xref: /linux/arch/arm64/include/asm/kvm_pgtable.h (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Will Deacon <will@kernel.org>
5  */
6 
7 #ifndef __ARM64_KVM_PGTABLE_H__
8 #define __ARM64_KVM_PGTABLE_H__
9 
10 #include <linux/bits.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 
14 #define KVM_PGTABLE_FIRST_LEVEL		-1
15 #define KVM_PGTABLE_LAST_LEVEL		3
16 
17 /*
18  * The largest supported block sizes for KVM (no 52-bit PA support):
19  *  - 4K (level 1):	1GB
20  *  - 16K (level 2):	32MB
21  *  - 64K (level 2):	512MB
22  */
23 #ifdef CONFIG_ARM64_4K_PAGES
24 #define KVM_PGTABLE_MIN_BLOCK_LEVEL	1
25 #else
26 #define KVM_PGTABLE_MIN_BLOCK_LEVEL	2
27 #endif
28 
29 #define kvm_lpa2_is_enabled()		system_supports_lpa2()
30 
31 static inline u64 kvm_get_parange_max(void)
32 {
33 	if (kvm_lpa2_is_enabled() ||
34 	   (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && PAGE_SHIFT == 16))
35 		return ID_AA64MMFR0_EL1_PARANGE_52;
36 	else
37 		return ID_AA64MMFR0_EL1_PARANGE_48;
38 }
39 
40 static inline u64 kvm_get_parange(u64 mmfr0)
41 {
42 	u64 parange_max = kvm_get_parange_max();
43 	u64 parange = cpuid_feature_extract_unsigned_field(mmfr0,
44 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
45 	if (parange > parange_max)
46 		parange = parange_max;
47 
48 	return parange;
49 }
50 
51 typedef u64 kvm_pte_t;
52 
53 #define KVM_PTE_VALID			BIT(0)
54 
55 #define KVM_PTE_ADDR_MASK		GENMASK(47, PAGE_SHIFT)
56 #define KVM_PTE_ADDR_51_48		GENMASK(15, 12)
57 #define KVM_PTE_ADDR_MASK_LPA2		GENMASK(49, PAGE_SHIFT)
58 #define KVM_PTE_ADDR_51_50_LPA2		GENMASK(9, 8)
59 
60 #define KVM_PHYS_INVALID		(-1ULL)
61 
62 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
63 
64 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
65 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
66 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO		\
67 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
68 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW		\
69 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
70 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
71 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
72 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
73 
74 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
75 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
76 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
77 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
78 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
79 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
80 
81 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 50)
82 
83 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
84 
85 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
86 
87 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
88 
89 #define KVM_PTE_LEAF_ATTR_HI_S1_GP	BIT(50)
90 
91 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
92 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
93 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
94 
95 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
96 #define KVM_MAX_OWNER_ID		1
97 
98 /*
99  * Used to indicate a pte for which a 'break-before-make' sequence is in
100  * progress.
101  */
102 #define KVM_INVALID_PTE_LOCKED		BIT(10)
103 
104 static inline bool kvm_pte_valid(kvm_pte_t pte)
105 {
106 	return pte & KVM_PTE_VALID;
107 }
108 
109 static inline u64 kvm_pte_to_phys(kvm_pte_t pte)
110 {
111 	u64 pa;
112 
113 	if (kvm_lpa2_is_enabled()) {
114 		pa = pte & KVM_PTE_ADDR_MASK_LPA2;
115 		pa |= FIELD_GET(KVM_PTE_ADDR_51_50_LPA2, pte) << 50;
116 	} else {
117 		pa = pte & KVM_PTE_ADDR_MASK;
118 		if (PAGE_SHIFT == 16)
119 			pa |= FIELD_GET(KVM_PTE_ADDR_51_48, pte) << 48;
120 	}
