xref: /linux/arch/arm64/include/asm/mmu_context.h (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/mmu_context.h
4  *
5  * Copyright (C) 1996 Russell King.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 #ifndef __ASM_MMU_CONTEXT_H
9 #define __ASM_MMU_CONTEXT_H
10 
11 #ifndef __ASSEMBLY__
12 
13 #include <linux/compiler.h>
14 #include <linux/sched.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/mm_types.h>
17 #include <linux/pgtable.h>
18 #include <linux/pkeys.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cpufeature.h>
22 #include <asm/daifflags.h>
23 #include <asm/proc-fns.h>
24 #include <asm/cputype.h>
25 #include <asm/sysreg.h>
26 #include <asm/tlbflush.h>
27 
28 extern bool rodata_full;
29 
30 static inline void contextidr_thread_switch(struct task_struct *next)
31 {
32 	if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR))
33 		return;
34 
35 	write_sysreg(task_pid_nr(next), contextidr_el1);
36 	isb();
37 }
38 
39 /*
40  * Set TTBR0 to reserved_pg_dir. No translations will be possible via TTBR0.
41  */
42 static inline void cpu_set_reserved_ttbr0_nosync(void)
43 {
44 	unsigned long ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
45 
46 	write_sysreg(ttbr, ttbr0_el1);
47 }
48 
49 static inline void cpu_set_reserved_ttbr0(void)
50 {
51 	cpu_set_reserved_ttbr0_nosync();
52 	isb();
53 }
54 
55 void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm);
56 
57 static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm)
58 {
59 	BUG_ON(pgd == swapper_pg_dir);
60 	cpu_do_switch_mm(virt_to_phys(pgd),mm);
61 }
62 
63 /*
64  * TCR.T0SZ value to use when the ID map is active.
65  */
66 #define idmap_t0sz	TCR_T0SZ(IDMAP_VA_BITS)
67 
68 /*
69  * Ensure TCR.T0SZ is set to the provided value.
70  */
71 static inline void __cpu_set_tcr_t0sz(unsigned long t0sz)
72 {
73 	unsigned long tcr = read_sysreg(tcr_el1);
74 
75 	if ((tcr & TCR_T0SZ_MASK) == t0sz)
76 		return;
77 
78 	tcr &= ~TCR_T0SZ_MASK;
79 	tcr |= t0sz;
80 	write_sysreg(tcr, tcr_el1);
81 	isb();
82 }
83 
84 #define cpu_set_default_tcr_t0sz()	__cpu_set_tcr_t0sz(TCR_T0SZ(vabits_actual))
85 #define cpu_set_idmap_tcr_t0sz()	__cpu_set_tcr_t0sz(idmap_t0sz)
86 
87 /*
88  * Remove the idmap from TTBR0_EL1 and install the pgd of the active mm.
89  *
90  * The idmap lives in the same VA range as userspace, but uses global entries
91  * and may use a different TCR_EL1.T0SZ. To avoid issues resulting from
92  * speculative TLB fetches, we must temporarily install the reserved page
93  * tables while we invalidate the TLBs and set up the correct TCR_EL1.T0SZ.
94  *
95  * If current is a not a user task, the mm covers the TTBR1_EL1 page tables,
96  * which should not be installed in TTBR0_EL1. In this case we can leave the
97  * reserved page tables in place.
98  */
99 static inline void cpu_uninstall_idmap(void)
100 {
101 	struct mm_struct *mm = current->active_mm;
102 
103 	cpu_set_reserved_ttbr0();
104 	local_flush_tlb_all();
105 	cpu_set_default_tcr_t0sz();
106 
107 	if (mm != &init_mm && !system_uses_ttbr0_pan())
108 		cpu_switch_mm(mm->pgd, mm);
109 }
110 
111 static inline void cpu_install_idmap(void)
112 {
113 	cpu_set_reserved_ttbr0();
114 	local_flush_tlb_all();
115 	cpu_set_idmap_tcr_t0sz();
116 
117 	cpu_switch_mm(lm_alias(idmap_pg_dir), &init_mm);
118 }
119 
120 /*
121  * Load our new page tables. A strict BBM approach requires that we ensure that
122  * TLBs are free of any entries that may overlap with the global mappings we are
123  * about to install.
124  *
125  * For a real hibernate/resume/kexec cycle TTBR0 currently points to a zero
126  * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI runtime
127  * services), while for a userspace-driven test_resume cycle it points to
128  * userspace page tables (and we must point it at a zero page ourselves).
129  *
130  * We change T0SZ as part of installing the idmap. This is undone by
131  * cpu_uninstall_idmap() in __cpu_suspend_exit().
132  */
133 static inline void cpu_install_ttbr0(phys_addr_t ttbr0, unsigned long t0sz)
134 {
135 	cpu_set_reserved_ttbr0();
136 	local_flush_tlb_all();
137 	__cpu_set_tcr_t0sz(t0sz);
138 
139 	/* avoid cpu_switch_mm() and its SW-PAN and CNP interactions */
140 	write_sysreg(ttbr0, ttbr0_el1);
141 	isb();
142 }
143 
144 void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp);
145 
146 static inline void cpu_enable_swapper_cnp(void)
147 {
148 	__cpu_replace_ttbr1(lm_alias(swapper_pg_dir), true);
149 }
150 
151 static inline void cpu_replace_ttbr1(pgd_t *pgdp)
152 {
153 	/*
154 	 * Only for early TTBR1 replacement before cpucaps are finalized and
155 	 * before we've decided whether to use CNP.
