xref: /linux/arch/arm64/include/asm/memory.h (revision c435bce6af9b2a277662698875a689c389358f17)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/memory.h
4  *
5  * Copyright (C) 2000-2002 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * Note: this file should not be included by non-asm/.h files
9  */
10 #ifndef __ASM_MEMORY_H
11 #define __ASM_MEMORY_H
12 
13 #include <linux/const.h>
14 #include <linux/sizes.h>
15 #include <asm/page-def.h>
16 
17 /*
18  * Size of the PCI I/O space. This must remain a power of two so that
19  * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
20  */
21 #define PCI_IO_SIZE		SZ_16M
22 
23 /*
24  * VMEMMAP_SIZE - allows the whole linear region to be covered by
25  *                a struct page array
26  *
27  * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
28  * needs to cover the memory region from the beginning of the 52-bit
29  * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
30  * keep a constant PAGE_OFFSET and "fallback" to using the higher end
31  * of the VMEMMAP where 52-bit support is not available in hardware.
32  */
33 #define VMEMMAP_SHIFT	(PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)
34 #define VMEMMAP_SIZE	((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) >> VMEMMAP_SHIFT)
35 
36 /*
37  * PAGE_OFFSET - the virtual address of the start of the linear map, at the
38  *               start of the TTBR1 address space.
39  * PAGE_END - the end of the linear map, where all other kernel mappings begin.
40  * KIMAGE_VADDR - the virtual address of the start of the kernel image.
41  * VA_BITS - the maximum number of bits for virtual addresses.
42  */
43 #define VA_BITS			(CONFIG_ARM64_VA_BITS)
44 #define _PAGE_OFFSET(va)	(-(UL(1) << (va)))
45 #define PAGE_OFFSET		(_PAGE_OFFSET(VA_BITS))
46 #define KIMAGE_VADDR		(MODULES_END)
47 #define MODULES_END		(MODULES_VADDR + MODULES_VSIZE)
48 #define MODULES_VADDR		(_PAGE_END(VA_BITS_MIN))
49 #define MODULES_VSIZE		(SZ_2G)
50 #define VMEMMAP_START		(-(UL(1) << (VA_BITS - VMEMMAP_SHIFT)))
51 #define VMEMMAP_END		(VMEMMAP_START + VMEMMAP_SIZE)
52 #define PCI_IO_END		(VMEMMAP_START - SZ_8M)
53 #define PCI_IO_START		(PCI_IO_END - PCI_IO_SIZE)
54 #define FIXADDR_TOP		(VMEMMAP_START - SZ_32M)
55 
56 #if VA_BITS > 48
57 #define VA_BITS_MIN		(48)
58 #else
59 #define VA_BITS_MIN		(VA_BITS)
60 #endif
61 
62 #define _PAGE_END(va)		(-(UL(1) << ((va) - 1)))
63 
64 #define KERNEL_START		_text
65 #define KERNEL_END		_end
66 
67 /*
68  * Generic and Software Tag-Based KASAN modes require 1/8th and 1/16th of the
69  * kernel virtual address space for storing the shadow memory respectively.
70  *
71  * The mapping between a virtual memory address and its corresponding shadow
72  * memory address is defined based on the formula:
73  *
74  *     shadow_addr = (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET
75  *
76  * where KASAN_SHADOW_SCALE_SHIFT is the order of the number of bits that map
77  * to a single shadow byte and KASAN_SHADOW_OFFSET is a constant that offsets
78  * the mapping. Note that KASAN_SHADOW_OFFSET does not point to the start of
79  * the shadow memory region.
80  *
81  * Based on this mapping, we define two constants:
82  *
83  *     KASAN_SHADOW_START: the start of the shadow memory region;
84  *     KASAN_SHADOW_END: the end of the shadow memory region.
85  *
86  * KASAN_SHADOW_END is defined first as the shadow address that corresponds to
87  * the upper bound of possible virtual kernel memory addresses UL(1) << 64
88  * according to the mapping formula.
89  *
90  * KASAN_SHADOW_START is defined second based on KASAN_SHADOW_END. The shadow
91  * memory start must map to the lowest possible kernel virtual memory address
92  * and thus it depends on the actual bitness of the address space.
93  *
94  * As KASAN inserts redzones between stack variables, this increases the stack
95  * memory usage significantly. Thus, we double the (minimum) stack size.