121 
122 	return pa;
123 }
124 
125 static inline kvm_pte_t kvm_phys_to_pte(u64 pa)
126 {
127 	kvm_pte_t pte;
128 
129 	if (kvm_lpa2_is_enabled()) {
130 		pte = pa & KVM_PTE_ADDR_MASK_LPA2;
131 		pa &= GENMASK(51, 50);
132 		pte |= FIELD_PREP(KVM_PTE_ADDR_51_50_LPA2, pa >> 50);
133 	} else {
134 		pte = pa & KVM_PTE_ADDR_MASK;
135 		if (PAGE_SHIFT == 16) {
136 			pa &= GENMASK(51, 48);
137 			pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
138 		}
139 	}
140 
141 	return pte;
142 }
143 
144 static inline kvm_pfn_t kvm_pte_to_pfn(kvm_pte_t pte)
145 {
146 	return __phys_to_pfn(kvm_pte_to_phys(pte));
147 }
148 
149 static inline u64 kvm_granule_shift(s8 level)
150 {
151 	/* Assumes KVM_PGTABLE_LAST_LEVEL is 3 */
152 	return ARM64_HW_PGTABLE_LEVEL_SHIFT(level);
153 }
154 
155 static inline u64 kvm_granule_size(s8 level)
156 {
157 	return BIT(kvm_granule_shift(level));
158 }
159 
160 static inline bool kvm_level_supports_block_mapping(s8 level)
161 {
162 	return level >= KVM_PGTABLE_MIN_BLOCK_LEVEL;
163 }
164 
165 static inline u32 kvm_supported_block_sizes(void)
166 {
167 	s8 level = KVM_PGTABLE_MIN_BLOCK_LEVEL;
168 	u32 r = 0;
169 
170 	for (; level <= KVM_PGTABLE_LAST_LEVEL; level++)
171 		r |= BIT(kvm_granule_shift(level));
172 
173 	return r;
174 }
175 
176 static inline bool kvm_is_block_size_supported(u64 size)
177 {
178 	bool is_power_of_two = IS_ALIGNED(size, size);
179 
180 	return is_power_of_two && (size & kvm_supported_block_sizes());
181 }
182 
183 /**
184  * struct kvm_pgtable_mm_ops - Memory management callbacks.
185  * @zalloc_page:		Allocate a single zeroed memory page.
186  *				The @arg parameter can be used by the walker
187  *				to pass a memcache. The initial refcount of
188  *				the page is 1.
189  * @zalloc_pages_exact:		Allocate an exact number of zeroed memory pages.
190  *				The @size parameter is in bytes, and is rounded
191  *				up to the next page boundary. The resulting
192  *				allocation is physically contiguous.
193  * @free_pages_exact:		Free an exact number of memory pages previously
194  *				allocated by zalloc_pages_exact.
195  * @free_unlinked_table:	Free an unlinked paging structure by unlinking and
196  *				dropping references.
197  * @get_page:			Increment the refcount on a page.
198  * @put_page:			Decrement the refcount on a page. When the
199  *				refcount reaches 0 the page is automatically
200  *				freed.
201  * @page_count:			Return the refcount of a page.
202  * @phys_to_virt:		Convert a physical address into a virtual
203  *				address	mapped in the current context.
204  * @virt_to_phys:		Convert a virtual address mapped in the current
205  *				context into a physical address.
206  * @dcache_clean_inval_poc:	Clean and invalidate the data cache to the PoC
207  *				for the	specified memory address range.
208  * @icache_inval_pou:		Invalidate the instruction cache to the PoU
209  *				for the specified memory address range.
210  */
211 struct kvm_pgtable_mm_ops {
212 	void*		(*zalloc_page)(void *arg);
213 	void*		(*zalloc_pages_exact)(size_t size);
214 	void		(*free_pages_exact)(void *addr, size_t size);
215 	void		(*free_unlinked_table)(void *addr, s8 level);
216 	void		(*get_page)(void *addr);
217 	void		(*put_page)(void *addr);
218 	int		(*page_count)(void *addr);
219 	void*		(*phys_to_virt)(phys_addr_t phys);
220 	phys_addr_t	(*virt_to_phys)(void *addr);
221 	void		(*dcache_clean_inval_poc)(void *addr, size_t size);
222 	void		(*icache_inval_pou)(void *addr, size_t size);
223 };
224 
225 /**
226  * enum kvm_pgtable_stage2_flags - Stage-2 page-table flags.
227  * @KVM_PGTABLE_S2_NOFWB:	Don't enforce Normal-WB even if the CPUs have
228  *				ARM64_HAS_STAGE2_FWB.
229  * @KVM_PGTABLE_S2_IDMAP:	Only use identity mappings.
