1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10 #ifndef __ASM_MEMORY_H 11 #define __ASM_MEMORY_H 12 13 #include <linux/const.h> 14 #include <linux/sizes.h> 15 #include <asm/page-def.h> 16 17 /* 18 * Size of the PCI I/O space. This must remain a power of two so that 19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 20 */ 21 #define PCI_IO_SIZE SZ_16M 22 23 /* 24 * VMEMMAP_SIZE - allows the whole linear region to be covered by 25 * a struct page array 26 * 27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 28 * needs to cover the memory region from the beginning of the 52-bit 29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 31 * of the VMEMMAP where 52-bit support is not available in hardware. 32 */ 33 #define VMEMMAP_RANGE (_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) 34 #define VMEMMAP_SIZE ((VMEMMAP_RANGE >> PAGE_SHIFT) * sizeof(struct page)) 35 36 /* 37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 38 * start of the TTBR1 address space. 39 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 40 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 41 * VA_BITS - the maximum number of bits for virtual addresses. 42 */ 43 #define VA_BITS (CONFIG_ARM64_VA_BITS) 44 #define _PAGE_OFFSET(va) (-(UL(1) << (va))) 45 #define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 46 #define KIMAGE_VADDR (MODULES_END) 47 #define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 48 #define MODULES_VADDR (_PAGE_END(VA_BITS_MIN)) 49 #define MODULES_VSIZE (SZ_2G) 50 #define VMEMMAP_START (VMEMMAP_END - VMEMMAP_SIZE) 51 #define VMEMMAP_END (-UL(SZ_1G)) 52 #define PCI_IO_START (VMEMMAP_END + SZ_8M) 53 #define PCI_IO_END (PCI_IO_START + PCI_IO_SIZE) 54 #define FIXADDR_TOP (-UL(SZ_8M)) 55 56 #if VA_BITS > 48 57 #ifdef CONFIG_ARM64_16K_PAGES 58 #define VA_BITS_MIN (47) 59 #else 60 #define VA_BITS_MIN (48) 61 #endif 62 #else 63 #define VA_BITS_MIN (VA_BITS) 64 #endif 65 66 #define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 67 68 #define KERNEL_START _text 69 #define KERNEL_END _end 70 71 /* 72 * Generic and Software Tag-Based KASAN modes require 1/8th and 1/16th of the 73 * kernel virtual address space for storing the shadow memory respectively. 74 * 75 * The mapping between a virtual memory address and its corresponding shadow 76 * memory address is defined based on the formula: 77 * 78 * shadow_addr = (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET 79 * 80 * where KASAN_SHADOW_SCALE_SHIFT is the order of the number of bits that map 81 * to a single shadow byte and KASAN_SHADOW_OFFSET is a constant that offsets 82 * the mapping. Note that KASAN_SHADOW_OFFSET does not point to the start of 83 * the shadow memory region. 84 * 85 * Based on this mapping, we define two constants: 86 * 87 * KASAN_SHADOW_START: the start of the shadow memory region; 88 * KASAN_SHADOW_END: the end of the shadow memory region. 89 * 90 * KASAN_SHADOW_END is defined first as the shadow address that corresponds to 91 * the upper bound of possible virtual kernel memory addresses UL(1) << 64 92 * according to the mapping formula. 93 * 94 * KASAN_SHADOW_START is defined second based on KASAN_SHADOW_END. The shadow 95 * memory start must map to the lowest possible kernel virtual memory address 96 * and thus it depends on the actual bitness of the address space. 