3_cpuif,
2385 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2386 	},
2387 	{
2388 		.desc = "Enhanced Counter Virtualization",
2389 		.capability = ARM64_HAS_ECV,
2390 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2391 		.matches = has_cpuid_feature,
2392 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2393 	},
2394 	{
2395 		.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2396 		.capability = ARM64_HAS_ECV_CNTPOFF,
2397 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2398 		.matches = has_cpuid_feature,
2399 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2400 	},
2401 #ifdef CONFIG_ARM64_PAN
2402 	{
2403 		.desc = "Privileged Access Never",
2404 		.capability = ARM64_HAS_PAN,
2405 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2406 		.matches = has_cpuid_feature,
2407 		.cpu_enable = cpu_enable_pan,
2408 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2409 	},
2410 #endif /* CONFIG_ARM64_PAN */
2411 #ifdef CONFIG_ARM64_EPAN
2412 	{
2413 		.desc = "Enhanced Privileged Access Never",
2414 		.capability = ARM64_HAS_EPAN,
2415 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2416 		.matches = has_cpuid_feature,
2417 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2418 	},
2419 #endif /* CONFIG_ARM64_EPAN */
2420 #ifdef CONFIG_ARM64_LSE_ATOMICS
2421 	{
2422 		.desc = "LSE atomic instructions",
2423 		.capability = ARM64_HAS_LSE_ATOMICS,
2424 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2425 		.matches = has_cpuid_feature,
2426 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2427 	},
2428 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2429 	{
2430 		.desc = "Virtualization Host Extensions",
2431 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2432 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2433 		.matches = runs_at_el2,
2434 		.cpu_enable = cpu_copy_el2regs,
2435 	},
2436 	{
2437 		.desc = "Nested Virtualization Support",
2438 		.capability = ARM64_HAS_NESTED_VIRT,
2439 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2440 		.matches = has_nested_virt_support,
2441 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2442 	},
2443 	{
2444 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2445 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2446 		.matches = has_32bit_el0,
2447 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2448 	},
2449 #ifdef CONFIG_KVM
2450 	{
2451 		.desc = "32-bit EL1 Support",
2452 		.capability = ARM64_HAS_32BIT_EL1,
2453 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2454 		.matches = has_cpuid_feature,
2455 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2456 	},
2457 	{
2458 		.desc = "Protected KVM",
2459 		.capability = ARM64_KVM_PROTECTED_MODE,
2460 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2461 		.matches = is_kvm_protected_mode,
2462 	},
2463 	{
2464 		.desc = "HCRX_EL2 register",
2465 		.capability = ARM64_HAS_HCX,
2466 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2467 		.matches = has_cpuid_feature,
2468 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2469 	},
2470 #endif
2471 	{
2472 		.desc = "Kernel page table isolation (KPTI)",
2473 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2474 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2475 		.cpu_enable = cpu_enable_kpti,
2476 		.matches = unmap_kernel_at_el0,
2477 		/*
2478 		 * The ID feature fields below are used to indicate that
2479 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2480 		 * more details.
2481 		 */
2482 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2483 	},
2484 	{
2485 		.capability = ARM64_HAS_FPSIMD,
2486 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2487 		.matches = has_cpuid_feature,
2488 		.cpu_enable = cpu_enable_fpsimd,
2489 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2490 	},
2491 #ifdef CONFIG_ARM64_PMEM
2492 	{
2493 		.desc = "Data cache clean to Point of Persistence",
2494 		.capability = ARM64_HAS_DCPOP,
2495 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2496 		.matches = has_cpuid_feature,
2497 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2498 	},
2499 	{
2500 		.desc = "Data cache clean to Point of Deep Persistence",
2501 		.capability = ARM64_HAS_DCPODP,
2502 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2503 		.matches = has_cpuid_feature,
2504 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2505 	},
2506 #endif
2507 #ifdef CONFIG_ARM64_SVE
2508 	{
2509 		.desc = "Scalable Vector Extension",
2510 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2511 		.capability = ARM64_SVE,
2512 		.cpu_enable = cpu_enable_sve,
2513 		.matches = has_cpuid_feature,
2514 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2515 	},
2516 #endif /* CONFIG_ARM64_SVE */
2517 #ifdef CONFIG_ARM64_RAS_EXTN
2518 	{
2519 		.desc = "RAS Extension Support",
2520 		.capability = ARM64_HAS_RAS_EXTN,
2521 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2522 		.matches = has_cpuid_feature,
2523 		.cpu_enable = cpu_clear_disr,
2524 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2525 	},
2526 #endif /* CONFIG_ARM64_RAS_EXTN */
2527 #ifdef CONFIG_ARM64_AMU_EXTN
2528 	{
2529 		.desc = "Activity Monitors Unit (AMU)",
2530 		.capability = ARM64_HAS_AMU_EXTN,
2531 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2532 		.matches = has_amu,
2533 		.cpu_enable = cpu_amu_enable,
2534 		.cpus = &amu_cpus,
2535 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2536 	},
2537 #endif /* CONFIG_ARM64_AMU_EXTN */
2538 	{
2539 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2540 		.capability = ARM64_HAS_CACHE_IDC,
2541 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2542 		.matches = has_cache_idc,
2543 		.cpu_enable = cpu_emulate_effective_ctr,
2544 	},
2545 	{
2546 		.desc = "Instruction cache invalidation not required for I/D coherence",
2547 		.capability = ARM64_HAS_CACHE_DIC,
2548 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2549 		.matches = has_cache_dic,
2550 	},
2551 	{
2552 		.desc = "Stage-2 Force Write-Back",
2553 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2554 		.capability = ARM64_HAS_STAGE2_FWB,
2555 		.matches = has_cpuid_feature,
2556 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2557 	},
2558 	{
2559 		.desc = "ARMv8.4 Translation Table Level",
