1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/arm-smccc.h> 15 #include <linux/bitmap.h> 16 #include <linux/types.h> 17 #include <linux/jump_label.h> 18 #include <linux/kvm_types.h> 19 #include <linux/maple_tree.h> 20 #include <linux/percpu.h> 21 #include <linux/psci.h> 22 #include <asm/arch_gicv3.h> 23 #include <asm/barrier.h> 24 #include <asm/cpufeature.h> 25 #include <asm/cputype.h> 26 #include <asm/daifflags.h> 27 #include <asm/fpsimd.h> 28 #include <asm/kvm.h> 29 #include <asm/kvm_asm.h> 30 #include <asm/vncr_mapping.h> 31 32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 33 34 #define KVM_HALT_POLL_NS_DEFAULT 500000 35 36 #include <kvm/arm_vgic.h> 37 #include <kvm/arm_arch_timer.h> 38 #include <kvm/arm_pmu.h> 39 40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 41 42 #define KVM_VCPU_MAX_FEATURES 7 43 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1) 44 45 #define KVM_REQ_SLEEP \ 46 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 47 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 48 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 49 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 50 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 51 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5) 52 #define KVM_REQ_SUSPEND KVM_ARCH_REQ(6) 53 #define KVM_REQ_RESYNC_PMU_EL0 KVM_ARCH_REQ(7) 54 55 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 56 KVM_DIRTY_LOG_INITIALLY_SET) 57 58 #define KVM_HAVE_MMU_RWLOCK 59 60 /* 61 * Mode of operation configurable with kvm-arm.mode early param. 62 * See Documentation/admin-guide/kernel-parameters.txt for more information. 63 */ 64 enum kvm_mode { 65 KVM_MODE_DEFAULT, 66 KVM_MODE_PROTECTED, 67 KVM_MODE_NV, 68 KVM_MODE_NONE, 69 }; 70 #ifdef CONFIG_KVM 71 enum kvm_mode kvm_get_mode(void); 72 #else 73 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; }; 74 #endif 75 76 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 77 78 extern unsigned int __ro_after_init kvm_sve_max_vl; 79 int __init kvm_arm_init_sve(void); 80 81 u32 __attribute_const__ kvm_target_cpu(void); 82 void kvm_reset_vcpu(struct kvm_vcpu *vcpu); 83 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 84 85 struct kvm_hyp_memcache { 86 phys_addr_t head; 87 unsigned long nr_pages; 88 }; 89 90 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc, 91 phys_addr_t *p, 92 phys_addr_t (*to_pa)(void *virt)) 93 { 94 *p = mc->head; 95 mc->head = to_pa(p); 96 mc->nr_pages++; 97 } 98 99 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc, 100 void *(*to_va)(phys_addr_t phys)) 101 { 102 phys_addr_t *p = to_va(mc->head); 103 104 if (!mc->nr_pages) 105 return NULL; 106 107 mc->head = *p; 108 mc->nr_pages--; 109 110 return p; 111 } 112 113 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc, 114 unsigned long min_pages, 115 void *(*alloc_fn)(void *arg), 116 phys_addr_t (*to_pa)(void *virt), 117 void *arg) 118 { 119 while (mc->nr_pages < min_pages) { 120 phys_addr_t *p = alloc_fn(arg); 121 122 if (!p) 123 return -ENOMEM; 124 push_hyp_memcache(mc, p, to_pa); 125 } 126 127 return 0; 128 } 129 130 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc, 131 void (*free_fn)(void *virt, void *arg), 132 void *(*to_va)(phys_addr_t phys), 133 void *arg) 134 { 135 while (mc->nr_pages) 136 free_fn(pop_hyp_memcache(mc, to_va), arg); 137 } 138 139 void free_hyp_memcache(struct kvm_hyp_memcache *mc); 140 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages); 141 142 struct kvm_vmid { 143 atomic64_t id; 144 }; 145 146 struct kvm_s2_mmu { 147 struct kvm_vmid vmid; 148 149 /* 150 * stage2 entry level table 151 * 152 * Two kvm_s2_mmu structures in the same VM can point to the same 153 * pgd here. This happens when running a guest using a 154 * translation regime that isn't affected by its own stage-2 155 * translation, such as a non-VHE hypervisor running at vEL2, or 156 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the 157 * canonical stage-2 page tables. 158 */ 159 phys_addr_t pgd_phys; 160 struct kvm_pgtable *pgt; 161 162 /* 163 * VTCR value used on the host. For a non-NV guest (or a NV 164 * guest that runs in a context where its own S2 doesn't 165 * apply), its T0SZ value reflects that of the IPA size. 166 * 167 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to 168 * the guest. 