96  */
97 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
98 #define KASAN_SHADOW_OFFSET	_AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
99 #define KASAN_SHADOW_END	((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) + KASAN_SHADOW_OFFSET)
100 #define _KASAN_SHADOW_START(va)	(KASAN_SHADOW_END - (UL(1) << ((va) - KASAN_SHADOW_SCALE_SHIFT)))
101 #define KASAN_SHADOW_START	_KASAN_SHADOW_START(vabits_actual)
102 #define PAGE_END		KASAN_SHADOW_START
103 #define KASAN_THREAD_SHIFT	1
104 #else
105 #define KASAN_THREAD_SHIFT	0
106 #define PAGE_END		(_PAGE_END(VA_BITS_MIN))
107 #endif /* CONFIG_KASAN */
108 
109 #define MIN_THREAD_SHIFT	(14 + KASAN_THREAD_SHIFT)
110 
111 /*
112  * VMAP'd stacks are allocated at page granularity, so we must ensure that such
113  * stacks are a multiple of page size.
114  */
115 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
116 #define THREAD_SHIFT		PAGE_SHIFT
117 #else
118 #define THREAD_SHIFT		MIN_THREAD_SHIFT
119 #endif
120 
121 #if THREAD_SHIFT >= PAGE_SHIFT
122 #define THREAD_SIZE_ORDER	(THREAD_SHIFT - PAGE_SHIFT)
123 #endif
124 
125 #define THREAD_SIZE		(UL(1) << THREAD_SHIFT)
126 
127 /*
128  * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
129  * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
130  * assembly.
131  */
132 #ifdef CONFIG_VMAP_STACK
133 #define THREAD_ALIGN		(2 * THREAD_SIZE)
134 #else
135 #define THREAD_ALIGN		THREAD_SIZE
136 #endif
137 
138 #define IRQ_STACK_SIZE		THREAD_SIZE
139 
140 #define OVERFLOW_STACK_SIZE	SZ_4K
141 
142 /*
143  * With the minimum frame size of [x29, x30], exactly half the combined
144  * sizes of the hyp and overflow stacks is the maximum size needed to
145  * save the unwinded stacktrace; plus an additional entry to delimit the
146  * end.
147  */
148 #define NVHE_STACKTRACE_SIZE	((OVERFLOW_STACK_SIZE + PAGE_SIZE) / 2 + sizeof(long))
149 
150 /*
151  * Alignment of kernel segments (e.g. .text, .data).
152  *
153  *  4 KB granule:  16 level 3 entries, with contiguous bit
154  * 16 KB granule:   4 level 3 entries, without contiguous bit
155  * 64 KB granule:   1 level 3 entry
156  */
157 #define SEGMENT_ALIGN		SZ_64K
158 
159 /*
160  * Memory types available.
161  *
162  * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in
163  *	      the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note
164  *	      that protection_map[] only contains MT_NORMAL attributes.
165  */
166 #define MT_NORMAL		0
167 #define MT_NORMAL_TAGGED	1
168 #define MT_NORMAL_NC		2
169 #define MT_DEVICE_nGnRnE	3
170 #define MT_DEVICE_nGnRE		4
171 
172 /*
173  * Memory types for Stage-2 translation
174  */
175 #define MT_S2_NORMAL		0xf
176 #define MT_S2_DEVICE_nGnRE	0x1
177 
178 /*
179  * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
180  * Stage-2 enforces Normal-WB and Device-nGnRE
181  */
182 #define MT_S2_FWB_NORMAL	6
183 #define MT_S2_FWB_DEVICE_nGnRE	1
184 
185 #ifdef CONFIG_ARM64_4K_PAGES
186 #define IOREMAP_MAX_ORDER	(PUD_SHIFT)
187 #else
188 #define IOREMAP_MAX_ORDER	(PMD_SHIFT)
189 #endif
190 
191 /*
192  *  Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated
193  *  until link time.
194  */
195 #define RESERVED_SWAPPER_OFFSET	(PAGE_SIZE)
196 
197 /*
198  *  Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated
199  *  until link time.