2560 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2561 		.capability = ARM64_HAS_ARMv8_4_TTL,
2562 		.matches = has_cpuid_feature,
2563 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2564 	},
2565 	{
2566 		.desc = "TLB range maintenance instructions",
2567 		.capability = ARM64_HAS_TLB_RANGE,
2568 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2569 		.matches = has_cpuid_feature,
2570 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2571 	},
2572 #ifdef CONFIG_ARM64_HW_AFDBM
2573 	{
2574 		.desc = "Hardware dirty bit management",
2575 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2576 		.capability = ARM64_HW_DBM,
2577 		.matches = has_hw_dbm,
2578 		.cpu_enable = cpu_enable_hw_dbm,
2579 		.cpus = &dbm_cpus,
2580 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2581 	},
2582 #endif
2583 	{
2584 		.desc = "CRC32 instructions",
2585 		.capability = ARM64_HAS_CRC32,
2586 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2587 		.matches = has_cpuid_feature,
2588 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2589 	},
2590 	{
2591 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2592 		.capability = ARM64_SSBS,
2593 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2594 		.matches = has_cpuid_feature,
2595 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2596 	},
2597 #ifdef CONFIG_ARM64_CNP
2598 	{
2599 		.desc = "Common not Private translations",
2600 		.capability = ARM64_HAS_CNP,
2601 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2602 		.matches = has_useable_cnp,
2603 		.cpu_enable = cpu_enable_cnp,
2604 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2605 	},
2606 #endif
2607 	{
2608 		.desc = "Speculation barrier (SB)",
2609 		.capability = ARM64_HAS_SB,
2610 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2611 		.matches = has_cpuid_feature,
2612 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2613 	},
2614 #ifdef CONFIG_ARM64_PTR_AUTH
2615 	{
2616 		.desc = "Address authentication (architected QARMA5 algorithm)",
2617 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2618 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2619 		.matches = has_address_auth_cpucap,
2620 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2621 	},
2622 	{
2623 		.desc = "Address authentication (architected QARMA3 algorithm)",
2624 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2625 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2626 		.matches = has_address_auth_cpucap,
2627 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2628 	},
2629 	{
2630 		.desc = "Address authentication (IMP DEF algorithm)",
2631 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2632 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2633 		.matches = has_address_auth_cpucap,
2634 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2635 	},
2636 	{
2637 		.capability = ARM64_HAS_ADDRESS_AUTH,
2638 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2639 		.matches = has_address_auth_metacap,
2640 	},
2641 	{
2642 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2643 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2644 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2645 		.matches = has_cpuid_feature,
2646 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2647 	},
2648 	{
2649 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2650 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2651 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2652 		.matches = has_cpuid_feature,
2653 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2654 	},
2655 	{
2656 		.desc = "Generic authentication (IMP DEF algorithm)",
2657 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2658 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2659 		.matches = has_cpuid_feature,
2660 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2661 	},
2662 	{
2663 		.capability = ARM64_HAS_GENERIC_AUTH,
2664 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2665 		.matches = has_generic_auth,
2666 	},
2667 #endif /* CONFIG_ARM64_PTR_AUTH */
2668 #ifdef CONFIG_ARM64_PSEUDO_NMI
2669 	{
2670 		/*
2671 		 * Depends on having GICv3
2672 		 */
2673 		.desc = "IRQ priority masking",
2674 		.capability = ARM64_HAS_GIC_PRIO_MASKING,
2675 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2676 		.matches = can_use_gic_priorities,
2677 	},
2678 	{
2679 		/*
2680 		 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2681 		 */
2682 		.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2683 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2684 		.matches = has_gic_prio_relaxed_sync,
2685 	},
2686 #endif
2687 #ifdef CONFIG_ARM64_E0PD
2688 	{
2689 		.desc = "E0PD",
2690 		.capability = ARM64_HAS_E0PD,
2691 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2692 		.cpu_enable = cpu_enable_e0pd,
2693 		.matches = has_cpuid_feature,
2694 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2695 	},
2696 #endif
2697 	{
2698 		.desc = "Random Number Generator",
2699 		.capability = ARM64_HAS_RNG,
2700 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2701 		.matches = has_cpuid_feature,
2702 		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2703 	},
2704 #ifdef CONFIG_ARM64_BTI
2705 	{
2706 		.desc = "Branch Target Identification",
2707 		.capability = ARM64_BTI,
2708 #ifdef CONFIG_ARM64_BTI_KERNEL
2709 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2710 #else
2711 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2712 #endif
2713 		.matches = has_cpuid_feature,
2714 		.cpu_enable = bti_enable,
2715 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2716 	},
2717 #endif
2718 #ifdef CONFIG_ARM64_MTE
2719 	{
2720 		.desc = "Memory Tagging Extension",
2721 		.capability = ARM64_MTE,
2722 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2723 		.matches = has_cpuid_feature,
2724 		.cpu_enable = cpu_enable_mte,
2725 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2726 	},
2727 	{
2728 		.desc = "Asymmetric MTE Tag Check Fault",
2729 		.capability = ARM64_MTE_ASYMM,
2730 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2731 		.matches = has_cpuid_feature,
2732 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2733 	},
2734 #endif /* CONFIG_ARM64_MTE */
2735 	{