169 */ 170 u64 vtcr; 171 172 /* The last vcpu id that ran on each physical CPU */ 173 int __percpu *last_vcpu_ran; 174 175 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0 176 /* 177 * Memory cache used to split 178 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It 179 * is used to allocate stage2 page tables while splitting huge 180 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE 181 * influences both the capacity of the split page cache, and 182 * how often KVM reschedules. Be wary of raising CHUNK_SIZE 183 * too high. 184 * 185 * Protected by kvm->slots_lock. 186 */ 187 struct kvm_mmu_memory_cache split_page_cache; 188 uint64_t split_page_chunk_size; 189 190 struct kvm_arch *arch; 191 }; 192 193 struct kvm_arch_memory_slot { 194 }; 195 196 /** 197 * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests 198 * 199 * @std_bmap: Bitmap of standard secure service calls 200 * @std_hyp_bmap: Bitmap of standard hypervisor service calls 201 * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls 202 */ 203 struct kvm_smccc_features { 204 unsigned long std_bmap; 205 unsigned long std_hyp_bmap; 206 unsigned long vendor_hyp_bmap; 207 }; 208 209 typedef unsigned int pkvm_handle_t; 210 211 struct kvm_protected_vm { 212 pkvm_handle_t handle; 213 struct kvm_hyp_memcache teardown_mc; 214 }; 215 216 struct kvm_mpidr_data { 217 u64 mpidr_mask; 218 DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx); 219 }; 220 221 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr) 222 { 223 unsigned long mask = data->mpidr_mask; 224 u64 aff = mpidr & MPIDR_HWID_BITMASK; 225 int nbits, bit, bit_idx = 0; 226 u16 index = 0; 227 228 /* 229 * If this looks like RISC-V's BEXT or x86's PEXT 230 * instructions, it isn't by accident. 231 */ 232 nbits = fls(mask); 233 for_each_set_bit(bit, &mask, nbits) { 234 index |= (aff & BIT(bit)) >> (bit - bit_idx); 235 bit_idx++; 236 } 237 238 return index; 239 } 240 241 struct kvm_sysreg_masks; 242 243 enum fgt_group_id { 244 __NO_FGT_GROUP__, 245 HFGxTR_GROUP, 246 HDFGRTR_GROUP, 247 HDFGWTR_GROUP = HDFGRTR_GROUP, 248 HFGITR_GROUP, 249 HAFGRTR_GROUP, 250 251 /* Must be last */ 252 __NR_FGT_GROUP_IDS__ 253 }; 254 255 struct kvm_arch { 256 struct kvm_s2_mmu mmu; 257 258 /* 259 * Fine-Grained UNDEF, mimicking the FGT layout defined by the 260 * architecture. We track them globally, as we present the 261 * same feature-set to all vcpus. 262 * 263 * Index 0 is currently spare. 264 */ 265 u64 fgu[__NR_FGT_GROUP_IDS__]; 266 267 /* Interrupt controller */ 268 struct vgic_dist vgic; 269 270 /* Timers */ 271 struct arch_timer_vm_data timer_data; 272 273 /* Mandated version of PSCI */ 274 u32 psci_version; 275 276 /* Protects VM-scoped configuration data */ 277 struct mutex config_lock; 278 279 /* 280 * If we encounter a data abort without valid instruction syndrome 281 * information, report this to user space. User space can (and 282 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 283 * supported. 284 */ 285 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0 286 /* Memory Tagging Extension enabled for the guest */ 287 #define KVM_ARCH_FLAG_MTE_ENABLED 1 288 /* At least one vCPU has ran in the VM */ 289 #define KVM_ARCH_FLAG_HAS_RAN_ONCE 2 290 /* The vCPU feature set for the VM is configured */ 291 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED 3 292 /* PSCI SYSTEM_SUSPEND enabled for the guest */ 293 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 4 294 /* VM counter offset */ 295 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 5 296 /* Timer PPIs made immutable */ 297 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 6 298 /* Initial ID reg values loaded */ 299 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED 7 300 /* Fine-Grained UNDEF initialised */ 301 #define KVM_ARCH_FLAG_FGU_INITIALIZED 8 302 unsigned long flags; 303 304 /* VM-wide vCPU feature set */ 305 DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES); 306 307 /* MPIDR to vcpu index mapping, optional */ 308 struct kvm_mpidr_data *mpidr_data; 309 310 /* 311 * VM-wide PMU filter, implemented as a bitmap and big enough for 312 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). 313 */ 314 unsigned long *pmu_filter; 315 struct arm_pmu *arm_pmu; 316 317 cpumask_var_t supported_cpus; 318 319 /* PMCR_EL0.N value for the guest */ 320 u8 pmcr_n; 321 322 /* Iterator for idreg debugfs */ 323 u8 idreg_debugfs_iter; 324 325 /* Hypercall features firmware registers' descriptor */ 326 struct kvm_smccc_features smccc_feat; 327 struct maple_tree smccc_filter; 328 329 /* 330 * Emulated CPU ID registers per VM 331 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it 332 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8. 