156 	 */
157 	WARN_ON(system_capabilities_finalized());
158 	__cpu_replace_ttbr1(pgdp, false);
159 }
160 
161 /*
162  * It would be nice to return ASIDs back to the allocator, but unfortunately
163  * that introduces a race with a generation rollover where we could erroneously
164  * free an ASID allocated in a future generation. We could workaround this by
165  * freeing the ASID from the context of the dying mm (e.g. in arch_exit_mmap),
166  * but we'd then need to make sure that we didn't dirty any TLBs afterwards.
167  * Setting a reserved TTBR0 or EPD0 would work, but it all gets ugly when you
168  * take CPU migration into account.
169  */
170 void check_and_switch_context(struct mm_struct *mm);
171 
172 #define init_new_context(tsk, mm) init_new_context(tsk, mm)
173 static inline int
174 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
175 {
176 	atomic64_set(&mm->context.id, 0);
177 	refcount_set(&mm->context.pinned, 0);
178 
179 	/* pkey 0 is the default, so always reserve it. */
180 	mm->context.pkey_allocation_map = BIT(0);
181 
182 	return 0;
183 }
184 
185 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
186 				  struct mm_struct *mm)
187 {
188 	/* Duplicate the oldmm pkey state in mm: */
189 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
190 }
191 
192 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
193 {
194 	arch_dup_pkeys(oldmm, mm);
195 
196 	return 0;
197 }
198 
199 static inline void arch_exit_mmap(struct mm_struct *mm)
200 {
201 }
202 
203 static inline void arch_unmap(struct mm_struct *mm,
204 			unsigned long start, unsigned long end)
205 {
206 }
207 
208 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
209 static inline void update_saved_ttbr0(struct task_struct *tsk,
210 				      struct mm_struct *mm)
211 {
212 	u64 ttbr;
213 
214 	if (!system_uses_ttbr0_pan())
215 		return;
216 
217 	if (mm == &init_mm)
218 		ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
219 	else
220 		ttbr = phys_to_ttbr(virt_to_phys(mm->pgd)) | ASID(mm) << 48;
221 
222 	WRITE_ONCE(task_thread_info(tsk)->ttbr0, ttbr);
223 }
224 #else
225 static inline void update_saved_ttbr0(struct task_struct *tsk,
226 				      struct mm_struct *mm)
227 {
228 }
229 #endif
230 
231 #define enter_lazy_tlb enter_lazy_tlb
232 static inline void
233 enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
234 {
235 	/*
236 	 * We don't actually care about the ttbr0 mapping, so point it at the
237 	 * zero page.
238 	 */
239 	update_saved_ttbr0(tsk, &init_mm);
240 }
241 
242 static inline void __switch_mm(struct mm_struct *next)
243 {
244 	/*
245 	 * init_mm.pgd does not contain any user mappings and it is always
246 	 * active for kernel addresses in TTBR1. Just set the reserved TTBR0.
247 	 */
248 	if (next == &init_mm) {
249 		cpu_set_reserved_ttbr0();
250 		return;
251 	}
252 
253 	check_and_switch_context(next);
254 }
255 
256 static inline void
257 switch_mm(struct mm_struct *prev, struct mm_struct *next,
258 	  struct task_struct *tsk)
259 {
260 	if (prev != next)
261 		__switch_mm(next);
262 
263 	/*
264 	 * Update the saved TTBR0_EL1 of the scheduled-in task as the previous
265 	 * value may have not been initialised yet (activate_mm caller) or the
266 	 * ASID has changed since the last run (following the context switch
267 	 * of another thread of the same process).
268 	 */
269 	update_saved_ttbr0(tsk, next);
270 }
271 
272 static inline const struct cpumask *
273 task_cpu_possible_mask(struct task_struct *p)
274 {
275 	if (!static_branch_unlikely(&arm64_mismatched_32bit_el0))
276 		return cpu_possible_mask;
277 
278 	if (!is_compat_thread(task_thread_info(p)))
279 		return cpu_possible_mask;
280 
281 	return system_32bit_el0_cpumask();
282 }
283 #define task_cpu_possible_mask	task_cpu_possible_mask
284 
285 void verify_cpu_asid_bits(void);
286 void post_ttbr_update_workaround(void);
287 
288 unsigned long arm64_mm_context_get(struct mm_struct *mm);
289 void arm64_mm_context_put(struct mm_struct *mm);
290 
291 #define mm_untag_mask mm_untag_mask
292 static inline unsigned long mm_untag_mask(struct mm_struct *mm)
293 {
294 	return -1UL >> 8;
295 }
296 
297 /*
298  * Only enforce protection keys on the current process, because there is no
299  * user context to access POR_EL0 for another address space.
300  */
301 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
302 		bool write, bool execute, bool foreign)
303 {
304 	if (!system_supports_poe())
305 		return true;
306 
307 	/* allow access if the VMA is not one from this process */
308 	if (foreign || vma_is_foreign(vma))
309 		return true;
310 
311 	return por_el0_allows_pkey(vma_pkey(vma), write, execute);
312 }
313 
314 #include <asm-generic/mmu_context.h>
315 
316 #endif /* !__ASSEMBLY__ */
317 
318 #endif /* !__ASM_MMU_CONTEXT_H */
319