1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_MMU_H__ 8 #define __ARM64_KVM_MMU_H__ 9 10 #include <asm/page.h> 11 #include <asm/memory.h> 12 #include <asm/mmu.h> 13 #include <asm/cpufeature.h> 14 15 /* 16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 17 * "negative" addresses. This makes it impossible to directly share 18 * mappings with the kernel. 19 * 20 * Instead, give the HYP mode its own VA region at a fixed offset from 21 * the kernel by just masking the top bits (which are all ones for a 22 * kernel address). We need to find out how many bits to mask. 23 * 24 * We want to build a set of page tables that cover both parts of the 25 * idmap (the trampoline page used to initialize EL2), and our normal 26 * runtime VA space, at the same time. 27 * 28 * Given that the kernel uses VA_BITS for its entire address space, 29 * and that half of that space (VA_BITS - 1) is used for the linear 30 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 31 * 32 * The main question is "Within the VA_BITS space, does EL2 use the 33 * top or the bottom half of that space to shadow the kernel's linear 34 * mapping?". As we need to idmap the trampoline page, this is 35 * determined by the range in which this page lives. 36 * 37 * If the page is in the bottom half, we have to use the top half. If 38 * the page is in the top half, we have to use the bottom half: 39 * 40 * T = __pa_symbol(__hyp_idmap_text_start) 41 * if (T & BIT(VA_BITS - 1)) 42 * HYP_VA_MIN = 0 //idmap in upper half 43 * else 44 * HYP_VA_MIN = 1 << (VA_BITS - 1) 45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 46 * 47 * When using VHE, there are no separate hyp mappings and all KVM 48 * functionality is already mapped as part of the main kernel 49 * mappings, and none of this applies in that case. 50 */ 51 52 #ifdef __ASSEMBLY__ 53 54 #include <asm/alternative.h> 55 56 /* 57 * Convert a hypervisor VA to a PA 58 * reg: hypervisor address to be converted in place 59 * tmp: temporary register 60 */ 61 .macro hyp_pa reg, tmp 62 ldr_l \tmp, hyp_physvirt_offset 63 add \reg, \reg, \tmp 64 .endm 65 66 /* 67 * Convert a hypervisor VA to a kernel image address 68 * reg: hypervisor address to be converted in place 69 * tmp: temporary register 70 * 71 * The actual code generation takes place in kvm_get_kimage_voffset, and 72 * the instructions below are only there to reserve the space and 73 * perform the register allocation (kvm_get_kimage_voffset uses the 74 * specific registers encoded in the instructions). 75 */ 76 .macro hyp_kimg_va reg, tmp 77 /* Convert hyp VA -> PA. */ 78 hyp_pa \reg, \tmp 79 80 /* Load kimage_voffset. */ 81 alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset 82 movz \tmp, #0 83 movk \tmp, #0, lsl #16 84 movk \tmp, #0, lsl #32 85 movk \tmp, #0, lsl #48 86 alternative_cb_end 87 88 /* Convert PA -> kimg VA. */ 89 add \reg, \reg, \tmp 90 .endm 91 92 #else 93 94 #include <linux/pgtable.h> 95 #include <asm/pgalloc.h> 96 #include <asm/cache.h> 97 #include <asm/cacheflush.h> 98 #include <asm/mmu_context.h> 99 #include <asm/kvm_emulate.h> 100 #include <asm/kvm_host.h> 101 #include <asm/kvm_nested.h> 102 103 void kvm_update_va_mask(struct alt_instr *alt, 104 __le32 *origptr, __le32 *updptr, int nr_inst); 105 void kvm_compute_layout(void); 106 void kvm_apply_hyp_relocations(void); 107 108 #define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset) 109 110 /* 111 * Convert a kernel VA into a HYP VA. 112 * 113 * Can be called from hyp or non-hyp context. 114 * 115 * The actual code generation takes place in kvm_update_va_mask(), and 116 * the instructions below are only there to reserve the space and 117 * perform the register allocation (kvm_update_va_mask() uses the 118 * specific registers encoded in the instructions). 