xref: /linux/arch/arm64/include/asm/kvm_mmu.h (revision ed4bc1890b4984d0af447ad3cc1f93541623f8f3)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9 
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/cpufeature.h>
13 
14 /*
15  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
16  * "negative" addresses. This makes it impossible to directly share
17  * mappings with the kernel.
18  *
19  * Instead, give the HYP mode its own VA region at a fixed offset from
20  * the kernel by just masking the top bits (which are all ones for a
21  * kernel address). We need to find out how many bits to mask.
22  *
23  * We want to build a set of page tables that cover both parts of the
24  * idmap (the trampoline page used to initialize EL2), and our normal
25  * runtime VA space, at the same time.
26  *
27  * Given that the kernel uses VA_BITS for its entire address space,
28  * and that half of that space (VA_BITS - 1) is used for the linear
29  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
30  *
31  * The main question is "Within the VA_BITS space, does EL2 use the
32  * top or the bottom half of that space to shadow the kernel's linear
33  * mapping?". As we need to idmap the trampoline page, this is
34  * determined by the range in which this page lives.
35  *
36  * If the page is in the bottom half, we have to use the top half. If
37  * the page is in the top half, we have to use the bottom half:
38  *
39  * T = __pa_symbol(__hyp_idmap_text_start)
40  * if (T & BIT(VA_BITS - 1))
41  *	HYP_VA_MIN = 0  //idmap in upper half
42  * else
43  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
44  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
45  *
46  * This of course assumes that the trampoline page exists within the
47  * VA_BITS range. If it doesn't, then it means we're in the odd case
48  * where the kernel idmap (as well as HYP) uses more levels than the
49  * kernel runtime page tables (as seen when the kernel is configured
50  * for 4k pages, 39bits VA, and yet memory lives just above that
51  * limit, forcing the idmap to use 4 levels of page tables while the
52  * kernel itself only uses 3). In this particular case, it doesn't
53  * matter which side of VA_BITS we use, as we're guaranteed not to
54  * conflict with anything.
55  *
56  * When using VHE, there are no separate hyp mappings and all KVM
57  * functionality is already mapped as part of the main kernel
58  * mappings, and none of this applies in that case.
59  */
60 
61 #ifdef __ASSEMBLY__
62 
63 #include <asm/alternative.h>
64 
65 /*
66  * Convert a kernel VA into a HYP VA.
67  * reg: VA to be converted.
68  *
69  * The actual code generation takes place in kvm_update_va_mask, and
70  * the instructions below are only there to reserve the space and
71  * perform the register allocation (kvm_update_va_mask uses the
72  * specific registers encoded in the instructions).
73  */
74 .macro kern_hyp_va	reg
75 alternative_cb kvm_update_va_mask
76 	and     \reg, \reg, #1		/* mask with va_mask */
77 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
78 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
79 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
80 	ror	\reg, \reg, #63		/* rotate back */
81 alternative_cb_end
82 .endm
83 
84 #else
85 
86 #include <linux/pgtable.h>
87 #include <asm/pgalloc.h>
88 #include <asm/cache.h>
89 #include <asm/cacheflush.h>
90 #include <asm/mmu_context.h>
91 
92 void kvm_update_va_mask(struct alt_instr *alt,
93 			__le32 *origptr, __le32 *updptr, int nr_inst);
94 void kvm_compute_layout(void);
95 
96 static __always_inline unsigned long __kern_hyp_va(unsigned long v)
97 {
98 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
99 				    "ror %0, %0, #1\n"
100 				    "add %0, %0, #0\n"
101 				    "add %0, %0, #0, lsl 12\n"
102 				    "ror %0, %0, #63\n",
103 				    kvm_update_va_mask)
104 		     : "+r" (v));
105 	return v;
106 }
107 
108 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
109 
110 /*
111  * We currently support using a VM-specified IPA size. For backward
112  * compatibility, the default IPA size is fixed to 40bits.