2736 		.desc = "RCpc load-acquire (LDAPR)",
2737 		.capability = ARM64_HAS_LDAPR,
2738 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2739 		.matches = has_cpuid_feature,
2740 		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2741 	},
2742 	{
2743 		.desc = "Fine Grained Traps",
2744 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2745 		.capability = ARM64_HAS_FGT,
2746 		.matches = has_cpuid_feature,
2747 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2748 	},
2749 #ifdef CONFIG_ARM64_SME
2750 	{
2751 		.desc = "Scalable Matrix Extension",
2752 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2753 		.capability = ARM64_SME,
2754 		.matches = has_cpuid_feature,
2755 		.cpu_enable = cpu_enable_sme,
2756 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2757 	},
2758 	/* FA64 should be sorted after the base SME capability */
2759 	{
2760 		.desc = "FA64",
2761 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2762 		.capability = ARM64_SME_FA64,
2763 		.matches = has_cpuid_feature,
2764 		.cpu_enable = cpu_enable_fa64,
2765 		ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2766 	},
2767 	{
2768 		.desc = "SME2",
2769 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2770 		.capability = ARM64_SME2,
2771 		.matches = has_cpuid_feature,
2772 		.cpu_enable = cpu_enable_sme2,
2773 		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2774 	},
2775 #endif /* CONFIG_ARM64_SME */
2776 	{
2777 		.desc = "WFx with timeout",
2778 		.capability = ARM64_HAS_WFXT,
2779 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2780 		.matches = has_cpuid_feature,
2781 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2782 	},
2783 	{
2784 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2785 		.capability = ARM64_HAS_TIDCP1,
2786 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2787 		.matches = has_cpuid_feature,
2788 		.cpu_enable = cpu_trap_el0_impdef,
2789 		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2790 	},
2791 	{
2792 		.desc = "Data independent timing control (DIT)",
2793 		.capability = ARM64_HAS_DIT,
2794 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2795 		.matches = has_cpuid_feature,
2796 		.cpu_enable = cpu_enable_dit,
2797 		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2798 	},
2799 	{
2800 		.desc = "Memory Copy and Memory Set instructions",
2801 		.capability = ARM64_HAS_MOPS,
2802 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2803 		.matches = has_cpuid_feature,
2804 		.cpu_enable = cpu_enable_mops,
2805 		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2806 	},
2807 	{
2808 		.capability = ARM64_HAS_TCR2,
2809 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2810 		.matches = has_cpuid_feature,
2811 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2812 	},
2813 	{
2814 		.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2815 		.capability = ARM64_HAS_S1PIE,
2816 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2817 		.matches = has_cpuid_feature,
2818 		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2819 	},
2820 	{
2821 		.desc = "VHE for hypervisor only",
2822 		.capability = ARM64_KVM_HVHE,
2823 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2824 		.matches = hvhe_possible,
2825 	},
2826 	{
2827 		.desc = "Enhanced Virtualization Traps",
2828 		.capability = ARM64_HAS_EVT,
2829 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2830 		.matches = has_cpuid_feature,
2831 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2832 	},
2833 	{
2834 		.desc = "52-bit Virtual Addressing for KVM (LPA2)",
2835 		.capability = ARM64_HAS_LPA2,
2836 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2837 		.matches = has_lpa2,
2838 	},
2839 	{
2840 		.desc = "FPMR",
2841 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2842 		.capability = ARM64_HAS_FPMR,
2843 		.matches = has_cpuid_feature,
2844 		.cpu_enable = cpu_enable_fpmr,
2845 		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2846 	},
2847 #ifdef CONFIG_ARM64_VA_BITS_52
2848 	{
2849 		.capability = ARM64_HAS_VA52,
2850 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2851 		.matches = has_cpuid_feature,
2852 #ifdef CONFIG_ARM64_64K_PAGES
2853 		.desc = "52-bit Virtual Addressing (LVA)",
2854 		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
2855 #else
2856 		.desc = "52-bit Virtual Addressing (LPA2)",
2857 #ifdef CONFIG_ARM64_4K_PAGES
2858 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
2859 #else
2860 		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
2861 #endif
2862 #endif
2863 	},
2864 #endif
2865 	{
2866 		.desc = "NV1",
2867 		.capability = ARM64_HAS_HCR_NV1,
2868 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2869 		.matches = has_nv1,
2870 		ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
2871 	},
2872 	{},
2873 };
2874 
2875 #define HWCAP_CPUID_MATCH(reg, field, min_value)			\
2876 		.matches = has_user_cpuid_feature,			\
2877 		ARM64_CPUID_FIELDS(reg, field, min_value)
2878 
2879 #define __HWCAP_CAP(name, cap_type, cap)					\
2880 		.desc = name,							\
2881 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2882 		.hwcap_type = cap_type,						\
2883 		.hwcap = cap,							\
2884 
2885 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)		\
2886 	{									\
2887 		__HWCAP_CAP(#cap, cap_type, cap)				\
2888 		HWCAP_CPUID_MATCH(reg, field, min_value) 		\
2889 	}
2890 
2891 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2892 	{									\
2893 		__HWCAP_CAP(#cap, cap_type, cap)				\
2894 		.matches = cpucap_multi_entry_cap_matches,			\
2895 		.match_list = list,						\
2896 	}
2897 
2898 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2899 	{									\
2900 		__HWCAP_CAP(#cap, cap_type, cap)				\
2901 		.matches = match,						\
2902 	}
2903 
2904 #ifdef CONFIG_ARM64_PTR_AUTH
2905 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2906 	{
2907 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2908 	},
2909 	{
2910 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2911 	},
2912 	{
2913 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2914 	},
2915 	{},
2916 };
2917 
2918 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2919 	{
2920 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2921 	},
2922 	{