230  */
231 enum kvm_pgtable_stage2_flags {
232 	KVM_PGTABLE_S2_NOFWB			= BIT(0),
233 	KVM_PGTABLE_S2_IDMAP			= BIT(1),
234 };
235 
236 /**
237  * enum kvm_pgtable_prot - Page-table permissions and attributes.
238  * @KVM_PGTABLE_PROT_X:		Execute permission.
239  * @KVM_PGTABLE_PROT_W:		Write permission.
240  * @KVM_PGTABLE_PROT_R:		Read permission.
241  * @KVM_PGTABLE_PROT_DEVICE:	Device attributes.
242  * @KVM_PGTABLE_PROT_NORMAL_NC:	Normal noncacheable attributes.
243  * @KVM_PGTABLE_PROT_SW0:	Software bit 0.
244  * @KVM_PGTABLE_PROT_SW1:	Software bit 1.
245  * @KVM_PGTABLE_PROT_SW2:	Software bit 2.
246  * @KVM_PGTABLE_PROT_SW3:	Software bit 3.
247  */
248 enum kvm_pgtable_prot {
249 	KVM_PGTABLE_PROT_X			= BIT(0),
250 	KVM_PGTABLE_PROT_W			= BIT(1),
251 	KVM_PGTABLE_PROT_R			= BIT(2),
252 
253 	KVM_PGTABLE_PROT_DEVICE			= BIT(3),
254 	KVM_PGTABLE_PROT_NORMAL_NC		= BIT(4),
255 
256 	KVM_PGTABLE_PROT_SW0			= BIT(55),
257 	KVM_PGTABLE_PROT_SW1			= BIT(56),
258 	KVM_PGTABLE_PROT_SW2			= BIT(57),
259 	KVM_PGTABLE_PROT_SW3			= BIT(58),
260 };
261 
262 #define KVM_PGTABLE_PROT_RW	(KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W)
263 #define KVM_PGTABLE_PROT_RWX	(KVM_PGTABLE_PROT_RW | KVM_PGTABLE_PROT_X)
264 
265 #define PKVM_HOST_MEM_PROT	KVM_PGTABLE_PROT_RWX
266 #define PKVM_HOST_MMIO_PROT	KVM_PGTABLE_PROT_RW
267 
268 #define PAGE_HYP		KVM_PGTABLE_PROT_RW
269 #define PAGE_HYP_EXEC		(KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_X)
270 #define PAGE_HYP_RO		(KVM_PGTABLE_PROT_R)
271 #define PAGE_HYP_DEVICE		(PAGE_HYP | KVM_PGTABLE_PROT_DEVICE)
272 
273 typedef bool (*kvm_pgtable_force_pte_cb_t)(u64 addr, u64 end,
274 					   enum kvm_pgtable_prot prot);
275 
276 /**
277  * enum kvm_pgtable_walk_flags - Flags to control a depth-first page-table walk.
278  * @KVM_PGTABLE_WALK_LEAF:		Visit leaf entries, including invalid
279  *					entries.
280  * @KVM_PGTABLE_WALK_TABLE_PRE:		Visit table entries before their
281  *					children.
282  * @KVM_PGTABLE_WALK_TABLE_POST:	Visit table entries after their
283  *					children.
284  * @KVM_PGTABLE_WALK_SHARED:		Indicates the page-tables may be shared
285  *					with other software walkers.
286  * @KVM_PGTABLE_WALK_HANDLE_FAULT:	Indicates the page-table walk was
287  *					invoked from a fault handler.
288  * @KVM_PGTABLE_WALK_SKIP_BBM_TLBI:	Visit and update table entries
289  *					without Break-before-make's
290  *					TLB invalidation.
291  * @KVM_PGTABLE_WALK_SKIP_CMO:		Visit and update table entries
292  *					without Cache maintenance
293  *					operations required.