97 * 98 * As KASAN inserts redzones between stack variables, this increases the stack 99 * memory usage significantly. Thus, we double the (minimum) stack size. 100 */ 101 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 102 #define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 103 #define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) + KASAN_SHADOW_OFFSET) 104 #define _KASAN_SHADOW_START(va) (KASAN_SHADOW_END - (UL(1) << ((va) - KASAN_SHADOW_SCALE_SHIFT))) 105 #define KASAN_SHADOW_START _KASAN_SHADOW_START(vabits_actual) 106 #define PAGE_END KASAN_SHADOW_START 107 #define KASAN_THREAD_SHIFT 1 108 #else 109 #define KASAN_THREAD_SHIFT 0 110 #define PAGE_END (_PAGE_END(VA_BITS_MIN)) 111 #endif /* CONFIG_KASAN */ 112 113 #define DIRECT_MAP_PHYSMEM_END __pa(PAGE_END - 1) 114 115 #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 116 117 /* 118 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 119 * stacks are a multiple of page size. 120 */ 121 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 122 #define THREAD_SHIFT PAGE_SHIFT 123 #else 124 #define THREAD_SHIFT MIN_THREAD_SHIFT 125 #endif 126 127 #if THREAD_SHIFT >= PAGE_SHIFT 128 #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 129 #endif 130 131 #define THREAD_SIZE (UL(1) << THREAD_SHIFT) 132 133 /* 134 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 135 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 136 * assembly. 137 */ 138 #ifdef CONFIG_VMAP_STACK 139 #define THREAD_ALIGN (2 * THREAD_SIZE) 140 #else 141 #define THREAD_ALIGN THREAD_SIZE 142 #endif 143 144 #define IRQ_STACK_SIZE THREAD_SIZE 145 146 #define OVERFLOW_STACK_SIZE SZ_4K 147 148 /* 149 * With the minimum frame size of [x29, x30], exactly half the combined 150 * sizes of the hyp and overflow stacks is the maximum size needed to 151 * save the unwinded stacktrace; plus an additional entry to delimit the 152 * end. 153 */ 154 #define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + PAGE_SIZE) / 2 + sizeof(long)) 155 156 /* 157 * Alignment of kernel segments (e.g. .text, .data). 158 * 159 * 4 KB granule: 16 level 3 entries, with contiguous bit 160 * 16 KB granule: 4 level 3 entries, without contiguous bit 161 * 64 KB granule: 1 level 3 entry 162 */ 163 #define SEGMENT_ALIGN SZ_64K 164 165 /* 166 * Memory types available. 167 * 168 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in 169 * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note 170 * that protection_map[] only contains MT_NORMAL attributes. 171 */ 172 #define MT_NORMAL 0 173 #define MT_NORMAL_TAGGED 1 174 #define MT_NORMAL_NC 2 175 #define MT_DEVICE_nGnRnE 3 176 #define MT_DEVICE_nGnRE 4 177 178 /* 179 * Memory types for Stage-2 translation 180 */ 181 #define MT_S2_NORMAL 0xf 182 #define MT_S2_NORMAL_NC 0x5 183 #define MT_S2_DEVICE_nGnRE 0x1 184 185 /* 186 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 187 * Stage-2 enforces Normal-WB and Device-nGnRE 188 */ 189 #define MT_S2_FWB_NORMAL 6 190 #define MT_S2_FWB_NORMAL_NC 5 191 #define MT_S2_FWB_DEVICE_nGnRE 1 192 193 #ifdef CONFIG_ARM64_4K_PAGES 194 #define IOREMAP_MAX_ORDER (PUD_SHIFT) 195 #else 196 #define IOREMAP_MAX_ORDER (PMD_SHIFT) 197 #endif 198 199 /* 200 * Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated 201 * until link time. 202 */ 203 #define RESERVED_SWAPPER_OFFSET (PAGE_SIZE) 204 205 /* 206 * Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated 207 * until link time. 208 */ 209 #define TRAMP_SWAPPER_OFFSET (2 * PAGE_SIZE) 210 211 #ifndef __ASSEMBLY__ 212 213 #include <linux/bitops.h> 214 #include <linux/compiler.h> 215 #include <linux/mmdebug.h> 216 #include <linux/types.h> 217 #include <asm/boot.h> 218 #include <asm/bug.h> 219 #include <asm/sections.h> 220 #include <asm/sysreg.h> 221 222 static inline u64 __pure read_tcr(void) 223 { 224 u64 tcr; 225 226 // read_sysreg() uses asm volatile, so avoid it here 227 asm("mrs %0, tcr_el1" : "=r"(tcr)); 228 return tcr; 229 } 230 231 #if VA_BITS > 48 232 // For reasons of #include hell, we can't use TCR_T1SZ_OFFSET/TCR_T1SZ_MASK here 233 #define vabits_actual (64 - ((read_tcr() >> 16) & 63)) 234 #else 235 #define vabits_actual ((u64)VA_BITS) 