xref: /linux/arch/arm64/include/asm/mmu_context.h (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/mmu_context.h
4  *
5  * Copyright (C) 1996 Russell King.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 #ifndef __ASM_MMU_CONTEXT_H
9 #define __ASM_MMU_CONTEXT_H
10 
11 #ifndef __ASSEMBLER__
12 
13 #include <linux/compiler.h>
14 #include <linux/sched.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/mm_types.h>
17 #include <linux/pgtable.h>
18 #include <linux/pkeys.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cpufeature.h>
22 #include <asm/daifflags.h>
23 #include <asm/gcs.h>
24 #include <asm/proc-fns.h>
25 #include <asm/cputype.h>
26 #include <asm/sysreg.h>
27 #include <asm/tlbflush.h>
28 
29 extern bool rodata_full;
30 
31 static inline void contextidr_thread_switch(struct task_struct *next)
32 {
33 	if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR))
34 		return;
35 
36 	write_sysreg(task_pid_nr(next), contextidr_el1);
37 	isb();
38 }
39 
40 /*
41  * Set TTBR0 to reserved_pg_dir. No translations will be possible via TTBR0.
42  */
43 static inline void cpu_set_reserved_ttbr0_nosync(void)
44 {
45 	unsigned long ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
46 
47 	write_sysreg(ttbr, ttbr0_el1);
48 }
49 
50 static inline void cpu_set_reserved_ttbr0(void)
51 {
52 	cpu_set_reserved_ttbr0_nosync();
53 	isb();
54 }
55 
56 void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm);
57 
58 static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm)
59 {
60 	BUG_ON(pgd == swapper_pg_dir);
61 	cpu_do_switch_mm(virt_to_phys(pgd),mm);
62 }
63 
64 /*
65  * Ensure TCR.T0SZ is set to the provided value.
66  */
67 static inline void __cpu_set_tcr_t0sz(unsigned long t0sz)
68 {
69 	unsigned long tcr = read_sysreg(tcr_el1);
70 
71 	if ((tcr & TCR_EL1_T0SZ_MASK) == t0sz)
72 		return;
73 
74 	tcr &= ~TCR_EL1_T0SZ_MASK;
75 	tcr |= t0sz;
76 	write_sysreg(tcr, tcr_el1);
77 	isb();
78 }
79 
80 /*
81  * Remove the idmap from TTBR0_EL1 and install the pgd of the active mm.
82  *
83  * The idmap lives in the same VA range as userspace, but uses global entries
84  * and may use a different TCR_EL1.T0SZ. To avoid issues resulting from
85  * speculative TLB fetches, we must temporarily install the reserved page
86  * tables while we invalidate the TLBs and set up the correct TCR_EL1.T0SZ.
87  *
88  * If current is a not a user task, the mm covers the TTBR1_EL1 page tables,
89  * which should not be installed in TTBR0_EL1. In this case we can leave the
90  * reserved page tables in place.
91  */
92 static inline void cpu_uninstall_idmap(void)
93 {
94 	struct mm_struct *mm = current->active_mm;
95 
96 	cpu_set_reserved_ttbr0();
97 	local_flush_tlb_all();
98 	__cpu_set_tcr_t0sz(TCR_T0SZ(vabits_actual));
99 
100 	if (mm != &init_mm && !system_uses_ttbr0_pan())
101 		cpu_switch_mm(mm->pgd, mm);
102 }
103 
104 static inline void cpu_install_idmap(void)
105 {
106 	cpu_set_reserved_ttbr0();
107 	local_flush_tlb_all();
108 	__cpu_set_tcr_t0sz(TCR_T0SZ(IDMAP_VA_BITS));
109 
110 	cpu_switch_mm(lm_alias(idmap_pg_dir), &init_mm);
111 }
112 
113 /*
114  * Load our new page tables. A strict BBM approach requires that we ensure that
115  * TLBs are free of any entries that may overlap with the global mappings we are
116  * about to install.
117  *
118  * For a real hibernate/resume/kexec cycle TTBR0 currently points to a zero
119  * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI runtime
120  * services), while for a userspace-driven test_resume cycle it points to
121  * userspace page tables (and we must point it at a zero page ourselves).
122  *
123  * We change T0SZ as part of installing the idmap. This is undone by
124  * cpu_uninstall_idmap() in __cpu_suspend_exit().
125  */
126 static inline void cpu_install_ttbr0(phys_addr_t ttbr0, unsigned long t0sz)
127 {
128 	cpu_set_reserved_ttbr0();
129 	local_flush_tlb_all();
130 	__cpu_set_tcr_t0sz(t0sz);
131 
132 	/* avoid cpu_switch_mm() and its SW-PAN and CNP interactions */
133 	write_sysreg(ttbr0, ttbr0_el1);
134 	isb();
135 }
136 
137 void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp);
138 
139 static inline void cpu_enable_swapper_cnp(void)
140 {
141 	__cpu_replace_ttbr1(lm_alias(swapper_pg_dir), true);
142 }
143 
144 static inline void cpu_replace_ttbr1(pgd_t *pgdp)
145 {
146 	/*
147 	 * Only for early TTBR1 replacement before cpucaps are finalized and
148 	 * before we've decided whether to use CNP.
149 	 */
150 	WARN_ON(system_capabilities_finalized());
151 	__cpu_replace_ttbr1(pgdp, false);
152 }
153 
154 /*
155  * It would be nice to return ASIDs back to the allocator, but unfortunately
156  * that introduces a race with a generation rollover where we could erroneously
157  * free an ASID allocated in a future generation. We could workaround this by
158  * freeing the ASID from the context of the dying mm (e.g. in arch_exit_mmap),
159  * but we'd then need to make sure that we didn't dirty any TLBs afterwards.