294  */
295 enum kvm_pgtable_walk_flags {
296 	KVM_PGTABLE_WALK_LEAF			= BIT(0),
297 	KVM_PGTABLE_WALK_TABLE_PRE		= BIT(1),
298 	KVM_PGTABLE_WALK_TABLE_POST		= BIT(2),
299 	KVM_PGTABLE_WALK_SHARED			= BIT(3),
300 	KVM_PGTABLE_WALK_HANDLE_FAULT		= BIT(4),
301 	KVM_PGTABLE_WALK_SKIP_BBM_TLBI		= BIT(5),
302 	KVM_PGTABLE_WALK_SKIP_CMO		= BIT(6),
303 };
304 
305 struct kvm_pgtable_visit_ctx {
306 	kvm_pte_t				*ptep;
307 	kvm_pte_t				old;
308 	void					*arg;
309 	struct kvm_pgtable_mm_ops		*mm_ops;
310 	u64					start;
311 	u64					addr;
312 	u64					end;
313 	s8					level;
314 	enum kvm_pgtable_walk_flags		flags;
315 };
316 
317 typedef int (*kvm_pgtable_visitor_fn_t)(const struct kvm_pgtable_visit_ctx *ctx,
318 					enum kvm_pgtable_walk_flags visit);
319 
320 static inline bool kvm_pgtable_walk_shared(const struct kvm_pgtable_visit_ctx *ctx)
321 {
322 	return ctx->flags & KVM_PGTABLE_WALK_SHARED;
323 }
324 
325 /**
326  * struct kvm_pgtable_walker - Hook into a page-table walk.
327  * @cb:		Callback function to invoke during the walk.
328  * @arg:	Argument passed to the callback function.
329  * @flags:	Bitwise-OR of flags to identify the entry types on which to
330  *		invoke the callback function.
331  */
332 struct kvm_pgtable_walker {
333 	const kvm_pgtable_visitor_fn_t		cb;
334 	void * const				arg;
335 	const enum kvm_pgtable_walk_flags	flags;
336 };
337 
338 /*
339  * RCU cannot be used in a non-kernel context such as the hyp. As such, page
340  * table walkers used in hyp do not call into RCU and instead use other
341  * synchronization mechanisms (such as a spinlock).
342  */
343 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
344 
345 typedef kvm_pte_t *kvm_pteref_t;
346 
347 static inline kvm_pte_t *kvm_dereference_pteref(struct kvm_pgtable_walker *walker,
348 						kvm_pteref_t pteref)
349 {
350 	return pteref;
351 }
352 
353 static inline int kvm_pgtable_walk_begin(struct kvm_pgtable_walker *walker)
354 {
355 	/*
356 	 * Due to the lack of RCU (or a similar protection scheme), only
357 	 * non-shared table walkers are allowed in the hypervisor.
358 	 */
359 	if (walker->flags & KVM_PGTABLE_WALK_SHARED)
360 		return -EPERM;
361 
362 	return 0;
363 }
364 
365 static inline void kvm_pgtable_walk_end(struct kvm_pgtable_walker *walker) {}
366 
367 static inline bool kvm_pgtable_walk_lock_held(void)
368 {
369 	return true;
370 }
371 
372 #else
373 
374 typedef kvm_pte_t __rcu *kvm_pteref_t;
375 
376 static inline kvm_pte_t *kvm_dereference_pteref(struct kvm_pgtable_walker *walker,
377 						kvm_pteref_t pteref)
378 {
379 	return rcu_dereference_check(pteref, !(walker->flags & KVM_PGTABLE_WALK_SHARED));
380 }
381 
382 static inline int kvm_pgtable_walk_begin(struct kvm_pgtable_walker *walker)
383 {
384 	if (walker->flags & KVM_PGTABLE_WALK_SHARED)
385 		rcu_read_lock();
386 
387 	return 0;
388 }
389 
390 static inline void kvm_pgtable_walk_end(struct kvm_pgtable_walker *walker)
391 {
392 	if (walker->flags & KVM_PGTABLE_WALK_SHARED)
393 		rcu_read_unlock();
394 }
395 
396 static inline bool kvm_pgtable_walk_lock_held(void)
397 {
398 	return rcu_read_lock_held();
399 }
400 
401 #endif
402 
403 /**
404  * struct kvm_pgtable - KVM page-table.
405  * @ia_bits:		Maximum input address size, in bits.
406  * @start_level:	Level at which the page-table walk starts.
407  * @pgd:		Pointer to the first top-level entry of the page-table.
408  * @mm_ops:		Memory management callbacks.
409  * @mmu:		Stage-2 KVM MMU struct. Unused for stage-1 page-tables.
410  * @flags:		Stage-2 page-table flags.
411  * @force_pte_cb:	Function that returns true if page level mappings must
412  *			be used instead of block mappings.