2923 		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2924 	},
2925 	{
2926 		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2927 	},
2928 	{},
2929 };
2930 #endif
2931 
2932 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2933 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2934 	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2935 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2936 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2937 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2938 	HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2939 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2940 	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
2941 	HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2942 	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2943 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2944 	HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2945 	HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2946 	HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2947 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2948 	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2949 	HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2950 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2951 	HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2952 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2953 	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2954 	HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2955 	HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
2956 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2957 	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2958 	HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2959 	HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2960 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2961 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2962 	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
2963 	HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2964 	HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2965 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2966 	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2967 	HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2968 	HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2969 	HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
2970 	HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
2971 	HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2972 #ifdef CONFIG_ARM64_SVE
2973 	HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2974 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2975 	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2976 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2977 	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2978 	HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2979 	HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
2980 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2981 	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2982 	HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2983 	HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2984 	HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2985 	HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2986 	HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2987 #endif
2988 	HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2989 #ifdef CONFIG_ARM64_BTI
2990 	HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2991 #endif
2992 #ifdef CONFIG_ARM64_PTR_AUTH
2993 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2994 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2995 #endif
2996 #ifdef CONFIG_ARM64_MTE
2997 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2998 	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2999 #endif /* CONFIG_ARM64_MTE */
3000 	HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3001 	HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3002 	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3003 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3004 	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3005 	HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3006 	HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3007 	HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3008 #ifdef CONFIG_ARM64_SME
3009 	HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3010 	HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3011 	HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3012 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3013 	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3014 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3015 	HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3016 	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3017 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3018 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3019 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3020 	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3021 	HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3022 	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3023 	HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3024 	HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3025 	HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3026 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3027 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3028 	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3029 #endif /* CONFIG_ARM64_SME */
3030 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3031 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3032 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3033 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3034 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3035 	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3036 	{},
3037 };
3038 
3039 #ifdef CONFIG_COMPAT
3040 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3041 {
3042 	/*
3043 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3044 	 * in line with that of arm32 as in vfp_init(). We make sure that the
3045 	 * check is future proof, by making sure value is non-zero.