119 */ 120 static __always_inline unsigned long __kern_hyp_va(unsigned long v) 121 { 122 /* 123 * This #ifndef is an optimisation for when this is called from VHE hyp 124 * context. When called from a VHE non-hyp context, kvm_update_va_mask() will 125 * replace the instructions with `nop`s. 126 */ 127 #ifndef __KVM_VHE_HYPERVISOR__ 128 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" /* mask with va_mask */ 129 "ror %0, %0, #1\n" /* rotate to the first tag bit */ 130 "add %0, %0, #0\n" /* insert the low 12 bits of the tag */ 131 "add %0, %0, #0, lsl 12\n" /* insert the top 12 bits of the tag */ 132 "ror %0, %0, #63\n", /* rotate back */ 133 ARM64_ALWAYS_SYSTEM, 134 kvm_update_va_mask) 135 : "+r" (v)); 136 #endif 137 return v; 138 } 139 140 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 141 142 extern u32 __hyp_va_bits; 143 144 /* 145 * We currently support using a VM-specified IPA size. For backward 146 * compatibility, the default IPA size is fixed to 40bits. 147 */ 148 #define KVM_PHYS_SHIFT (40) 149 150 #define kvm_phys_shift(mmu) VTCR_EL2_IPA((mmu)->vtcr) 151 #define kvm_phys_size(mmu) (_AC(1, ULL) << kvm_phys_shift(mmu)) 152 #define kvm_phys_mask(mmu) (kvm_phys_size(mmu) - _AC(1, ULL)) 153 154 #include <asm/kvm_pgtable.h> 155 #include <asm/stage2_pgtable.h> 156 157 int kvm_share_hyp(void *from, void *to); 158 void kvm_unshare_hyp(void *from, void *to); 159 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot); 160 int __create_hyp_mappings(unsigned long start, unsigned long size, 161 unsigned long phys, enum kvm_pgtable_prot prot); 162 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr); 163 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 164 void __iomem **kaddr, 165 void __iomem **haddr); 166 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 167 void **haddr); 168 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr); 169 void __init free_hyp_pgds(void); 170 171 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start, 172 u64 size, bool may_block); 173 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end); 174 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end); 175 176 void stage2_unmap_vm(struct kvm *kvm); 177 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type); 178 void kvm_uninit_stage2_mmu(struct kvm *kvm); 179 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu); 180 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 181 phys_addr_t pa, unsigned long size, bool writable); 182 183 int kvm_handle_guest_sea(struct kvm_vcpu *vcpu); 184 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu); 185 186 phys_addr_t kvm_mmu_get_httbr(void); 187 phys_addr_t kvm_get_idmap_vector(void); 188 int __init kvm_mmu_init(u32 *hyp_va_bits); 189 190 static inline void *__kvm_vector_slot2addr(void *base, 191 enum arm64_hyp_spectre_vector slot) 192 { 193 int idx = slot - (slot != HYP_VECTOR_DIRECT); 194 195 return base + (idx * SZ_2K); 196 } 197 198 struct kvm; 199 200 #define kvm_flush_dcache_to_poc(a,l) \ 201 dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l)) 202 203 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 204 { 205 u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C; 206 int reg; 207 208 if (vcpu_is_el2(vcpu)) 209 reg = SCTLR_EL2; 210 else 211 reg = SCTLR_EL1; 212 213 return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits; 214 } 215 216 static inline void __clean_dcache_guest_page(void *va, size_t size) 217 { 218 /* 219 * With FWB, we ensure that the guest always accesses memory using 220 * cacheable attributes, and we don't have to clean to PoC when 221 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to 222 * PoU is not required either in this case. 223 */ 224 if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 225 return; 226 227 kvm_flush_dcache_to_poc(va, size); 228 } 229 230 static inline size_t __invalidate_icache_max_range(void) 231 { 232 u8 iminline; 233 u64 ctr; 234 235 asm volatile(ALTERNATIVE_CB("movz %0, #0\n" 236 "movk %0, #0, lsl #16\n" 237 "movk %0, #0, lsl #32\n" 238 "movk %0, #0, lsl #48\n", 239 ARM64_ALWAYS_SYSTEM, 240 kvm_compute_final_ctr_el0) 241 : "=r" (ctr)); 242 243 iminline = SYS_FIELD_GET(CTR_EL0, IminLine, ctr) + 2; 244 return MAX_DVM_OPS << iminline; 245 } 246 247 static inline void __invalidate_icache_guest_page(void *va, size_t size) 248 { 249 /* 250 * Blow the whole I-cache if it is aliasing (i.e. VIPT) or the 251 * invalidation range exceeds our arbitrary limit on invadations by 252 * cache line. 253 */ 254 if (icache_is_aliasing() || size > __invalidate_icache_max_range()) 255 icache_inval_all_pou(); 256 else 257 icache_inval_pou((unsigned long)va, (unsigned long)va + size); 258 } 259 260 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 261 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 262 263 static inline unsigned int kvm_get_vmid_bits(void) 264 { 265 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 266 267 return get_vmid_bits(reg); 268 } 269 270 /* 271 * We are not in the kvm->srcu critical section most of the time, so we take 272 * the SRCU read lock here. Since we copy the data from the user page, we 273 * can immediately drop the lock again. 