200  */
201 #define TRAMP_SWAPPER_OFFSET	(2 * PAGE_SIZE)
202 
203 #ifndef __ASSEMBLY__
204 
205 #include <linux/bitops.h>
206 #include <linux/compiler.h>
207 #include <linux/mmdebug.h>
208 #include <linux/types.h>
209 #include <asm/boot.h>
210 #include <asm/bug.h>
211 #include <asm/sections.h>
212 
213 #if VA_BITS > 48
214 extern u64			vabits_actual;
215 #else
216 #define vabits_actual		((u64)VA_BITS)
217 #endif
218 
219 extern s64			memstart_addr;
220 /* PHYS_OFFSET - the physical address of the start of memory. */
221 #define PHYS_OFFSET		({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
222 
223 /* the offset between the kernel virtual and physical mappings */
224 extern u64			kimage_voffset;
225 
226 static inline unsigned long kaslr_offset(void)
227 {
228 	return (u64)&_text - KIMAGE_VADDR;
229 }
230 
231 #ifdef CONFIG_RANDOMIZE_BASE
232 void kaslr_init(void);
233 static inline bool kaslr_enabled(void)
234 {
235 	extern bool __kaslr_is_enabled;
236 	return __kaslr_is_enabled;
237 }
238 #else
239 static inline void kaslr_init(void) { }
240 static inline bool kaslr_enabled(void) { return false; }
241 #endif
242 
243 /*
244  * Allow all memory at the discovery stage. We will clip it later.
245  */
246 #define MIN_MEMBLOCK_ADDR	0
247 #define MAX_MEMBLOCK_ADDR	U64_MAX
248 
249 /*
250  * PFNs are used to describe any physical page; this means
251  * PFN 0 == physical address 0.
252  *
253  * This is the PFN of the first RAM page in the kernel
254  * direct-mapped view.  We assume this is the first page
255  * of RAM in the mem_map as well.
256  */
257 #define PHYS_PFN_OFFSET	(PHYS_OFFSET >> PAGE_SHIFT)
258 
259 /*
260  * When dealing with data aborts, watchpoints, or instruction traps we may end
261  * up with a tagged userland pointer. Clear the tag to get a sane pointer to
262  * pass on to access_ok(), for instance.
263  */
264 #define __untagged_addr(addr)	\
265 	((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
266 
267 #define untagged_addr(addr)	({					\
268 	u64 __addr = (__force u64)(addr);					\
269 	__addr &= __untagged_addr(__addr);				\
270 	(__force __typeof__(addr))__addr;				\
271 })
272 
273 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
274 #define __tag_shifted(tag)	((u64)(tag) << 56)
275 #define __tag_reset(addr)	__untagged_addr(addr)
276 #define __tag_get(addr)		(__u8)((u64)(addr) >> 56)
277 #else
278 #define __tag_shifted(tag)	0UL
279 #define __tag_reset(addr)	(addr)
280 #define __tag_get(addr)		0
281 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
282 
283 static inline const void *__tag_set(const void *addr, u8 tag)
284 {
285 	u64 __addr = (u64)addr & ~__tag_shifted(0xff);
286 	return (const void *)(__addr | __tag_shifted(tag));
287 }
288 
289 #ifdef CONFIG_KASAN_HW_TAGS
290 #define arch_enable_tag_checks_sync()		mte_enable_kernel_sync()
291 #define arch_enable_tag_checks_async()		mte_enable_kernel_async()
292 #define arch_enable_tag_checks_asymm()		mte_enable_kernel_asymm()
293 #define arch_suppress_tag_checks_start()	mte_enable_tco()
294 #define arch_suppress_tag_checks_stop()		mte_disable_tco()
295 #define arch_force_async_tag_fault()		mte_check_tfsr_exit()
296 #define arch_get_random_tag()			mte_get_random_tag()
297 #define arch_get_mem_tag(addr)			mte_get_mem_tag(addr)
298 #define arch_set_mem_tag_range(addr, size, tag, init)	\
299 			mte_set_mem_tag_range((addr), (size), (tag), (init))
300 #endif /* CONFIG_KASAN_HW_TAGS */
301 
302 /*
303  * Physical vs virtual RAM address space conversion.  These are
304  * private definitions which should NOT be used outside memory.h
305  * files.  Use virt_to_phys/phys_to_virt/__pa/__va instead.
306  */
307 
308 
309 /*
310  * Check whether an arbitrary address is within the linear map, which
311  * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the
312  * kernel's TTBR1 address range.