3046 	 */
3047 	u32 mvfr1;
3048 
3049 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3050 	if (scope == SCOPE_SYSTEM)
3051 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3052 	else
3053 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3054 
3055 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3056 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3057 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3058 }
3059 #endif
3060 
3061 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3062 #ifdef CONFIG_COMPAT
3063 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3064 	HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3065 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3066 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3067 	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3068 	HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3069 	HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3070 	HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3071 	HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3072 	HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3073 	HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3074 	HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3075 	HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3076 	HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3077 	HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3078 	HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3079 	HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3080 	HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3081 #endif
3082 	{},
3083 };
3084 
3085 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3086 {
3087 	switch (cap->hwcap_type) {
3088 	case CAP_HWCAP:
3089 		cpu_set_feature(cap->hwcap);
3090 		break;
3091 #ifdef CONFIG_COMPAT
3092 	case CAP_COMPAT_HWCAP:
3093 		compat_elf_hwcap |= (u32)cap->hwcap;
3094 		break;
3095 	case CAP_COMPAT_HWCAP2:
3096 		compat_elf_hwcap2 |= (u32)cap->hwcap;
3097 		break;
3098 #endif
3099 	default:
3100 		WARN_ON(1);
3101 		break;
3102 	}
3103 }
3104 
3105 /* Check if we have a particular HWCAP enabled */
3106 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3107 {
3108 	bool rc;
3109 
3110 	switch (cap->hwcap_type) {
3111 	case CAP_HWCAP:
3112 		rc = cpu_have_feature(cap->hwcap);
3113 		break;
3114 #ifdef CONFIG_COMPAT
3115 	case CAP_COMPAT_HWCAP:
3116 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3117 		break;
3118 	case CAP_COMPAT_HWCAP2:
3119 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3120 		break;
3121 #endif
3122 	default:
3123 		WARN_ON(1);
3124 		rc = false;
3125 	}
3126 
3127 	return rc;
3128 }
3129 
3130 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3131 {
3132 	/* We support emulation of accesses to CPU ID feature registers */
3133 	cpu_set_named_feature(CPUID);
3134 	for (; hwcaps->matches; hwcaps++)
3135 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3136 			cap_set_elf_hwcap(hwcaps);
3137 }
3138 
3139 static void update_cpu_capabilities(u16 scope_mask)
3140 {
3141 	int i;
3142 	const struct arm64_cpu_capabilities *caps;
3143 
3144 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3145 	for (i = 0; i < ARM64_NCAPS; i++) {
3146 		caps = cpucap_ptrs[i];
3147 		if (!caps || !(caps->type & scope_mask) ||
3148 		    cpus_have_cap(caps->capability) ||
3149 		    !caps->matches(caps, cpucap_default_scope(caps)))
3150 			continue;
3151 
3152 		if (caps->desc && !caps->cpus)
3153 			pr_info("detected: %s\n", caps->desc);
3154 
3155 		__set_bit(caps->capability, system_cpucaps);
3156 
3157 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3158 			set_bit(caps->capability, boot_cpucaps);
3159 	}
3160 }
3161 
3162 /*
3163  * Enable all the available capabilities on this CPU. The capabilities
3164  * with BOOT_CPU scope are handled separately and hence skipped here.
3165  */
3166 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3167 {
3168 	int i;
3169 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3170 
3171 	for_each_available_cap(i) {
3172 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3173 
3174 		if (WARN_ON(!cap))
3175 			continue;
3176 
3177 		if (!(cap->type & non_boot_scope))
3178 			continue;
3179 
3180 		if (cap->cpu_enable)
3181 			cap->cpu_enable(cap);
3182 	}
3183 	return 0;
3184 }
3185 
3186 /*
3187  * Run through the enabled capabilities and enable() it on all active
3188  * CPUs
3189  */
3190 static void __init enable_cpu_capabilities(u16 scope_mask)
3191 {
3192 	int i;
3193 	const struct arm64_cpu_capabilities *caps;
3194 	bool boot_scope;
3195 
3196 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3197 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3198 
3199 	for (i = 0; i < ARM64_NCAPS; i++) {
3200 		caps = cpucap_ptrs[i];
3201 		if (!caps || !(caps->type & scope_mask) ||
3202 		    !cpus_have_cap(caps->capability))
3203 			continue;
3204 
3205 		if (boot_scope && caps->cpu_enable)
3206 			/*
3207 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3208 			 * before any secondary CPU boots. Thus, each secondary
3209 			 * will enable the capability as appropriate via
3210 			 * check_local_cpu_capabilities(). The only exception is
3211 			 * the boot CPU, for which the capability must be
3212 			 * enabled here. This approach avoids costly
3213 			 * stop_machine() calls for this case.
3214 			 */
3215 			caps->cpu_enable(caps);
3216 	}
3217 
3218 	/*
3219 	 * For all non-boot scope capabilities, use stop_machine()
3220 	 * as it schedules the work allowing us to modify PSTATE,
3221 	 * instead of on_each_cpu() which uses an IPI, giving us a
3222 	 * PSTATE that disappears when we return.
3223 	 */
3224 	if (!boot_scope)
3225 		stop_machine(cpu_enable_non_boot_scope_capabilities,
3226 			     NULL, cpu_online_mask);
3227 }
3228 
3229 /*
3230  * Run through the list of capabilities to check for conflicts.
3231  * If the system has already detected a capability, take necessary
3232  * action on this CPU.
