xref: /linux/arch/arm64/include/asm/mmu_context.h (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/mmu_context.h
4  *
5  * Copyright (C) 1996 Russell King.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 #ifndef __ASM_MMU_CONTEXT_H
9 #define __ASM_MMU_CONTEXT_H
10 
11 #ifndef __ASSEMBLY__
12 
13 #include <linux/compiler.h>
14 #include <linux/sched.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/mm_types.h>
17 #include <linux/pgtable.h>
18 #include <linux/pkeys.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cpufeature.h>
22 #include <asm/daifflags.h>
23 #include <asm/gcs.h>
24 #include <asm/proc-fns.h>
25 #include <asm/cputype.h>
26 #include <asm/sysreg.h>
27 #include <asm/tlbflush.h>
28 
29 extern bool rodata_full;
30 
31 static inline void contextidr_thread_switch(struct task_struct *next)
32 {
33 	if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR))
34 		return;
35 
36 	write_sysreg(task_pid_nr(next), contextidr_el1);
37 	isb();
38 }
39 
40 /*
41  * Set TTBR0 to reserved_pg_dir. No translations will be possible via TTBR0.
42  */
43 static inline void cpu_set_reserved_ttbr0_nosync(void)
44 {
45 	unsigned long ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
46 
47 	write_sysreg(ttbr, ttbr0_el1);
48 }
49 
50 static inline void cpu_set_reserved_ttbr0(void)
51 {
52 	cpu_set_reserved_ttbr0_nosync();
53 	isb();
54 }
55 
56 void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm);
57 
58 static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm)
59 {
60 	BUG_ON(pgd == swapper_pg_dir);
61 	cpu_do_switch_mm(virt_to_phys(pgd),mm);
62 }
63 
64 /*
65  * TCR.T0SZ value to use when the ID map is active.
66  */
67 #define idmap_t0sz	TCR_T0SZ(IDMAP_VA_BITS)
68 
69 /*
70  * Ensure TCR.T0SZ is set to the provided value.
71  */
72 static inline void __cpu_set_tcr_t0sz(unsigned long t0sz)
73 {
74 	unsigned long tcr = read_sysreg(tcr_el1);
75 
76 	if ((tcr & TCR_T0SZ_MASK) == t0sz)
77 		return;
78 
79 	tcr &= ~TCR_T0SZ_MASK;
80 	tcr |= t0sz;
81 	write_sysreg(tcr, tcr_el1);
82 	isb();
83 }
84 
85 #define cpu_set_default_tcr_t0sz()	__cpu_set_tcr_t0sz(TCR_T0SZ(vabits_actual))
86 #define cpu_set_idmap_tcr_t0sz()	__cpu_set_tcr_t0sz(idmap_t0sz)
87 
88 /*
89  * Remove the idmap from TTBR0_EL1 and install the pgd of the active mm.
90  *
91  * The idmap lives in the same VA range as userspace, but uses global entries
92  * and may use a different TCR_EL1.T0SZ. To avoid issues resulting from
93  * speculative TLB fetches, we must temporarily install the reserved page
94  * tables while we invalidate the TLBs and set up the correct TCR_EL1.T0SZ.
95  *
96  * If current is a not a user task, the mm covers the TTBR1_EL1 page tables,
97  * which should not be installed in TTBR0_EL1. In this case we can leave the
98  * reserved page tables in place.
99  */
100 static inline void cpu_uninstall_idmap(void)
101 {
102 	struct mm_struct *mm = current->active_mm;
103 
104 	cpu_set_reserved_ttbr0();
105 	local_flush_tlb_all();
106 	cpu_set_default_tcr_t0sz();
107 
108 	if (mm != &init_mm && !system_uses_ttbr0_pan())
109 		cpu_switch_mm(mm->pgd, mm);
110 }
111 
112 static inline void cpu_install_idmap(void)
113 {
114 	cpu_set_reserved_ttbr0();
115 	local_flush_tlb_all();
116 	cpu_set_idmap_tcr_t0sz();
117 
118 	cpu_switch_mm(lm_alias(idmap_pg_dir), &init_mm);
119 }
120 
121 /*
122  * Load our new page tables. A strict BBM approach requires that we ensure that
123  * TLBs are free of any entries that may overlap with the global mappings we are
124  * about to install.
125  *
126  * For a real hibernate/resume/kexec cycle TTBR0 currently points to a zero
127  * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI runtime
128  * services), while for a userspace-driven test_resume cycle it points to
129  * userspace page tables (and we must point it at a zero page ourselves).
130  *
131  * We change T0SZ as part of installing the idmap. This is undone by
132  * cpu_uninstall_idmap() in __cpu_suspend_exit().
133  */
134 static inline void cpu_install_ttbr0(phys_addr_t ttbr0, unsigned long t0sz)
135 {
136 	cpu_set_reserved_ttbr0();
137 	local_flush_tlb_all();
138 	__cpu_set_tcr_t0sz(t0sz);
139 
140 	/* avoid cpu_switch_mm() and its SW-PAN and CNP interactions */
141 	write_sysreg(ttbr0, ttbr0_el1);
142 	isb();
143 }
144 
145 void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp);
146 
147 static inline void cpu_enable_swapper_cnp(void)
148 {
149 	__cpu_replace_ttbr1(lm_alias(swapper_pg_dir), true);
150 }
151 
152 static inline void cpu_replace_ttbr1(pgd_t *pgdp)
153 {
154 	/*
155 	 * Only for early TTBR1 replacement before cpucaps are finalized and
156 	 * before we've decided whether to use CNP.
