xref: /linux/arch/arm64/include/asm/mmu.h (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_MMU_H
6 #define __ASM_MMU_H
7 
8 #include <asm/cputype.h>
9 
10 #define MMCF_AARCH32	0x1	/* mm context flag for AArch32 executables */
11 #define USER_ASID_BIT	48
12 #define USER_ASID_FLAG	(UL(1) << USER_ASID_BIT)
13 #define TTBR_ASID_MASK	(UL(0xffff) << 48)
14 
15 #ifndef __ASSEMBLY__
16 
17 #include <linux/refcount.h>
18 #include <asm/cpufeature.h>
19 
20 typedef struct {
21 	atomic64_t	id;
22 #ifdef CONFIG_COMPAT
23 	void		*sigpage;
24 #endif
25 	refcount_t	pinned;
26 	void		*vdso;
27 	unsigned long	flags;
28 	u8		pkey_allocation_map;
29 } mm_context_t;
30 
31 /*
32  * We use atomic64_read() here because the ASID for an 'mm_struct' can
33  * be reallocated when scheduling one of its threads following a
34  * rollover event (see new_context() and flush_context()). In this case,
35  * a concurrent TLBI (e.g. via try_to_unmap_one() and ptep_clear_flush())
36  * may use a stale ASID. This is fine in principle as the new ASID is
37  * guaranteed to be clean in the TLB, but the TLBI routines have to take
38  * care to handle the following race:
39  *
40  *    CPU 0                    CPU 1                          CPU 2
41  *
42  *    // ptep_clear_flush(mm)
43  *    xchg_relaxed(pte, 0)
44  *    DSB ISHST
45  *    old = ASID(mm)
46  *         |                                                  <rollover>
47  *         |                   new = new_context(mm)
48  *         \-----------------> atomic_set(mm->context.id, new)
49  *                             cpu_switch_mm(mm)
50  *                             // Hardware walk of pte using new ASID
51  *    TLBI(old)
52  *
53  * In this scenario, the barrier on CPU 0 and the dependency on CPU 1
54  * ensure that the page-table walker on CPU 1 *must* see the invalid PTE
55  * written by CPU 0.
56  */
57 #define ASID(mm)	(atomic64_read(&(mm)->context.id) & 0xffff)
58 
59 static inline bool arm64_kernel_unmapped_at_el0(void)
60 {
61 	return alternative_has_cap_unlikely(ARM64_UNMAP_KERNEL_AT_EL0);
62 }
63 
64 extern void arm64_memblock_init(void);
65 extern void paging_init(void);
66 extern void bootmem_init(void);
67 extern void create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
68 				   phys_addr_t size, pgprot_t prot);
69 extern void create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
70 			       unsigned long virt, phys_addr_t size,
71 			       pgprot_t prot, bool page_mappings_only);
72 extern void *fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot);
73 extern void mark_linear_text_alias_ro(void);
74 
75 /*
76  * This check is triggered during the early boot before the cpufeature
77  * is initialised. Checking the status on the local CPU allows the boot
78  * CPU to detect the need for non-global mappings and thus avoiding a
79  * pagetable re-write after all the CPUs are booted. This check will be
80  * anyway run on individual CPUs, allowing us to get the consistent
81  * state once the SMP CPUs are up and thus make the switch to non-global
82  * mappings if required.
83  */
84 static inline bool kaslr_requires_kpti(void)
85 {
86 	/*
87 	 * E0PD does a similar job to KPTI so can be used instead
88 	 * where available.
89 	 */
90 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
91 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
92 		if (cpuid_feature_extract_unsigned_field(mmfr2,
93 						ID_AA64MMFR2_EL1_E0PD_SHIFT))
94 			return false;
95 	}
96 
97 	/*
98 	 * Systems affected by Cavium erratum 24756 are incompatible
99 	 * with KPTI.
100 	 */
101 	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
102 		extern const struct midr_range cavium_erratum_27456_cpus[];
103 
104 		if (is_midr_in_range_list(read_cpuid_id(),
105 					  cavium_erratum_27456_cpus))
106 			return false;
107 	}
108 
109 	return true;
110 }
111 
112 #define INIT_MM_CONTEXT(name)	\
113 	.pgd = swapper_pg_dir,
114 
115 #endif	/* !__ASSEMBLY__ */
116 #endif
117