3233  */
3234 static void verify_local_cpu_caps(u16 scope_mask)
3235 {
3236 	int i;
3237 	bool cpu_has_cap, system_has_cap;
3238 	const struct arm64_cpu_capabilities *caps;
3239 
3240 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3241 
3242 	for (i = 0; i < ARM64_NCAPS; i++) {
3243 		caps = cpucap_ptrs[i];
3244 		if (!caps || !(caps->type & scope_mask))
3245 			continue;
3246 
3247 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3248 		system_has_cap = cpus_have_cap(caps->capability);
3249 
3250 		if (system_has_cap) {
3251 			/*
3252 			 * Check if the new CPU misses an advertised feature,
3253 			 * which is not safe to miss.
3254 			 */
3255 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3256 				break;
3257 			/*
3258 			 * We have to issue cpu_enable() irrespective of
3259 			 * whether the CPU has it or not, as it is enabeld
3260 			 * system wide. It is upto the call back to take
3261 			 * appropriate action on this CPU.
3262 			 */
3263 			if (caps->cpu_enable)
3264 				caps->cpu_enable(caps);
3265 		} else {
3266 			/*
3267 			 * Check if the CPU has this capability if it isn't
3268 			 * safe to have when the system doesn't.
3269 			 */
3270 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3271 				break;
3272 		}
3273 	}
3274 
3275 	if (i < ARM64_NCAPS) {
3276 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3277 			smp_processor_id(), caps->capability,
3278 			caps->desc, system_has_cap, cpu_has_cap);
3279 
3280 		if (cpucap_panic_on_conflict(caps))
3281 			cpu_panic_kernel();
3282 		else
3283 			cpu_die_early();
3284 	}
3285 }
3286 
3287 /*
3288  * Check for CPU features that are used in early boot
3289  * based on the Boot CPU value.
3290  */
3291 static void check_early_cpu_features(void)
3292 {
3293 	verify_cpu_asid_bits();
3294 
3295 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3296 }
3297 
3298 static void
3299 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3300 {
3301 
3302 	for (; caps->matches; caps++)
3303 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3304 			pr_crit("CPU%d: missing HWCAP: %s\n",
3305 					smp_processor_id(), caps->desc);
3306 			cpu_die_early();
3307 		}
3308 }
3309 
3310 static void verify_local_elf_hwcaps(void)
3311 {
3312 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3313 
3314 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3315 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3316 }
3317 
3318 static void verify_sve_features(void)
3319 {
3320 	unsigned long cpacr = cpacr_save_enable_kernel_sve();
3321 
3322 	if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3323 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3324 			smp_processor_id());
3325 		cpu_die_early();
3326 	}
3327 
3328 	cpacr_restore(cpacr);
3329 }
3330 
3331 static void verify_sme_features(void)
3332 {
3333 	unsigned long cpacr = cpacr_save_enable_kernel_sme();
3334 
3335 	if (vec_verify_vq_map(ARM64_VEC_SME)) {
3336 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3337 			smp_processor_id());
3338 		cpu_die_early();
3339 	}
3340 
3341 	cpacr_restore(cpacr);
3342 }
3343 
3344 static void verify_hyp_capabilities(void)
3345 {
3346 	u64 safe_mmfr1, mmfr0, mmfr1;
3347 	int parange, ipa_max;
3348 	unsigned int safe_vmid_bits, vmid_bits;
3349 
3350 	if (!IS_ENABLED(CONFIG_KVM))
3351 		return;
3352 
3353 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3354 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3355 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3356 
3357 	/* Verify VMID bits */
3358 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3359 	vmid_bits = get_vmid_bits(mmfr1);
3360 	if (vmid_bits < safe_vmid_bits) {
3361 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3362 		cpu_die_early();
3363 	}
3364 
3365 	/* Verify IPA range */
3366 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3367 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3368 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3369 	if (ipa_max < get_kvm_ipa_limit()) {
3370 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3371 		cpu_die_early();
3372 	}
3373 }
3374 
3375 /*
3376  * Run through the enabled system capabilities and enable() it on this CPU.
3377  * The capabilities were decided based on the available CPUs at the boot time.
3378  * Any new CPU should match the system wide status of the capability. If the
3379  * new CPU doesn't have a capability which the system now has enabled, we
3380  * cannot do anything to fix it up and could cause unexpected failures. So
3381  * we park the CPU.
3382  */
3383 static void verify_local_cpu_capabilities(void)
3384 {
3385 	/*
3386 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3387 	 * check_early_cpu_features(), as they need to be verified
3388 	 * on all secondary CPUs.
3389 	 */
3390 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3391 	verify_local_elf_hwcaps();
3392 
3393 	if (system_supports_sve())
3394 		verify_sve_features();
3395 
3396 	if (system_supports_sme())
3397 		verify_sme_features();
3398 
3399 	if (is_hyp_mode_available())
3400 		verify_hyp_capabilities();
3401 }
3402 
3403 void check_local_cpu_capabilities(void)
3404 {
3405 	/*
3406 	 * All secondary CPUs should conform to the early CPU features
3407 	 * in use by the kernel based on boot CPU.