113  */
114 #define KVM_PHYS_SHIFT	(40)
115 
116 #define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
117 #define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
118 #define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
119 
120 static inline bool kvm_page_empty(void *ptr)
121 {
122 	struct page *ptr_page = virt_to_page(ptr);
123 	return page_count(ptr_page) == 1;
124 }
125 
126 #include <asm/stage2_pgtable.h>
127 
128 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
129 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
130 			   void __iomem **kaddr,
131 			   void __iomem **haddr);
132 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
133 			     void **haddr);
134 void free_hyp_pgds(void);
135 
136 void stage2_unmap_vm(struct kvm *kvm);
137 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
138 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
139 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
140 			  phys_addr_t pa, unsigned long size, bool writable);
141 
142 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
143 
144 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
145 
146 phys_addr_t kvm_mmu_get_httbr(void);
147 phys_addr_t kvm_get_idmap_vector(void);
148 int kvm_mmu_init(void);
149 void kvm_clear_hyp_idmap(void);
150 
151 #define kvm_mk_pmd(ptep)					\
152 	__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
153 #define kvm_mk_pud(pmdp)					\
154 	__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
155 #define kvm_mk_p4d(pmdp)					\
156 	__p4d(__phys_to_p4d_val(__pa(pmdp)) | PUD_TYPE_TABLE)
157 
158 #define kvm_set_pud(pudp, pud)		set_pud(pudp, pud)
159 
160 #define kvm_pfn_pte(pfn, prot)		pfn_pte(pfn, prot)
161 #define kvm_pfn_pmd(pfn, prot)		pfn_pmd(pfn, prot)
162 #define kvm_pfn_pud(pfn, prot)		pfn_pud(pfn, prot)
163 
164 #define kvm_pud_pfn(pud)		pud_pfn(pud)
165 
166 #define kvm_pmd_mkhuge(pmd)		pmd_mkhuge(pmd)
167 #define kvm_pud_mkhuge(pud)		pud_mkhuge(pud)
168 
169 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
170 {
171 	pte_val(pte) |= PTE_S2_RDWR;
172 	return pte;
173 }
174 
175 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
176 {
177 	pmd_val(pmd) |= PMD_S2_RDWR;
178 	return pmd;
179 }
180 
181 static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
182 {
183 	pud_val(pud) |= PUD_S2_RDWR;
184 	return pud;
185 }
186 
187 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
188 {
189 	pte_val(pte) &= ~PTE_S2_XN;
190 	return pte;
191 }
192 
193 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
194 {
195 	pmd_val(pmd) &= ~PMD_S2_XN;
196 	return pmd;
197 }
198 
199 static inline pud_t kvm_s2pud_mkexec(pud_t pud)
200 {
201 	pud_val(pud) &= ~PUD_S2_XN;
202 	return pud;
203 }
204 
205 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
206 {
207 	pteval_t old_pteval, pteval;
208 
209 	pteval = READ_ONCE(pte_val(*ptep));
210 	do {
211 		old_pteval = pteval;
212 		pteval &= ~PTE_S2_RDWR;
213 		pteval |= PTE_S2_RDONLY;
214 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
215 	} while (pteval != old_pteval);
216 }
217 
218 static inline bool kvm_s2pte_readonly(pte_t *ptep)
219 {
220 	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
221 }
222 
223 static inline bool kvm_s2pte_exec(pte_t *ptep)
224 {
225 	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
226 }
227 
228 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
229 {
230 	kvm_set_s2pte_readonly((pte_t *)pmdp);
231 }
232 
233 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
234 {
235 	return kvm_s2pte_readonly((pte_t *)pmdp);
236 }
237 
238 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
239 {
240 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
241 }
242 
243 static inline void kvm_set_s2pud_readonly(pud_t *pudp)
244 {
245 	kvm_set_s2pte_readonly((pte_t *)pudp);
246 }
247 
248 static inline bool kvm_s2pud_readonly(pud_t *pudp)
249 {
250 	return kvm_s2pte_readonly((pte_t *)pudp);
251 }
252 
253 static inline bool kvm_s2pud_exec(pud_t *pudp)
254 {
255 	return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
256 }
257 
258 static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
259 {
260 	return pud_mkyoung(pud);
261 }
262 
263 static inline bool kvm_s2pud_young(pud_t pud)
264 {
265 	return pud_young(pud);
266 }
267 
268 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
269 
270 #ifdef __PAGETABLE_PMD_FOLDED
271 #define hyp_pmd_table_empty(pmdp) (0)
272 #else
273 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
274 #endif
275 
276 #ifdef __PAGETABLE_PUD_FOLDED
277 #define hyp_pud_table_empty(pudp) (0)
278 #else
279 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
280 #endif
281 
282 #ifdef __PAGETABLE_P4D_FOLDED
283 #define hyp_p4d_table_empty(p4dp) (0)
284 #else
285 #define hyp_p4d_table_empty(p4dp) kvm_page_empty(p4dp)
286 #endif
287 
288 struct kvm;
289 
290 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
291 
292 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
293 {
294 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
295 }
296 
297 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
298 {
299 	void *va = page_address(pfn_to_page(pfn));
300 
301 	/*
302 	 * With FWB, we ensure that the guest always accesses memory using
303 	 * cacheable attributes, and we don't have to clean to PoC when
304 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
305 	 * PoU is not required either in this case.