236 #endif 237 238 extern s64 memstart_addr; 239 /* PHYS_OFFSET - the physical address of the start of memory. */ 240 #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 241 242 /* the offset between the kernel virtual and physical mappings */ 243 extern u64 kimage_voffset; 244 245 static inline unsigned long kaslr_offset(void) 246 { 247 return (u64)&_text - KIMAGE_VADDR; 248 } 249 250 #ifdef CONFIG_RANDOMIZE_BASE 251 void kaslr_init(void); 252 static inline bool kaslr_enabled(void) 253 { 254 extern bool __kaslr_is_enabled; 255 return __kaslr_is_enabled; 256 } 257 #else 258 static inline void kaslr_init(void) { } 259 static inline bool kaslr_enabled(void) { return false; } 260 #endif 261 262 /* 263 * Allow all memory at the discovery stage. We will clip it later. 264 */ 265 #define MIN_MEMBLOCK_ADDR 0 266 #define MAX_MEMBLOCK_ADDR U64_MAX 267 268 /* 269 * PFNs are used to describe any physical page; this means 270 * PFN 0 == physical address 0. 271 * 272 * This is the PFN of the first RAM page in the kernel 273 * direct-mapped view. We assume this is the first page 274 * of RAM in the mem_map as well. 275 */ 276 #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 277 278 /* 279 * When dealing with data aborts, watchpoints, or instruction traps we may end 280 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 281 * pass on to access_ok(), for instance. 282 */ 283 #define __untagged_addr(addr) \ 284 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 285 286 #define untagged_addr(addr) ({ \ 287 u64 __addr = (__force u64)(addr); \ 288 __addr &= __untagged_addr(__addr); \ 289 (__force __typeof__(addr))__addr; \ 290 }) 291 292 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 293 #define __tag_shifted(tag) ((u64)(tag) << 56) 294 #define __tag_reset(addr) __untagged_addr(addr) 295 #define __tag_get(addr) (__u8)((u64)(addr) >> 56) 296 #else 297 #define __tag_shifted(tag) 0UL 298 #define __tag_reset(addr) (addr) 299 #define __tag_get(addr) 0 300 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 301 302 static inline const void *__tag_set(const void *addr, u8 tag) 303 { 304 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 305 return (const void *)(__addr | __tag_shifted(tag)); 306 } 307 308 #ifdef CONFIG_KASAN_HW_TAGS 309 #define arch_enable_tag_checks_sync() mte_enable_kernel_sync() 310 #define arch_enable_tag_checks_async() mte_enable_kernel_async() 311 #define arch_enable_tag_checks_asymm() mte_enable_kernel_asymm() 312 #define arch_suppress_tag_checks_start() mte_enable_tco() 313 #define arch_suppress_tag_checks_stop() mte_disable_tco() 314 #define arch_force_async_tag_fault() mte_check_tfsr_exit() 315 #define arch_get_random_tag() mte_get_random_tag() 316 #define arch_get_mem_tag(addr) mte_get_mem_tag(addr) 317 #define arch_set_mem_tag_range(addr, size, tag, init) \ 318 mte_set_mem_tag_range((addr), (size), (tag), (init)) 319 #endif /* CONFIG_KASAN_HW_TAGS */ 320 321 /* 322 * Physical vs virtual RAM address space conversion. These are 323 * private definitions which should NOT be used outside memory.h 324 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 325 */ 326 327 328 /* 329 * Check whether an arbitrary address is within the linear map, which 330 * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the 331 * kernel's TTBR1 address range. 