xref: /linux/arch/arm64/include/asm/kvm_mmu.h (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9 
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/mmu.h>
13 #include <asm/cpufeature.h>
14 
15 /*
16  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17  * "negative" addresses. This makes it impossible to directly share
18  * mappings with the kernel.
19  *
20  * Instead, give the HYP mode its own VA region at a fixed offset from
21  * the kernel by just masking the top bits (which are all ones for a
22  * kernel address). We need to find out how many bits to mask.
23  *
24  * We want to build a set of page tables that cover both parts of the
25  * idmap (the trampoline page used to initialize EL2), and our normal
26  * runtime VA space, at the same time.
27  *
28  * Given that the kernel uses VA_BITS for its entire address space,
29  * and that half of that space (VA_BITS - 1) is used for the linear
30  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31  *
32  * The main question is "Within the VA_BITS space, does EL2 use the
33  * top or the bottom half of that space to shadow the kernel's linear
34  * mapping?". As we need to idmap the trampoline page, this is
35  * determined by the range in which this page lives.
36  *
37  * If the page is in the bottom half, we have to use the top half. If
38  * the page is in the top half, we have to use the bottom half:
39  *
40  * T = __pa_symbol(__hyp_idmap_text_start)
41  * if (T & BIT(VA_BITS - 1))
42  *	HYP_VA_MIN = 0  //idmap in upper half
43  * else
44  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
45  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46  *
47  * When using VHE, there are no separate hyp mappings and all KVM
48  * functionality is already mapped as part of the main kernel
49  * mappings, and none of this applies in that case.
50  */
51 
52 #ifdef __ASSEMBLY__
53 
54 #include <asm/alternative.h>
55 
56 /*
57  * Convert a kernel VA into a HYP VA.
58  * reg: VA to be converted.
59  *
60  * The actual code generation takes place in kvm_update_va_mask, and
61  * the instructions below are only there to reserve the space and
62  * perform the register allocation (kvm_update_va_mask uses the
63  * specific registers encoded in the instructions).
64  */
65 .macro kern_hyp_va	reg
66 alternative_cb kvm_update_va_mask
67 	and     \reg, \reg, #1		/* mask with va_mask */
68 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
69 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
70 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
71 	ror	\reg, \reg, #63		/* rotate back */
72 alternative_cb_end
73 .endm
74 
75 /*
76  * Convert a kernel image address to a PA
77  * reg: kernel address to be converted in place
78  * tmp: temporary register
79  *
80  * The actual code generation takes place in kvm_get_kimage_voffset, and
81  * the instructions below are only there to reserve the space and
82  * perform the register allocation (kvm_get_kimage_voffset uses the
83  * specific registers encoded in the instructions).
84  */
85 .macro kimg_pa reg, tmp
86 alternative_cb kvm_get_kimage_voffset
87 	movz	\tmp, #0
88 	movk	\tmp, #0, lsl #16
89 	movk	\tmp, #0, lsl #32
90 	movk	\tmp, #0, lsl #48
91 alternative_cb_end
92 
93 	/* reg = __pa(reg) */
94 	sub	\reg, \reg, \tmp
95 .endm
96 
97 /*
98  * Convert a kernel image address to a hyp VA
99  * reg: kernel address to be converted in place
100  * tmp: temporary register
101  *
102  * The actual code generation takes place in kvm_get_kimage_voffset, and
103  * the instructions below are only there to reserve the space and
104  * perform the register allocation (kvm_update_kimg_phys_offset uses the
105  * specific registers encoded in the instructions).
106  */
107 .macro kimg_hyp_va reg, tmp
108 alternative_cb kvm_update_kimg_phys_offset
109 	movz	\tmp, #0
110 	movk	\tmp, #0, lsl #16
111 	movk	\tmp, #0, lsl #32
112 	movk	\tmp, #0, lsl #48
113 alternative_cb_end
114 
115 	sub	\reg, \reg, \tmp
116 	mov_q	\tmp, PAGE_OFFSET
117 	orr	\reg, \reg, \tmp
118 	kern_hyp_va \reg
119 .endm
120 
121 #else
122 
123 #include <linux/pgtable.h>
124 #include <asm/pgalloc.h>
125 #include <asm/cache.h>
126 #include <asm/cacheflush.h>
127 #include <asm/mmu_context.h>
128 
129 void kvm_update_va_mask(struct alt_instr *alt,
130 			__le32 *origptr, __le32 *updptr, int nr_inst);
131 void kvm_compute_layout(void);
132 
133 static __always_inline unsigned long __kern_hyp_va(unsigned long v)
134 {
135 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
136 				    "ror %0, %0, #1\n"
137 				    "add %0, %0, #0\n"
138 				    "add %0, %0, #0, lsl 12\n"
139 				    "ror %0, %0, #63\n",
140 				    kvm_update_va_mask)
141 		     : "+r" (v));
142 	return v;
143 }
144 
145 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
146 
147 static __always_inline unsigned long __kimg_hyp_va(unsigned long v)
148 {
149 	unsigned long offset;
150 
151 	asm volatile(ALTERNATIVE_CB("movz %0, #0\n"
152 				    "movk %0, #0, lsl #16\n"
153 				    "movk %0, #0, lsl #32\n"
154 				    "movk %0, #0, lsl #48\n",
155 				    kvm_update_kimg_phys_offset)
156 		     : "=r" (offset));
157 
158 	return __kern_hyp_va((v - offset) | PAGE_OFFSET);
159 }
160 
161 #define kimg_fn_hyp_va(v) 	((typeof(*v))(__kimg_hyp_va((unsigned long)(v))))
162 
163 #define kimg_fn_ptr(x)	(typeof(x) **)(x)
164 
165 /*
166  * We currently support using a VM-specified IPA size. For backward
167  * compatibility, the default IPA size is fixed to 40bits.