306 	 */
307 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
308 		return;
309 
310 	kvm_flush_dcache_to_poc(va, size);
311 }
312 
313 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
314 						  unsigned long size)
315 {
316 	if (icache_is_aliasing()) {
317 		/* any kind of VIPT cache */
318 		__flush_icache_all();
319 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
320 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
321 		void *va = page_address(pfn_to_page(pfn));
322 
323 		invalidate_icache_range((unsigned long)va,
324 					(unsigned long)va + size);
325 	}
326 }
327 
328 static inline void __kvm_flush_dcache_pte(pte_t pte)
329 {
330 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
331 		struct page *page = pte_page(pte);
332 		kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
333 	}
334 }
335 
336 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
337 {
338 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
339 		struct page *page = pmd_page(pmd);
340 		kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
341 	}
342 }
343 
344 static inline void __kvm_flush_dcache_pud(pud_t pud)
345 {
346 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
347 		struct page *page = pud_page(pud);
348 		kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
349 	}
350 }
351 
352 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
353 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
354 
355 static inline bool __kvm_cpu_uses_extended_idmap(void)
356 {
357 	return __cpu_uses_extended_idmap_level();
358 }
359 
360 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
361 {
362 	return idmap_ptrs_per_pgd;
363 }
364 
365 /*
366  * Can't use pgd_populate here, because the extended idmap adds an extra level
367  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
368  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
369  */
370 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
371 				       pgd_t *hyp_pgd,
372 				       pgd_t *merged_hyp_pgd,
373 				       unsigned long hyp_idmap_start)
374 {
375 	int idmap_idx;
376 	u64 pgd_addr;
377 
378 	/*
379 	 * Use the first entry to access the HYP mappings. It is
380 	 * guaranteed to be free, otherwise we wouldn't use an
381 	 * extended idmap.
382 	 */
383 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
384 	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
385 	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
386 
387 	/*
388 	 * Create another extended level entry that points to the boot HYP map,
389 	 * which contains an ID mapping of the HYP init code. We essentially
390 	 * merge the boot and runtime HYP maps by doing so, but they don't
391 	 * overlap anyway, so this is fine.
392 	 */
393 	idmap_idx = hyp_idmap_start >> VA_BITS;
394 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
395 	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
396 	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
397 }
398 
399 static inline unsigned int kvm_get_vmid_bits(void)
400 {
401 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
402 
403 	return get_vmid_bits(reg);
404 }
405 
406 /*
407  * We are not in the kvm->srcu critical section most of the time, so we take
408  * the SRCU read lock here. Since we copy the data from the user page, we
409  * can immediately drop the lock again.
410  */
411 static inline int kvm_read_guest_lock(struct kvm *kvm,
412 				      gpa_t gpa, void *data, unsigned long len)
413 {
414 	int srcu_idx = srcu_read_lock(&kvm->srcu);
415 	int ret = kvm_read_guest(kvm, gpa, data, len);
416 
417 	srcu_read_unlock(&kvm->srcu, srcu_idx);
418 
419 	return ret;
420 }
421 
422 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
423 				       const void *data, unsigned long len)
424 {
425 	int srcu_idx = srcu_read_lock(&kvm->srcu);
426 	int ret = kvm_write_guest(kvm, gpa, data, len);
427 
428 	srcu_read_unlock(&kvm->srcu, srcu_idx);
429 
430 	return ret;
431 }
432 
433 #ifdef CONFIG_KVM_INDIRECT_VECTORS
434 /*
435  * EL2 vectors can be mapped and rerouted in a number of ways,
436  * depending on the kernel configuration and CPU present:
437  *
438  * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
439  *   hardening sequence is placed in one of the vector slots, which is
440  *   executed before jumping to the real vectors.