332 */ 333 #define __is_lm_address(addr) (((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET)) 334 335 #define __lm_to_phys(addr) (((addr) - PAGE_OFFSET) + PHYS_OFFSET) 336 #define __kimg_to_phys(addr) ((addr) - kimage_voffset) 337 338 #define __virt_to_phys_nodebug(x) ({ \ 339 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 340 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 341 }) 342 343 #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 344 345 #ifdef CONFIG_DEBUG_VIRTUAL 346 extern phys_addr_t __virt_to_phys(unsigned long x); 347 extern phys_addr_t __phys_addr_symbol(unsigned long x); 348 #else 349 #define __virt_to_phys(x) __virt_to_phys_nodebug(x) 350 #define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 351 #endif /* CONFIG_DEBUG_VIRTUAL */ 352 353 #define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET) 354 #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 355 356 /* 357 * Note: Drivers should NOT use these. They are the wrong 358 * translation for translating DMA addresses. Use the driver 359 * DMA support - see dma-mapping.h. 360 */ 361 #define virt_to_phys virt_to_phys 362 static inline phys_addr_t virt_to_phys(const volatile void *x) 363 { 364 return __virt_to_phys((unsigned long)(x)); 365 } 366 367 #define phys_to_virt phys_to_virt 368 static inline void *phys_to_virt(phys_addr_t x) 369 { 370 return (void *)(__phys_to_virt(x)); 371 } 372 373 /* Needed already here for resolving __phys_to_pfn() in virt_to_pfn() */ 374 #include <asm-generic/memory_model.h> 375 376 static inline unsigned long virt_to_pfn(const void *kaddr) 377 { 378 return __phys_to_pfn(virt_to_phys(kaddr)); 379 } 380 381 /* 382 * Drivers should NOT use these either. 383 */ 384 #define __pa(x) __virt_to_phys((unsigned long)(x)) 385 #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 386 #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 387 #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 388 #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 389 #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 390 391 /* 392 * virt_to_page(x) convert a _valid_ virtual address to struct page * 393 * virt_addr_valid(x) indicates whether a virtual address is valid 394 */ 395 #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 396 397 #if defined(CONFIG_DEBUG_VIRTUAL) 398 #define page_to_virt(x) ({ \ 399 __typeof__(x) __page = x; \ 400 void *__addr = __va(page_to_phys(__page)); \ 401 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 402 }) 403 #define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 404 #else 405 #define page_to_virt(x) ({ \ 406 __typeof__(x) __page = x; \ 407 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 408 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 409 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 410 }) 411 412 #define virt_to_page(x) ({ \ 413 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 414 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 415 (struct page *)__addr; \ 416 }) 417 #endif /* CONFIG_DEBUG_VIRTUAL */ 418 419 #define virt_addr_valid(addr) ({ \ 420 __typeof__(addr) __addr = __tag_reset(addr); \ 421 __is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr)); \ 422 }) 423 424 void dump_mem_limit(void); 425 #endif /* !ASSEMBLY */ 426 427 /* 428 * Given that the GIC architecture permits ITS implementations that can only be 429 * configured with a LPI table address once, GICv3 systems with many CPUs may 430 * end up reserving a lot of different regions after a kexec for their LPI 431 * tables (one per CPU), as we are forced to reuse the same memory after kexec 432 * (and thus reserve it persistently with EFI beforehand) 433 */ 434 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 435 # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 436 #endif 437 438 /* 439 * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory 440 * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into 441 * multiple parts. As a result, the number of memory regions is large. 442 */ 443 #ifdef CONFIG_EFI 444 #define INIT_MEMBLOCK_MEMORY_REGIONS (INIT_MEMBLOCK_REGIONS * 8) 445 #endif 446 447 448 #endif /* __ASM_MEMORY_H */ 449