313  */
314 #define __is_lm_address(addr)	(((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET))
315 
316 #define __lm_to_phys(addr)	(((addr) - PAGE_OFFSET) + PHYS_OFFSET)
317 #define __kimg_to_phys(addr)	((addr) - kimage_voffset)
318 
319 #define __virt_to_phys_nodebug(x) ({					\
320 	phys_addr_t __x = (phys_addr_t)(__tag_reset(x));		\
321 	__is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x);	\
322 })
323 
324 #define __pa_symbol_nodebug(x)	__kimg_to_phys((phys_addr_t)(x))
325 
326 #ifdef CONFIG_DEBUG_VIRTUAL
327 extern phys_addr_t __virt_to_phys(unsigned long x);
328 extern phys_addr_t __phys_addr_symbol(unsigned long x);
329 #else
330 #define __virt_to_phys(x)	__virt_to_phys_nodebug(x)
331 #define __phys_addr_symbol(x)	__pa_symbol_nodebug(x)
332 #endif /* CONFIG_DEBUG_VIRTUAL */
333 
334 #define __phys_to_virt(x)	((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
335 #define __phys_to_kimg(x)	((unsigned long)((x) + kimage_voffset))
336 
337 /*
338  * Convert a page to/from a physical address
339  */
340 #define page_to_phys(page)	(__pfn_to_phys(page_to_pfn(page)))
341 #define phys_to_page(phys)	(pfn_to_page(__phys_to_pfn(phys)))
342 
343 /*
344  * Note: Drivers should NOT use these.  They are the wrong
345  * translation for translating DMA addresses.  Use the driver
346  * DMA support - see dma-mapping.h.
347  */
348 #define virt_to_phys virt_to_phys
349 static inline phys_addr_t virt_to_phys(const volatile void *x)
350 {
351 	return __virt_to_phys((unsigned long)(x));
352 }
353 
354 #define phys_to_virt phys_to_virt
355 static inline void *phys_to_virt(phys_addr_t x)
356 {
357 	return (void *)(__phys_to_virt(x));
358 }
359 
360 /* Needed already here for resolving __phys_to_pfn() in virt_to_pfn() */
361 #include <asm-generic/memory_model.h>
362 
363 static inline unsigned long virt_to_pfn(const void *kaddr)
364 {
365 	return __phys_to_pfn(virt_to_phys(kaddr));
366 }
367 
368 /*
369  * Drivers should NOT use these either.
370  */
371 #define __pa(x)			__virt_to_phys((unsigned long)(x))
372 #define __pa_symbol(x)		__phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
373 #define __pa_nodebug(x)		__virt_to_phys_nodebug((unsigned long)(x))
374 #define __va(x)			((void *)__phys_to_virt((phys_addr_t)(x)))
375 #define pfn_to_kaddr(pfn)	__va((pfn) << PAGE_SHIFT)
376 #define sym_to_pfn(x)		__phys_to_pfn(__pa_symbol(x))
377 
378 /*
379  *  virt_to_page(x)	convert a _valid_ virtual address to struct page *
380  *  virt_addr_valid(x)	indicates whether a virtual address is valid
381  */
382 #define ARCH_PFN_OFFSET		((unsigned long)PHYS_PFN_OFFSET)
383 
384 #if defined(CONFIG_DEBUG_VIRTUAL)
385 #define page_to_virt(x)	({						\
386 	__typeof__(x) __page = x;					\
387 	void *__addr = __va(page_to_phys(__page));			\
388 	(void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
389 })
390 #define virt_to_page(x)		pfn_to_page(virt_to_pfn(x))
391 #else
392 #define page_to_virt(x)	({						\
393 	__typeof__(x) __page = x;					\
394 	u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
395 	u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE);			\
396 	(void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
397 })
398 
399 #define virt_to_page(x)	({						\
400 	u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE;	\
401 	u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page));	\
402 	(struct page *)__addr;						\
403 })
404 #endif /* CONFIG_DEBUG_VIRTUAL */
405 
406 #define virt_addr_valid(addr)	({					\
407 	__typeof__(addr) __addr = __tag_reset(addr);			\
408 	__is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr));	\
409 })
410 
411 void dump_mem_limit(void);
412 #endif /* !ASSEMBLY */
413 
414 /*
415  * Given that the GIC architecture permits ITS implementations that can only be
416  * configured with a LPI table address once, GICv3 systems with many CPUs may
417  * end up reserving a lot of different regions after a kexec for their LPI
418  * tables (one per CPU), as we are forced to reuse the same memory after kexec
419  * (and thus reserve it persistently with EFI beforehand)
420  */
421 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
422 # define INIT_MEMBLOCK_RESERVED_REGIONS	(INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
423 #endif
424 
425 /*
426  * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory
427  * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into
428  * multiple parts. As a result, the number of memory regions is large.
429  */
430 #ifdef CONFIG_EFI
431 #define INIT_MEMBLOCK_MEMORY_REGIONS	(INIT_MEMBLOCK_REGIONS * 8)
432 #endif
433 
434 
435 #endif /* __ASM_MEMORY_H */
436