xref: /linux/arch/arm64/include/asm/mmu_context.h (revision 8795a739e5c72abeec51caf36b6df2b37e5720c5)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/mmu_context.h
4  *
5  * Copyright (C) 1996 Russell King.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 #ifndef __ASM_MMU_CONTEXT_H
9 #define __ASM_MMU_CONTEXT_H
10 
11 #ifndef __ASSEMBLY__
12 
13 #include <linux/compiler.h>
14 #include <linux/sched.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/mm_types.h>
17 
18 #include <asm/cacheflush.h>
19 #include <asm/cpufeature.h>
20 #include <asm/proc-fns.h>
21 #include <asm-generic/mm_hooks.h>
22 #include <asm/cputype.h>
23 #include <asm/pgtable.h>
24 #include <asm/sysreg.h>
25 #include <asm/tlbflush.h>
26 
27 extern bool rodata_full;
28 
29 static inline void contextidr_thread_switch(struct task_struct *next)
30 {
31 	if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR))
32 		return;
33 
34 	write_sysreg(task_pid_nr(next), contextidr_el1);
35 	isb();
36 }
37 
38 /*
39  * Set TTBR0 to empty_zero_page. No translations will be possible via TTBR0.
40  */
41 static inline void cpu_set_reserved_ttbr0(void)
42 {
43 	unsigned long ttbr = phys_to_ttbr(__pa_symbol(empty_zero_page));
44 
45 	write_sysreg(ttbr, ttbr0_el1);
46 	isb();
47 }
48 
49 static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm)
50 {
51 	BUG_ON(pgd == swapper_pg_dir);
52 	cpu_set_reserved_ttbr0();
53 	cpu_do_switch_mm(virt_to_phys(pgd),mm);
54 }
55 
56 /*
57  * TCR.T0SZ value to use when the ID map is active. Usually equals
58  * TCR_T0SZ(VA_BITS), unless system RAM is positioned very high in
59  * physical memory, in which case it will be smaller.
60  */
61 extern u64 idmap_t0sz;
62 extern u64 idmap_ptrs_per_pgd;
63 
64 static inline bool __cpu_uses_extended_idmap(void)
65 {
66 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52))
67 		return false;
68 
69 	return unlikely(idmap_t0sz != TCR_T0SZ(VA_BITS));
70 }
71 
72 /*
73  * True if the extended ID map requires an extra level of translation table
74  * to be configured.
75  */
76 static inline bool __cpu_uses_extended_idmap_level(void)
77 {
78 	return ARM64_HW_PGTABLE_LEVELS(64 - idmap_t0sz) > CONFIG_PGTABLE_LEVELS;
79 }
80 
81 /*
82  * Set TCR.T0SZ to its default value (based on VA_BITS)
83  */
84 static inline void __cpu_set_tcr_t0sz(unsigned long t0sz)
85 {
86 	unsigned long tcr;
87 
88 	if (!__cpu_uses_extended_idmap())
89 		return;
90 
91 	tcr = read_sysreg(tcr_el1);
92 	tcr &= ~TCR_T0SZ_MASK;
93 	tcr |= t0sz << TCR_T0SZ_OFFSET;
94 	write_sysreg(tcr, tcr_el1);
95 	isb();
96 }
97 
98 #define cpu_set_default_tcr_t0sz()	__cpu_set_tcr_t0sz(TCR_T0SZ(vabits_actual))
99 #define cpu_set_idmap_tcr_t0sz()	__cpu_set_tcr_t0sz(idmap_t0sz)
100 
101 /*
102  * Remove the idmap from TTBR0_EL1 and install the pgd of the active mm.
103  *
104  * The idmap lives in the same VA range as userspace, but uses global entries
105  * and may use a different TCR_EL1.T0SZ. To avoid issues resulting from
106  * speculative TLB fetches, we must temporarily install the reserved page
107  * tables while we invalidate the TLBs and set up the correct TCR_EL1.T0SZ.
108  *
109  * If current is a not a user task, the mm covers the TTBR1_EL1 page tables,
110  * which should not be installed in TTBR0_EL1. In this case we can leave the
111  * reserved page tables in place.
112  */
113 static inline void cpu_uninstall_idmap(void)
114 {
115 	struct mm_struct *mm = current->active_mm;
116 
117 	cpu_set_reserved_ttbr0();
118 	local_flush_tlb_all();
119 	cpu_set_default_tcr_t0sz();
120 
121 	if (mm != &init_mm && !system_uses_ttbr0_pan())
122 		cpu_switch_mm(mm->pgd, mm);
123 }
124 
125 static inline void cpu_install_idmap(void)
126 {
127 	cpu_set_reserved_ttbr0();
128 	local_flush_tlb_all();
129 	cpu_set_idmap_tcr_t0sz();
130 
131 	cpu_switch_mm(lm_alias(idmap_pg_dir), &init_mm);
132 }
133 
134 /*
135  * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
136  * avoiding the possibility of conflicting TLB entries being allocated.