157 	 */
158 	WARN_ON(system_capabilities_finalized());
159 	__cpu_replace_ttbr1(pgdp, false);
160 }
161 
162 /*
163  * It would be nice to return ASIDs back to the allocator, but unfortunately
164  * that introduces a race with a generation rollover where we could erroneously
165  * free an ASID allocated in a future generation. We could workaround this by
166  * freeing the ASID from the context of the dying mm (e.g. in arch_exit_mmap),
167  * but we'd then need to make sure that we didn't dirty any TLBs afterwards.
168  * Setting a reserved TTBR0 or EPD0 would work, but it all gets ugly when you
169  * take CPU migration into account.
170  */
171 void check_and_switch_context(struct mm_struct *mm);
172 
173 #define init_new_context(tsk, mm) init_new_context(tsk, mm)
174 static inline int
175 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
176 {
177 	atomic64_set(&mm->context.id, 0);
178 	refcount_set(&mm->context.pinned, 0);
179 
180 	/* pkey 0 is the default, so always reserve it. */
181 	mm->context.pkey_allocation_map = BIT(0);
182 
183 	return 0;
184 }
185 
186 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
187 				  struct mm_struct *mm)
188 {
189 	/* Duplicate the oldmm pkey state in mm: */
190 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
191 }
192 
193 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
194 {
195 	arch_dup_pkeys(oldmm, mm);
196 
197 	return 0;
198 }
199 
200 static inline void arch_exit_mmap(struct mm_struct *mm)
201 {
202 }
203 
204 static inline void arch_unmap(struct mm_struct *mm,
205 			unsigned long start, unsigned long end)
206 {
207 }
208 
209 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
210 static inline void update_saved_ttbr0(struct task_struct *tsk,
211 				      struct mm_struct *mm)
212 {
213 	u64 ttbr;
214 
215 	if (!system_uses_ttbr0_pan())
216 		return;
217 
218 	if (mm == &init_mm)
219 		ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
220 	else
221 		ttbr = phys_to_ttbr(virt_to_phys(mm->pgd)) | ASID(mm) << 48;
222 
223 	WRITE_ONCE(task_thread_info(tsk)->ttbr0, ttbr);
224 }
225 #else
226 static inline void update_saved_ttbr0(struct task_struct *tsk,
227 				      struct mm_struct *mm)
228 {
229 }
230 #endif
231 
232 #define enter_lazy_tlb enter_lazy_tlb
233 static inline void
234 enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
235 {
236 	/*
237 	 * We don't actually care about the ttbr0 mapping, so point it at the
238 	 * zero page.
239 	 */
240 	update_saved_ttbr0(tsk, &init_mm);
241 }
242 
243 static inline void __switch_mm(struct mm_struct *next)
244 {
245 	/*
246 	 * init_mm.pgd does not contain any user mappings and it is always
247 	 * active for kernel addresses in TTBR1. Just set the reserved TTBR0.
248 	 */
249 	if (next == &init_mm) {
250 		cpu_set_reserved_ttbr0();
251 		return;
252 	}
253 
254 	check_and_switch_context(next);
255 }
256 
257 static inline void
258 switch_mm(struct mm_struct *prev, struct mm_struct *next,
259 	  struct task_struct *tsk)
260 {
261 	if (prev != next)
262 		__switch_mm(next);
263 
264 	/*
265 	 * Update the saved TTBR0_EL1 of the scheduled-in task as the previous
266 	 * value may have not been initialised yet (activate_mm caller) or the
267 	 * ASID has changed since the last run (following the context switch
268 	 * of another thread of the same process).
269 	 */
270 	update_saved_ttbr0(tsk, next);
271 }
272 
273 static inline const struct cpumask *
274 task_cpu_possible_mask(struct task_struct *p)
275 {
276 	if (!static_branch_unlikely(&arm64_mismatched_32bit_el0))
277 		return cpu_possible_mask;
278 
279 	if (!is_compat_thread(task_thread_info(p)))
280 		return cpu_possible_mask;
281 
282 	return system_32bit_el0_cpumask();
283 }
284 #define task_cpu_possible_mask	task_cpu_possible_mask
285 
286 void verify_cpu_asid_bits(void);
287 void post_ttbr_update_workaround(void);
288 
289 unsigned long arm64_mm_context_get(struct mm_struct *mm);
290 void arm64_mm_context_put(struct mm_struct *mm);
291 
292 #define mm_untag_mask mm_untag_mask
293 static inline unsigned long mm_untag_mask(struct mm_struct *mm)
294 {
295 	return -1UL >> 8;
296 }
297 
298 /*
299  * Only enforce protection keys on the current process, because there is no
300  * user context to access POR_EL0 for another address space.
301  */
302 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
303 		bool write, bool execute, bool foreign)
304 {
305 	if (!system_supports_poe())
306 		return true;
307 
308 	/* allow access if the VMA is not one from this process */
309 	if (foreign || vma_is_foreign(vma))
310 		return true;
311 
312 	return por_el0_allows_pkey(vma_pkey(vma), write, execute);
313 }
314 
315 #define deactivate_mm deactivate_mm
316 static inline void deactivate_mm(struct task_struct *tsk,
317 			struct mm_struct *mm)
318 {
319 	gcs_free(tsk);
320 }
321 
322 
323 #include <asm-generic/mmu_context.h>
324 
325 #endif /* !__ASSEMBLY__ */
326 
327 #endif /* !__ASM_MMU_CONTEXT_H */
328