441  *
442  * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
443  *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
444  *   hardening sequence is mapped next to the idmap page, and executed
445  *   before jumping to the real vectors.
446  *
447  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
448  *   empty slot is selected, mapped next to the idmap page, and
449  *   executed before jumping to the real vectors.
450  *
451  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
452  * VHE, as we don't have hypervisor-specific mappings. If the system
453  * is VHE and yet selects this capability, it will be ignored.
454  */
455 #include <asm/mmu.h>
456 
457 extern void *__kvm_bp_vect_base;
458 extern int __kvm_harden_el2_vector_slot;
459 
460 /*  This is called on both VHE and !VHE systems */
461 static inline void *kvm_get_hyp_vector(void)
462 {
463 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
464 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
465 	int slot = -1;
466 
467 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
468 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
469 		slot = data->hyp_vectors_slot;
470 	}
471 
472 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
473 		vect = __kvm_bp_vect_base;
474 		if (slot == -1)
475 			slot = __kvm_harden_el2_vector_slot;
476 	}
477 
478 	if (slot != -1)
479 		vect += slot * SZ_2K;
480 
481 	return vect;
482 }
483 
484 /*  This is only called on a !VHE system */
485 static inline int kvm_map_vectors(void)
486 {
487 	/*
488 	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
489 	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
490 	 *
491 	 * !HBP + !HEL2 -> use direct vectors
492 	 *  HBP + !HEL2 -> use hardened vectors in place
493 	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
494 	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
495 	 */
496 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
497 		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
498 		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
499 	}
500 
501 	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
502 		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
503 		unsigned long size = __BP_HARDEN_HYP_VECS_SZ;
504 
505 		/*
506 		 * Always allocate a spare vector slot, as we don't
507 		 * know yet which CPUs have a BP hardening slot that
508 		 * we can reuse.
509 		 */
510 		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
511 		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
512 		return create_hyp_exec_mappings(vect_pa, size,
513 						&__kvm_bp_vect_base);
514 	}
515 
516 	return 0;
517 }
518 #else
519 static inline void *kvm_get_hyp_vector(void)
520 {
521 	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
522 }
523 
524 static inline int kvm_map_vectors(void)
525 {
526 	return 0;
527 }
528 #endif
529 
530 #ifdef CONFIG_ARM64_SSBD
531 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
532 
533 static inline int hyp_map_aux_data(void)
534 {
535 	int cpu, err;
536 
537 	for_each_possible_cpu(cpu) {
538 		u64 *ptr;
539 
540 		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
541 		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
542 		if (err)
543 			return err;
544 	}
545 	return 0;
546 }
547 #else
548 static inline int hyp_map_aux_data(void)
549 {
550 	return 0;
551 }
552 #endif
553 
554 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
555 
556 /*
557  * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
558  * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
559  * 52bit IPS.
560  */
561 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
562 {
563 	int x = ARM64_VTTBR_X(ipa_shift, levels);
564 
565 	return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
566 }
567 
568 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
569 {
570 	unsigned int x = arm64_vttbr_x(ipa_shift, levels);
571 
572 	return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
573 }
574 
575 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
576 {
577 	return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
578 }
579 
580 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
581 {
582 	struct kvm_vmid *vmid = &mmu->vmid;
583 	u64 vmid_field, baddr;
584 	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
585 
586 	baddr = mmu->pgd_phys;
587 	vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
588 	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
589 }
590 
591 /*
592  * Must be called from hyp code running at EL2 with an updated VTTBR
593  * and interrupts disabled.
594  */
595 static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
596 {
597 	write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2);
598 	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
599 
600 	/*
601 	 * ARM errata 1165522 and 1530923 require the actual execution of the
602 	 * above before we can switch to the EL1/EL0 translation regime used by
603 	 * the guest.
604 	 */
605 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
606 }
607 
608 #endif /* __ASSEMBLY__ */
609 #endif /* __ARM64_KVM_MMU_H__ */
610