413  */
414 struct kvm_pgtable {
415 	u32					ia_bits;
416 	s8					start_level;
417 	kvm_pteref_t				pgd;
418 	struct kvm_pgtable_mm_ops		*mm_ops;
419 
420 	/* Stage-2 only */
421 	struct kvm_s2_mmu			*mmu;
422 	enum kvm_pgtable_stage2_flags		flags;
423 	kvm_pgtable_force_pte_cb_t		force_pte_cb;
424 };
425 
426 /**
427  * kvm_pgtable_hyp_init() - Initialise a hypervisor stage-1 page-table.
428  * @pgt:	Uninitialised page-table structure to initialise.
429  * @va_bits:	Maximum virtual address bits.
430  * @mm_ops:	Memory management callbacks.
431  *
432  * Return: 0 on success, negative error code on failure.
433  */
434 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
435 			 struct kvm_pgtable_mm_ops *mm_ops);
436 
437 /**
438  * kvm_pgtable_hyp_destroy() - Destroy an unused hypervisor stage-1 page-table.
439  * @pgt:	Page-table structure initialised by kvm_pgtable_hyp_init().
440  *
441  * The page-table is assumed to be unreachable by any hardware walkers prior
442  * to freeing and therefore no TLB invalidation is performed.
443  */
444 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt);
445 
446 /**
447  * kvm_pgtable_hyp_map() - Install a mapping in a hypervisor stage-1 page-table.
448  * @pgt:	Page-table structure initialised by kvm_pgtable_hyp_init().
449  * @addr:	Virtual address at which to place the mapping.
450  * @size:	Size of the mapping.
451  * @phys:	Physical address of the memory to map.
452  * @prot:	Permissions and attributes for the mapping.
453  *
454  * The offset of @addr within a page is ignored, @size is rounded-up to
455  * the next page boundary and @phys is rounded-down to the previous page
456  * boundary.
457  *
458  * If device attributes are not explicitly requested in @prot, then the
459  * mapping will be normal, cacheable. Attempts to install a new mapping
460  * for a virtual address that is already mapped will be rejected with an
461  * error and a WARN().
462  *
463  * Return: 0 on success, negative error code on failure.
464  */
465 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
466 			enum kvm_pgtable_prot prot);
467 
468 /**
469  * kvm_pgtable_hyp_unmap() - Remove a mapping from a hypervisor stage-1 page-table.
470  * @pgt:	Page-table structure initialised by kvm_pgtable_hyp_init().
471  * @addr:	Virtual address from which to remove the mapping.
472  * @size:	Size of the mapping.
473  *
474  * The offset of @addr within a page is ignored, @size is rounded-up to
475  * the next page boundary and @phys is rounded-down to the previous page
476  * boundary.
477  *
478  * TLB invalidation is performed for each page-table entry cleared during the
479  * unmapping operation and the reference count for the page-table page
480  * containing the cleared entry is decremented, with unreferenced pages being
481  * freed. The unmapping operation will stop early if it encounters either an
482  * invalid page-table entry or a valid block mapping which maps beyond the range
483  * being unmapped.
484  *
485  * Return: Number of bytes unmapped, which may be 0.
486  */
487 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size);
488 
489 /**
490  * kvm_get_vtcr() - Helper to construct VTCR_EL2
491  * @mmfr0:	Sanitized value of SYS_ID_AA64MMFR0_EL1 register.
492  * @mmfr1:	Sanitized value of SYS_ID_AA64MMFR1_EL1 register.
493  * @phys_shfit:	Value to set in VTCR_EL2.T0SZ.
494  *
495  * The VTCR value is common across all the physical CPUs on the system.
496  * We use system wide sanitised values to fill in different fields,
497  * except for Hardware Management of Access Flags. HA Flag is set
498  * unconditionally on all CPUs, as it is safe to run with or without
499  * the feature and the bit is RES0 on CPUs that don't support it.
500  *
501  * Return: VTCR_EL2 value
502  */
503 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift);
504 
505 /**
506  * kvm_pgtable_stage2_pgd_size() - Helper to compute size of a stage-2 PGD
507  * @vtcr:	Content of the VTCR register.
508  *
509  * Return: the size (in bytes) of the stage-2 PGD
510  */
511 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr);
512 
513 /**
514  * __kvm_pgtable_stage2_init() - Initialise a guest stage-2 page-table.