3408 	 */
3409 	check_early_cpu_features();
3410 
3411 	/*
3412 	 * If we haven't finalised the system capabilities, this CPU gets
3413 	 * a chance to update the errata work arounds and local features.
3414 	 * Otherwise, this CPU should verify that it has all the system
3415 	 * advertised capabilities.
3416 	 */
3417 	if (!system_capabilities_finalized())
3418 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3419 	else
3420 		verify_local_cpu_capabilities();
3421 }
3422 
3423 bool this_cpu_has_cap(unsigned int n)
3424 {
3425 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3426 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3427 
3428 		if (cap)
3429 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3430 	}
3431 
3432 	return false;
3433 }
3434 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3435 
3436 /*
3437  * This helper function is used in a narrow window when,
3438  * - The system wide safe registers are set with all the SMP CPUs and,
3439  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3440  */
3441 static bool __maybe_unused __system_matches_cap(unsigned int n)
3442 {
3443 	if (n < ARM64_NCAPS) {
3444 		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3445 
3446 		if (cap)
3447 			return cap->matches(cap, SCOPE_SYSTEM);
3448 	}
3449 	return false;
3450 }
3451 
3452 void cpu_set_feature(unsigned int num)
3453 {
3454 	set_bit(num, elf_hwcap);
3455 }
3456 
3457 bool cpu_have_feature(unsigned int num)
3458 {
3459 	return test_bit(num, elf_hwcap);
3460 }
3461 EXPORT_SYMBOL_GPL(cpu_have_feature);
3462 
3463 unsigned long cpu_get_elf_hwcap(void)
3464 {
3465 	/*
3466 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3467 	 * note that for userspace compatibility we guarantee that bits 62
3468 	 * and 63 will always be returned as 0.
3469 	 */
3470 	return elf_hwcap[0];
3471 }
3472 
3473 unsigned long cpu_get_elf_hwcap2(void)
3474 {
3475 	return elf_hwcap[1];
3476 }
3477 
3478 static void __init setup_boot_cpu_capabilities(void)
3479 {
3480 	/*
3481 	 * The boot CPU's feature register values have been recorded. Detect
3482 	 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3483 	 * patch alternatives for the available boot cpucaps.
3484 	 */
3485 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3486 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3487 	apply_boot_alternatives();
3488 }
3489 
3490 void __init setup_boot_cpu_features(void)
3491 {
3492 	/*
3493 	 * Initialize the indirect array of CPU capabilities pointers before we
3494 	 * handle the boot CPU.
3495 	 */
3496 	init_cpucap_indirect_list();
3497 
3498 	/*
3499 	 * Detect broken pseudo-NMI. Must be called _before_ the call to
3500 	 * setup_boot_cpu_capabilities() since it interacts with
3501 	 * can_use_gic_priorities().
3502 	 */
3503 	detect_system_supports_pseudo_nmi();
3504 
3505 	setup_boot_cpu_capabilities();
3506 }
3507 
3508 static void __init setup_system_capabilities(void)
3509 {
3510 	/*
3511 	 * The system-wide safe feature register values have been finalized.
3512 	 * Detect, enable, and patch alternatives for the available system
3513 	 * cpucaps.
3514 	 */
3515 	update_cpu_capabilities(SCOPE_SYSTEM);
3516 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3517 	apply_alternatives_all();
3518 
3519 	/*
3520 	 * Log any cpucaps with a cpumask as these aren't logged by
3521 	 * update_cpu_capabilities().
3522 	 */
3523 	for (int i = 0; i < ARM64_NCAPS; i++) {
3524 		const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3525 
3526 		if (caps && caps->cpus && caps->desc &&
3527 			cpumask_any(caps->cpus) < nr_cpu_ids)
3528 			pr_info("detected: %s on CPU%*pbl\n",
3529 				caps->desc, cpumask_pr_args(caps->cpus));
3530 	}
3531 
3532 	/*
3533 	 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3534 	 */
3535 	if (system_uses_ttbr0_pan())
3536 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3537 }
3538 
3539 void __init setup_system_features(void)
3540 {
3541 	setup_system_capabilities();
3542 
3543 	kpti_install_ng_mappings();
3544 
3545 	sve_setup();
3546 	sme_setup();
3547 
3548 	/*
3549 	 * Check for sane CTR_EL0.CWG value.
3550 	 */
3551 	if (!cache_type_cwg())
3552 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3553 			ARCH_DMA_MINALIGN);
3554 }
3555 
3556 void __init setup_user_features(void)
3557 {
3558 	user_feature_fixup();
3559 
3560 	setup_elf_hwcaps(arm64_elf_hwcaps);
3561 
3562 	if (system_supports_32bit_el0()) {
3563 		setup_elf_hwcaps(compat_elf_hwcaps);
3564 		elf_hwcap_fixup();
3565 	}
3566 
3567 	minsigstksz_setup();
3568 }
3569 
3570 static int enable_mismatched_32bit_el0(unsigned int cpu)
3571 {
3572 	/*
3573 	 * The first 32-bit-capable CPU we detected and so can no longer
3574 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3575 	 * a 32-bit-capable CPU.