137  */
138 static inline void cpu_replace_ttbr1(pgd_t *pgdp)
139 {
140 	typedef void (ttbr_replace_func)(phys_addr_t);
141 	extern ttbr_replace_func idmap_cpu_replace_ttbr1;
142 	ttbr_replace_func *replace_phys;
143 
144 	/* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
145 	phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
146 
147 	if (system_supports_cnp() && !WARN_ON(pgdp != lm_alias(swapper_pg_dir))) {
148 		/*
149 		 * cpu_replace_ttbr1() is used when there's a boot CPU
150 		 * up (i.e. cpufeature framework is not up yet) and
151 		 * latter only when we enable CNP via cpufeature's
152 		 * enable() callback.
153 		 * Also we rely on the cpu_hwcap bit being set before
154 		 * calling the enable() function.
155 		 */
156 		ttbr1 |= TTBR_CNP_BIT;
157 	}
158 
159 	replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
160 
161 	cpu_install_idmap();
162 	replace_phys(ttbr1);
163 	cpu_uninstall_idmap();
164 }
165 
166 /*
167  * It would be nice to return ASIDs back to the allocator, but unfortunately
168  * that introduces a race with a generation rollover where we could erroneously
169  * free an ASID allocated in a future generation. We could workaround this by
170  * freeing the ASID from the context of the dying mm (e.g. in arch_exit_mmap),
171  * but we'd then need to make sure that we didn't dirty any TLBs afterwards.
172  * Setting a reserved TTBR0 or EPD0 would work, but it all gets ugly when you
173  * take CPU migration into account.
174  */
175 #define destroy_context(mm)		do { } while(0)
176 void check_and_switch_context(struct mm_struct *mm, unsigned int cpu);
177 
178 #define init_new_context(tsk,mm)	({ atomic64_set(&(mm)->context.id, 0); 0; })
179 
180 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
181 static inline void update_saved_ttbr0(struct task_struct *tsk,
182 				      struct mm_struct *mm)
183 {
184 	u64 ttbr;
185 
186 	if (!system_uses_ttbr0_pan())
187 		return;
188 
189 	if (mm == &init_mm)
190 		ttbr = __pa_symbol(empty_zero_page);
191 	else
192 		ttbr = virt_to_phys(mm->pgd) | ASID(mm) << 48;
193 
194 	WRITE_ONCE(task_thread_info(tsk)->ttbr0, ttbr);
195 }
196 #else
197 static inline void update_saved_ttbr0(struct task_struct *tsk,
198 				      struct mm_struct *mm)
199 {
200 }
201 #endif
202 
203 static inline void
204 enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
205 {
206 	/*
207 	 * We don't actually care about the ttbr0 mapping, so point it at the
208 	 * zero page.
209 	 */
210 	update_saved_ttbr0(tsk, &init_mm);
211 }
212 
213 static inline void __switch_mm(struct mm_struct *next)
214 {
215 	unsigned int cpu = smp_processor_id();
216 
217 	/*
218 	 * init_mm.pgd does not contain any user mappings and it is always
219 	 * active for kernel addresses in TTBR1. Just set the reserved TTBR0.
220 	 */
221 	if (next == &init_mm) {
222 		cpu_set_reserved_ttbr0();
223 		return;
224 	}
225 
226 	check_and_switch_context(next, cpu);
227 }
228 
229 static inline void
230 switch_mm(struct mm_struct *prev, struct mm_struct *next,
231 	  struct task_struct *tsk)
232 {
233 	if (prev != next)
234 		__switch_mm(next);
235 
236 	/*
237 	 * Update the saved TTBR0_EL1 of the scheduled-in task as the previous
238 	 * value may have not been initialised yet (activate_mm caller) or the
239 	 * ASID has changed since the last run (following the context switch
240 	 * of another thread of the same process).
241 	 */
242 	update_saved_ttbr0(tsk, next);
243 }
244 
245 #define deactivate_mm(tsk,mm)	do { } while (0)
246 #define activate_mm(prev,next)	switch_mm(prev, next, current)
247 
248 void verify_cpu_asid_bits(void);
249 void post_ttbr_update_workaround(void);
250 
251 #endif /* !__ASSEMBLY__ */
252 
253 #endif /* !__ASM_MMU_CONTEXT_H */
254