515  * @pgt:	Uninitialised page-table structure to initialise.
516  * @mmu:	S2 MMU context for this S2 translation
517  * @mm_ops:	Memory management callbacks.
518  * @flags:	Stage-2 configuration flags.
519  * @force_pte_cb: Function that returns true if page level mappings must
520  *		be used instead of block mappings.
521  *
522  * Return: 0 on success, negative error code on failure.
523  */
524 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
525 			      struct kvm_pgtable_mm_ops *mm_ops,
526 			      enum kvm_pgtable_stage2_flags flags,
527 			      kvm_pgtable_force_pte_cb_t force_pte_cb);
528 
529 #define kvm_pgtable_stage2_init(pgt, mmu, mm_ops) \
530 	__kvm_pgtable_stage2_init(pgt, mmu, mm_ops, 0, NULL)
531 
532 /**
533  * kvm_pgtable_stage2_destroy() - Destroy an unused guest stage-2 page-table.
534  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
535  *
536  * The page-table is assumed to be unreachable by any hardware walkers prior
537  * to freeing and therefore no TLB invalidation is performed.
538  */
539 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt);
540 
541 /**
542  * kvm_pgtable_stage2_free_unlinked() - Free an unlinked stage-2 paging structure.
543  * @mm_ops:	Memory management callbacks.
544  * @pgtable:	Unlinked stage-2 paging structure to be freed.
545  * @level:	Level of the stage-2 paging structure to be freed.
546  *
547  * The page-table is assumed to be unreachable by any hardware walkers prior to
548  * freeing and therefore no TLB invalidation is performed.
549  */
550 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level);
551 
552 /**
553  * kvm_pgtable_stage2_create_unlinked() - Create an unlinked stage-2 paging structure.
554  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
555  * @phys:	Physical address of the memory to map.
556  * @level:	Starting level of the stage-2 paging structure to be created.
557  * @prot:	Permissions and attributes for the mapping.
558  * @mc:		Cache of pre-allocated and zeroed memory from which to allocate
559  *		page-table pages.
560  * @force_pte:  Force mappings to PAGE_SIZE granularity.
561  *
562  * Returns an unlinked page-table tree.  This new page-table tree is
563  * not reachable (i.e., it is unlinked) from the root pgd and it's
564  * therefore unreachableby the hardware page-table walker. No TLB
565  * invalidation or CMOs are performed.
566  *
567  * If device attributes are not explicitly requested in @prot, then the
568  * mapping will be normal, cacheable.
569  *
570  * Return: The fully populated (unlinked) stage-2 paging structure, or
571  * an ERR_PTR(error) on failure.
572  */
573 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
574 					      u64 phys, s8 level,
575 					      enum kvm_pgtable_prot prot,
576 					      void *mc, bool force_pte);
577 
578 /**
579  * kvm_pgtable_stage2_map() - Install a mapping in a guest stage-2 page-table.
580  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
581  * @addr:	Intermediate physical address at which to place the mapping.
582  * @size:	Size of the mapping.
583  * @phys:	Physical address of the memory to map.
584  * @prot:	Permissions and attributes for the mapping.
585  * @mc:		Cache of pre-allocated and zeroed memory from which to allocate
586  *		page-table pages.
587  * @flags:	Flags to control the page-table walk (ex. a shared walk)
588  *
589  * The offset of @addr within a page is ignored, @size is rounded-up to
590  * the next page boundary and @phys is rounded-down to the previous page
591  * boundary.
592  *
593  * If device attributes are not explicitly requested in @prot, then the
594  * mapping will be normal, cacheable.
595  *
596  * Note that the update of a valid leaf PTE in this function will be aborted,
597  * if it's trying to recreate the exact same mapping or only change the access
598  * permissions. Instead, the vCPU will exit one more time from guest if still
599  * needed and then go through the path of relaxing permissions.
600  *
601  * Note that this function will both coalesce existing table entries and split
602  * existing block mappings, relying on page-faults to fault back areas outside
603  * of the new mapping lazily.
604  *
605  * Return: 0 on success, negative error code on failure.
606  */
607 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
608 			   u64 phys, enum kvm_pgtable_prot prot,
609 			   void *mc, enum kvm_pgtable_walk_flags flags);
610 
611 /**
612  * kvm_pgtable_stage2_set_owner() - Unmap and annotate pages in the IPA space to
613  *				    track ownership.