3576 	 */
3577 	static int lucky_winner = -1;
3578 
3579 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3580 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3581 
3582 	if (cpu_32bit) {
3583 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3584 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3585 	}
3586 
3587 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3588 		return 0;
3589 
3590 	if (lucky_winner >= 0)
3591 		return 0;
3592 
3593 	/*
3594 	 * We've detected a mismatch. We need to keep one of our CPUs with
3595 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3596 	 * every CPU in the system for a 32-bit task.
3597 	 */
3598 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3599 							 cpu_active_mask);
3600 	get_cpu_device(lucky_winner)->offline_disabled = true;
3601 	setup_elf_hwcaps(compat_elf_hwcaps);
3602 	elf_hwcap_fixup();
3603 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3604 		cpu, lucky_winner);
3605 	return 0;
3606 }
3607 
3608 static int __init init_32bit_el0_mask(void)
3609 {
3610 	if (!allow_mismatched_32bit_el0)
3611 		return 0;
3612 
3613 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3614 		return -ENOMEM;
3615 
3616 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3617 				 "arm64/mismatched_32bit_el0:online",
3618 				 enable_mismatched_32bit_el0, NULL);
3619 }
3620 subsys_initcall_sync(init_32bit_el0_mask);
3621 
3622 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3623 {
3624 	cpu_enable_swapper_cnp();
3625 }
3626 
3627 /*
3628  * We emulate only the following system register space.
3629  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3630  * See Table C5-6 System instruction encodings for System register accesses,
3631  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3632  */
3633 static inline bool __attribute_const__ is_emulated(u32 id)
3634 {
3635 	return (sys_reg_Op0(id) == 0x3 &&
3636 		sys_reg_CRn(id) == 0x0 &&
3637 		sys_reg_Op1(id) == 0x0 &&
3638 		(sys_reg_CRm(id) == 0 ||
3639 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3640 }
3641 
3642 /*
3643  * With CRm == 0, reg should be one of :
3644  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3645  */
3646 static inline int emulate_id_reg(u32 id, u64 *valp)
3647 {
3648 	switch (id) {
3649 	case SYS_MIDR_EL1:
3650 		*valp = read_cpuid_id();
3651 		break;
3652 	case SYS_MPIDR_EL1:
3653 		*valp = SYS_MPIDR_SAFE_VAL;
3654 		break;
3655 	case SYS_REVIDR_EL1:
3656 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3657 		*valp = 0;
3658 		break;
3659 	default:
3660 		return -EINVAL;
3661 	}
3662 
3663 	return 0;
3664 }
3665 
3666 static int emulate_sys_reg(u32 id, u64 *valp)
3667 {
3668 	struct arm64_ftr_reg *regp;
3669 
3670 	if (!is_emulated(id))
3671 		return -EINVAL;
3672 
3673 	if (sys_reg_CRm(id) == 0)
3674 		return emulate_id_reg(id, valp);
3675 
3676 	regp = get_arm64_ftr_reg_nowarn(id);
3677 	if (regp)
3678 		*valp = arm64_ftr_reg_user_value(regp);
3679 	else
3680 		/*
3681 		 * The untracked registers are either IMPLEMENTATION DEFINED
3682 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3683 		 */
3684 		*valp = 0;
3685 	return 0;
3686 }
3687 
3688 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3689 {
3690 	int rc;
3691 	u64 val;
3692 
3693 	rc = emulate_sys_reg(sys_reg, &val);
3694 	if (!rc) {
3695 		pt_regs_write_reg(regs, rt, val);
3696 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3697 	}
3698 	return rc;
3699 }
3700 
3701 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3702 {
3703 	u32 sys_reg, rt;
3704 
3705 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3706 		return false;
3707 
3708 	/*
3709 	 * sys_reg values are defined as used in mrs/msr instruction.
3710 	 * shift the imm value to get the encoding.
3711 	 */
3712 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3713 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3714 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
3715 }
3716 
3717 enum mitigation_state arm64_get_meltdown_state(void)
3718 {
3719 	if (__meltdown_safe)
3720 		return SPECTRE_UNAFFECTED;
3721 
3722 	if (arm64_kernel_unmapped_at_el0())
3723 		return SPECTRE_MITIGATED;
3724 
3725 	return SPECTRE_VULNERABLE;
3726 }
3727 
3728 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3729 			  char *buf)
3730 {
3731 	switch (arm64_get_meltdown_state()) {
3732 	case SPECTRE_UNAFFECTED:
3733 		return sprintf(buf, "Not affected\n");
3734 
3735 	case SPECTRE_MITIGATED:
3736 		return sprintf(buf, "Mitigation: PTI\n");
3737 
3738 	default:
3739 		return sprintf(buf, "Vulnerable\n");
3740 	}
3741 }
3742