274 */ 275 static inline int kvm_read_guest_lock(struct kvm *kvm, 276 gpa_t gpa, void *data, unsigned long len) 277 { 278 int srcu_idx = srcu_read_lock(&kvm->srcu); 279 int ret = kvm_read_guest(kvm, gpa, data, len); 280 281 srcu_read_unlock(&kvm->srcu, srcu_idx); 282 283 return ret; 284 } 285 286 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, 287 const void *data, unsigned long len) 288 { 289 int srcu_idx = srcu_read_lock(&kvm->srcu); 290 int ret = kvm_write_guest(kvm, gpa, data, len); 291 292 srcu_read_unlock(&kvm->srcu, srcu_idx); 293 294 return ret; 295 } 296 297 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) 298 299 /* 300 * When this is (directly or indirectly) used on the TLB invalidation 301 * path, we rely on a previously issued DSB so that page table updates 302 * and VMID reads are correctly ordered. 303 */ 304 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu) 305 { 306 struct kvm_vmid *vmid = &mmu->vmid; 307 u64 vmid_field, baddr; 308 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; 309 310 baddr = mmu->pgd_phys; 311 vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT; 312 vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits); 313 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; 314 } 315 316 /* 317 * Must be called from hyp code running at EL2 with an updated VTTBR 318 * and interrupts disabled. 319 */ 320 static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu, 321 struct kvm_arch *arch) 322 { 323 write_sysreg(mmu->vtcr, vtcr_el2); 324 write_sysreg(kvm_get_vttbr(mmu), vttbr_el2); 325 326 /* 327 * ARM errata 1165522 and 1530923 require the actual execution of the 328 * above before we can switch to the EL1/EL0 translation regime used by 329 * the guest. 330 */ 331 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); 332 } 333 334 static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu) 335 { 336 return container_of(mmu->arch, struct kvm, arch); 337 } 338 339 static inline u64 get_vmid(u64 vttbr) 340 { 341 return (vttbr & VTTBR_VMID_MASK(kvm_get_vmid_bits())) >> 342 VTTBR_VMID_SHIFT; 343 } 344 345 static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu) 346 { 347 return !(mmu->tlb_vttbr & VTTBR_CNP_BIT); 348 } 349 350 static inline bool kvm_is_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 351 { 352 /* 353 * Be careful, mmu may not be fully initialised so do look at 354 * *any* of its fields. 355 */ 356 return &kvm->arch.mmu != mmu; 357 } 358 359 static inline void kvm_fault_lock(struct kvm *kvm) 360 { 361 if (is_protected_kvm_enabled()) 362 write_lock(&kvm->mmu_lock); 363 else 364 read_lock(&kvm->mmu_lock); 365 } 366 367 static inline void kvm_fault_unlock(struct kvm *kvm) 368 { 369 if (is_protected_kvm_enabled()) 370 write_unlock(&kvm->mmu_lock); 371 else 372 read_unlock(&kvm->mmu_lock); 373 } 374 375 /* 376 * ARM64 KVM relies on a simple conversion from physaddr to a kernel 377 * virtual address (KVA) when it does cache maintenance as the CMO 378 * instructions work on virtual addresses. This is incompatible with 379 * VM_PFNMAP VMAs which may not have a kernel direct mapping to a 380 * virtual address. 381 * 382 * With S2FWB and CACHE DIC features, KVM need not do cache flushing 383 * and CMOs are NOP'd. This has the effect of no longer requiring a 384 * KVA for addresses mapped into the S2. The presence of these features 385 * are thus necessary to support cacheable S2 mapping of VM_PFNMAP. 386 */ 387 static inline bool kvm_supports_cacheable_pfnmap(void) 388 { 389 return cpus_have_final_cap(ARM64_HAS_STAGE2_FWB) && 390 cpus_have_final_cap(ARM64_HAS_CACHE_DIC); 391 } 392 393 #ifdef CONFIG_PTDUMP_STAGE2_DEBUGFS 394 void kvm_s2_ptdump_create_debugfs(struct kvm *kvm); 395 #else 396 static inline void kvm_s2_ptdump_create_debugfs(struct kvm *kvm) {} 397 #endif /* CONFIG_PTDUMP_STAGE2_DEBUGFS */ 398 399 #endif /* __ASSEMBLY__ */ 400 #endif /* __ARM64_KVM_MMU_H__ */ 401