614  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
615  * @addr:	Base intermediate physical address to annotate.
616  * @size:	Size of the annotated range.
617  * @mc:		Cache of pre-allocated and zeroed memory from which to allocate
618  *		page-table pages.
619  * @owner_id:	Unique identifier for the owner of the page.
620  *
621  * By default, all page-tables are owned by identifier 0. This function can be
622  * used to mark portions of the IPA space as owned by other entities. When a
623  * stage 2 is used with identity-mappings, these annotations allow to use the
624  * page-table data structure as a simple rmap.
625  *
626  * Return: 0 on success, negative error code on failure.
627  */
628 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
629 				 void *mc, u8 owner_id);
630 
631 /**
632  * kvm_pgtable_stage2_unmap() - Remove a mapping from a guest stage-2 page-table.
633  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
634  * @addr:	Intermediate physical address from which to remove the mapping.
635  * @size:	Size of the mapping.
636  *
637  * The offset of @addr within a page is ignored and @size is rounded-up to
638  * the next page boundary.
639  *
640  * TLB invalidation is performed for each page-table entry cleared during the
641  * unmapping operation and the reference count for the page-table page
642  * containing the cleared entry is decremented, with unreferenced pages being
643  * freed. Unmapping a cacheable page will ensure that it is clean to the PoC if
644  * FWB is not supported by the CPU.
645  *
646  * Return: 0 on success, negative error code on failure.
647  */
648 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size);
649 
650 /**
651  * kvm_pgtable_stage2_wrprotect() - Write-protect guest stage-2 address range
652  *                                  without TLB invalidation.
653  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
654  * @addr:	Intermediate physical address from which to write-protect,
655  * @size:	Size of the range.
656  *
657  * The offset of @addr within a page is ignored and @size is rounded-up to
658  * the next page boundary.
659  *
660  * Note that it is the caller's responsibility to invalidate the TLB after
661  * calling this function to ensure that the updated permissions are visible
662  * to the CPUs.
663  *
664  * Return: 0 on success, negative error code on failure.
665  */
666 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size);
667 
668 /**
669  * kvm_pgtable_stage2_mkyoung() - Set the access flag in a page-table entry.
670  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
671  * @addr:	Intermediate physical address to identify the page-table entry.
672  *
673  * The offset of @addr within a page is ignored.
674  *
675  * If there is a valid, leaf page-table entry used to translate @addr, then
676  * set the access flag in that entry.
677  *
678  * Return: The old page-table entry prior to setting the flag, 0 on failure.
679  */
680 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr);
681 
682 /**
683  * kvm_pgtable_stage2_test_clear_young() - Test and optionally clear the access
684  *					   flag in a page-table entry.
685  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
686  * @addr:	Intermediate physical address to identify the page-table entry.
687  * @size:	Size of the address range to visit.
688  * @mkold:	True if the access flag should be cleared.
689  *
690  * The offset of @addr within a page is ignored.
691  *
692  * Tests and conditionally clears the access flag for every valid, leaf
693  * page-table entry used to translate the range [@addr, @addr + @size).
694  *
695  * Note that it is the caller's responsibility to invalidate the TLB after
696  * calling this function to ensure that the updated permissions are visible
697  * to the CPUs.
698  *
699  * Return: True if any of the visited PTEs had the access flag set.
700  */
701 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
702 					 u64 size, bool mkold);
703 
704 /**
705  * kvm_pgtable_stage2_relax_perms() - Relax the permissions enforced by a
706  *				      page-table entry.
707  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
708  * @addr:	Intermediate physical address to identify the page-table entry.
709  * @prot:	Additional permissions to grant for the mapping.
710  *
711  * The offset of @addr within a page is ignored.
712  *
713  * If there is a valid, leaf page-table entry used to translate @addr, then
714  * relax the permissions in that entry according to the read, write and
715  * execute permissions specified by @prot. No permissions are removed, and
716  * TLB invalidation is performed after updating the entry. Software bits cannot
717  * be set or cleared using kvm_pgtable_stage2_relax_perms().
718  *
719  * Return: 0 on success, negative error code on failure.