168  */
169 #define KVM_PHYS_SHIFT	(40)
170 
171 #define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
172 #define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
173 #define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
174 
175 #include <asm/kvm_pgtable.h>
176 #include <asm/stage2_pgtable.h>
177 
178 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
179 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
180 			   void __iomem **kaddr,
181 			   void __iomem **haddr);
182 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
183 			     void **haddr);
184 void free_hyp_pgds(void);
185 
186 void stage2_unmap_vm(struct kvm *kvm);
187 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
188 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
189 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
190 			  phys_addr_t pa, unsigned long size, bool writable);
191 
192 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
193 
194 phys_addr_t kvm_mmu_get_httbr(void);
195 phys_addr_t kvm_get_idmap_vector(void);
196 int kvm_mmu_init(void);
197 
198 struct kvm;
199 
200 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
201 
202 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
203 {
204 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
205 }
206 
207 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
208 {
209 	void *va = page_address(pfn_to_page(pfn));
210 
211 	/*
212 	 * With FWB, we ensure that the guest always accesses memory using
213 	 * cacheable attributes, and we don't have to clean to PoC when
214 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
215 	 * PoU is not required either in this case.
216 	 */
217 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
218 		return;
219 
220 	kvm_flush_dcache_to_poc(va, size);
221 }
222 
223 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
224 						  unsigned long size)
225 {
226 	if (icache_is_aliasing()) {
227 		/* any kind of VIPT cache */
228 		__flush_icache_all();
229 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
230 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
231 		void *va = page_address(pfn_to_page(pfn));
232 
233 		invalidate_icache_range((unsigned long)va,
234 					(unsigned long)va + size);
235 	}
236 }
237 
238 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
239 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
240 
241 static inline unsigned int kvm_get_vmid_bits(void)
242 {
243 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
244 
245 	return get_vmid_bits(reg);
246 }
247 
248 /*
249  * We are not in the kvm->srcu critical section most of the time, so we take
250  * the SRCU read lock here. Since we copy the data from the user page, we
251  * can immediately drop the lock again.
252  */
253 static inline int kvm_read_guest_lock(struct kvm *kvm,
254 				      gpa_t gpa, void *data, unsigned long len)
255 {
256 	int srcu_idx = srcu_read_lock(&kvm->srcu);
257 	int ret = kvm_read_guest(kvm, gpa, data, len);
258 
259 	srcu_read_unlock(&kvm->srcu, srcu_idx);
260 
261 	return ret;
262 }
263 
264 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
265 				       const void *data, unsigned long len)
266 {
267 	int srcu_idx = srcu_read_lock(&kvm->srcu);
268 	int ret = kvm_write_guest(kvm, gpa, data, len);
269 
270 	srcu_read_unlock(&kvm->srcu, srcu_idx);
271 
272 	return ret;
273 }
274 
275 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
276 
277 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
278 {
279 	struct kvm_vmid *vmid = &mmu->vmid;
280 	u64 vmid_field, baddr;
281 	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
282 
283 	baddr = mmu->pgd_phys;
284 	vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
285 	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
286 }
287 
288 /*
289  * Must be called from hyp code running at EL2 with an updated VTTBR
290  * and interrupts disabled.
291  */
292 static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
293 {
294 	write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2);
295 	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
296 
297 	/*
298 	 * ARM errata 1165522 and 1530923 require the actual execution of the
299 	 * above before we can switch to the EL1/EL0 translation regime used by
300 	 * the guest.
301 	 */
302 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
303 }
304 
305 #endif /* __ASSEMBLY__ */
306 #endif /* __ARM64_KVM_MMU_H__ */
307