160  * Setting a reserved TTBR0 or EPD0 would work, but it all gets ugly when you
161  * take CPU migration into account.
162  */
163 void check_and_switch_context(struct mm_struct *mm);
164 
165 #define init_new_context(tsk, mm) init_new_context(tsk, mm)
166 static inline int
167 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
168 {
169 	atomic64_set(&mm->context.id, 0);
170 	refcount_set(&mm->context.pinned, 0);
171 
172 	/* pkey 0 is the default, so always reserve it. */
173 	mm->context.pkey_allocation_map = BIT(0);
174 
175 	return 0;
176 }
177 
178 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
179 				  struct mm_struct *mm)
180 {
181 	/* Duplicate the oldmm pkey state in mm: */
182 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
183 }
184 
185 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
186 {
187 	arch_dup_pkeys(oldmm, mm);
188 
189 	return 0;
190 }
191 
192 static inline void arch_exit_mmap(struct mm_struct *mm)
193 {
194 }
195 
196 static inline void arch_unmap(struct mm_struct *mm,
197 			unsigned long start, unsigned long end)
198 {
199 }
200 
201 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
202 static inline void update_saved_ttbr0(struct task_struct *tsk,
203 				      struct mm_struct *mm)
204 {
205 	u64 ttbr;
206 
207 	if (!system_uses_ttbr0_pan())
208 		return;
209 
210 	if (mm == &init_mm)
211 		ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
212 	else
213 		ttbr = phys_to_ttbr(virt_to_phys(mm->pgd)) | ASID(mm) << 48;
214 
215 	WRITE_ONCE(task_thread_info(tsk)->ttbr0, ttbr);
216 }
217 #else
218 static inline void update_saved_ttbr0(struct task_struct *tsk,
219 				      struct mm_struct *mm)
220 {
221 }
222 #endif
223 
224 #define enter_lazy_tlb enter_lazy_tlb
225 static inline void
226 enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
227 {
228 	/*
229 	 * We don't actually care about the ttbr0 mapping, so point it at the
230 	 * zero page.
231 	 */
232 	update_saved_ttbr0(tsk, &init_mm);
233 }
234 
235 static inline void __switch_mm(struct mm_struct *next)
236 {
237 	/*
238 	 * init_mm.pgd does not contain any user mappings and it is always
239 	 * active for kernel addresses in TTBR1. Just set the reserved TTBR0.
240 	 */
241 	if (next == &init_mm) {
242 		cpu_set_reserved_ttbr0();
243 		return;
244 	}
245 
246 	check_and_switch_context(next);
247 }
248 
249 static inline void
250 switch_mm(struct mm_struct *prev, struct mm_struct *next,
251 	  struct task_struct *tsk)
252 {
253 	if (prev != next)
254 		__switch_mm(next);
255 
256 	/*
257 	 * Update the saved TTBR0_EL1 of the scheduled-in task as the previous
258 	 * value may have not been initialised yet (activate_mm caller) or the
259 	 * ASID has changed since the last run (following the context switch
260 	 * of another thread of the same process).
261 	 */
262 	update_saved_ttbr0(tsk, next);
263 }
264 
265 static inline const struct cpumask *
266 __task_cpu_possible_mask(struct task_struct *p, const struct cpumask *mask)
267 {
268 	if (!static_branch_unlikely(&arm64_mismatched_32bit_el0))
269 		return mask;
270 
271 	if (!is_compat_thread(task_thread_info(p)))
272 		return mask;
273 
274 	return system_32bit_el0_cpumask();
275 }
276 
277 static inline const struct cpumask *
278 task_cpu_possible_mask(struct task_struct *p)
279 {
280 	return __task_cpu_possible_mask(p, cpu_possible_mask);
281 }
282 #define task_cpu_possible_mask	task_cpu_possible_mask
283 
284 const struct cpumask *task_cpu_fallback_mask(struct task_struct *p);
285 
286 void verify_cpu_asid_bits(void);
287 void post_ttbr_update_workaround(void);
288 
289 unsigned long arm64_mm_context_get(struct mm_struct *mm);
290 void arm64_mm_context_put(struct mm_struct *mm);
291 
292 #define mm_untag_mask mm_untag_mask
293 static inline unsigned long mm_untag_mask(struct mm_struct *mm)
294 {
295 	return -1UL >> 8;
296 }
297 
298 /*
299  * Only enforce protection keys on the current process, because there is no
300  * user context to access POR_EL0 for another address space.
301  */
302 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
303 		bool write, bool execute, bool foreign)
304 {
305 	if (!system_supports_poe())
306 		return true;
307 
308 	/* allow access if the VMA is not one from this process */
309 	if (foreign || vma_is_foreign(vma))
310 		return true;
311 
312 	return por_el0_allows_pkey(vma_pkey(vma), write, execute);
313 }
314 
315 #define deactivate_mm deactivate_mm
316 static inline void deactivate_mm(struct task_struct *tsk,
317 			struct mm_struct *mm)
318 {
319 	gcs_free(tsk);
320 }
321 
322 
323 #include <asm-generic/mmu_context.h>
324 
325 #endif /* !__ASSEMBLER__ */
326 
327 #endif /* !__ASM_MMU_CONTEXT_H */
328