720  */
721 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
722 				   enum kvm_pgtable_prot prot);
723 
724 /**
725  * kvm_pgtable_stage2_flush_range() - Clean and invalidate data cache to Point
726  * 				      of Coherency for guest stage-2 address
727  *				      range.
728  * @pgt:	Page-table structure initialised by kvm_pgtable_stage2_init*().
729  * @addr:	Intermediate physical address from which to flush.
730  * @size:	Size of the range.
731  *
732  * The offset of @addr within a page is ignored and @size is rounded-up to
733  * the next page boundary.
734  *
735  * Return: 0 on success, negative error code on failure.
736  */
737 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size);
738 
739 /**
740  * kvm_pgtable_stage2_split() - Split a range of huge pages into leaf PTEs pointing
741  *				to PAGE_SIZE guest pages.
742  * @pgt:	 Page-table structure initialised by kvm_pgtable_stage2_init().
743  * @addr:	 Intermediate physical address from which to split.
744  * @size:	 Size of the range.
745  * @mc:		 Cache of pre-allocated and zeroed memory from which to allocate
746  *		 page-table pages.
747  *
748  * The function tries to split any level 1 or 2 entry that overlaps
749  * with the input range (given by @addr and @size).
750  *
751  * Return: 0 on success, negative error code on failure. Note that
752  * kvm_pgtable_stage2_split() is best effort: it tries to break as many
753  * blocks in the input range as allowed by @mc_capacity.
754  */
755 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
756 			     struct kvm_mmu_memory_cache *mc);
757 
758 /**
759  * kvm_pgtable_walk() - Walk a page-table.
760  * @pgt:	Page-table structure initialised by kvm_pgtable_*_init().
761  * @addr:	Input address for the start of the walk.
762  * @size:	Size of the range to walk.
763  * @walker:	Walker callback description.
764  *
765  * The offset of @addr within a page is ignored and @size is rounded-up to
766  * the next page boundary.
767  *
768  * The walker will walk the page-table entries corresponding to the input
769  * address range specified, visiting entries according to the walker flags.
770  * Invalid entries are treated as leaf entries. The visited page table entry is
771  * reloaded after invoking the walker callback, allowing the walker to descend
772  * into a newly installed table.
773  *
774  * Returning a negative error code from the walker callback function will
775  * terminate the walk immediately with the same error code.
776  *
777  * Return: 0 on success, negative error code on failure.
778  */
779 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
780 		     struct kvm_pgtable_walker *walker);
781 
782 /**
783  * kvm_pgtable_get_leaf() - Walk a page-table and retrieve the leaf entry
784  *			    with its level.
785  * @pgt:	Page-table structure initialised by kvm_pgtable_*_init()
786  *		or a similar initialiser.
787  * @addr:	Input address for the start of the walk.
788  * @ptep:	Pointer to storage for the retrieved PTE.
789  * @level:	Pointer to storage for the level of the retrieved PTE.
790  *
791  * The offset of @addr within a page is ignored.
792  *
793  * The walker will walk the page-table entries corresponding to the input
794  * address specified, retrieving the leaf corresponding to this address.
795  * Invalid entries are treated as leaf entries.
796  *
797  * Return: 0 on success, negative error code on failure.
798  */
799 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
800 			 kvm_pte_t *ptep, s8 *level);
801 
802 /**
803  * kvm_pgtable_stage2_pte_prot() - Retrieve the protection attributes of a
804  *				   stage-2 Page-Table Entry.
805  * @pte:	Page-table entry
806  *
807  * Return: protection attributes of the page-table entry in the enum
808  *	   kvm_pgtable_prot format.
809  */
810 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte);
811 
812 /**
813  * kvm_pgtable_hyp_pte_prot() - Retrieve the protection attributes of a stage-1
814  *				Page-Table Entry.
815  * @pte:	Page-table entry
816  *
817  * Return: protection attributes of the page-table entry in the enum
818  *	   kvm_pgtable_prot format.
819  */
820 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte);
821 
822 /**
823  * kvm_tlb_flush_vmid_range() - Invalidate/flush a range of TLB entries
824  *
825  * @mmu:	Stage-2 KVM MMU struct
826  * @addr:	The base Intermediate physical address from which to invalidate
827  * @size:	Size of the range from the base to invalidate
828  */
829 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
830 				phys_addr_t addr, size_t size);
831 #endif	/* __ARM64_KVM_PGTABLE_H__ */
832