333 * 334 * These emulated idregs are VM-wide, but accessed from the context of a vCPU. 335 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock. 336 */ 337 #define IDREG_IDX(id) (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id)) 338 #define IDX_IDREG(idx) sys_reg(3, 0, 0, ((idx) >> 3) + 1, (idx) & Op2_mask) 339 #define IDREG(kvm, id) ((kvm)->arch.id_regs[IDREG_IDX(id)]) 340 #define KVM_ARM_ID_REG_NUM (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1) 341 u64 id_regs[KVM_ARM_ID_REG_NUM]; 342 343 /* Masks for VNCR-baked sysregs */ 344 struct kvm_sysreg_masks *sysreg_masks; 345 346 /* 347 * For an untrusted host VM, 'pkvm.handle' is used to lookup 348 * the associated pKVM instance in the hypervisor. 349 */ 350 struct kvm_protected_vm pkvm; 351 }; 352 353 struct kvm_vcpu_fault_info { 354 u64 esr_el2; /* Hyp Syndrom Register */ 355 u64 far_el2; /* Hyp Fault Address Register */ 356 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 357 u64 disr_el1; /* Deferred [SError] Status Register */ 358 }; 359 360 /* 361 * VNCR() just places the VNCR_capable registers in the enum after 362 * __VNCR_START__, and the value (after correction) to be an 8-byte offset 363 * from the VNCR base. As we don't require the enum to be otherwise ordered, 364 * we need the terrible hack below to ensure that we correctly size the 365 * sys_regs array, no matter what. 366 * 367 * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful 368 * treasure trove of bit hacks: 369 * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax 370 */ 371 #define __MAX__(x,y) ((x) ^ (((x) ^ (y)) & -((x) < (y)))) 372 #define VNCR(r) \ 373 __before_##r, \ 374 r = __VNCR_START__ + ((VNCR_ ## r) / 8), \ 375 __after_##r = __MAX__(__before_##r - 1, r) 376 377 enum vcpu_sysreg { 378 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 379 MPIDR_EL1, /* MultiProcessor Affinity Register */ 380 CLIDR_EL1, /* Cache Level ID Register */ 381 CSSELR_EL1, /* Cache Size Selection Register */ 382 TPIDR_EL0, /* Thread ID, User R/W */ 383 TPIDRRO_EL0, /* Thread ID, User R/O */ 384 TPIDR_EL1, /* Thread ID, Privileged */ 385 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 386 PAR_EL1, /* Physical Address Register */ 387 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 388 OSLSR_EL1, /* OS Lock Status Register */ 389 DISR_EL1, /* Deferred Interrupt Status Register */ 390 391 /* Performance Monitors Registers */ 392 PMCR_EL0, /* Control Register */ 393 PMSELR_EL0, /* Event Counter Selection Register */ 394 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 395 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 396 PMCCNTR_EL0, /* Cycle Counter Register */ 397 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 398 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 399 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 400 PMCNTENSET_EL0, /* Count Enable Set Register */ 401 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 402 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 403 PMUSERENR_EL0, /* User Enable Register */ 404 405 /* Pointer Authentication Registers in a strict increasing order. */ 406 APIAKEYLO_EL1, 407 APIAKEYHI_EL1, 408 APIBKEYLO_EL1, 409 APIBKEYHI_EL1, 410 APDAKEYLO_EL1, 411 APDAKEYHI_EL1, 412 APDBKEYLO_EL1, 413 APDBKEYHI_EL1, 414 APGAKEYLO_EL1, 415 APGAKEYHI_EL1, 416 417 /* Memory Tagging Extension registers */ 418 RGSR_EL1, /* Random Allocation Tag Seed Register */ 419 GCR_EL1, /* Tag Control Register */ 420 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */ 421 422 /* 32bit specific registers. */ 423 DACR32_EL2, /* Domain Access Control Register */ 424 IFSR32_EL2, /* Instruction Fault Status Register */ 425 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 426 DBGVCR32_EL2, /* Debug Vector Catch Register */ 427 428 /* EL2 registers */ 429 SCTLR_EL2, /* System Control Register (EL2) */ 430 ACTLR_EL2, /* Auxiliary Control Register (EL2) */ 431 MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */ 432 CPTR_EL2, /* Architectural Feature Trap Register (EL2) */ 433 HACR_EL2, /* Hypervisor Auxiliary Control Register */ 434 TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */ 435 TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */ 436 TCR_EL2, /* Translation Control Register (EL2) */ 437 SPSR_EL2, /* EL2 saved program status register */ 438 ELR_EL2, /* EL2 exception link register */ 439 AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */ 440 AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */ 441 ESR_EL2, /* Exception Syndrome Register (EL2) */ 442 FAR_EL2, /* Fault Address Register (EL2) */ 443 HPFAR_EL2, /* Hypervisor IPA Fault Address Register */ 444 MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */ 445 AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */ 446 VBAR_EL2, /* Vector Base Address Register (EL2) */ 447 RVBAR_EL2, /* Reset Vector Base Address Register */ 448 CONTEXTIDR_EL2, /* Context ID Register (EL2) */ 449 CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */ 450 SP_EL2, /* EL2 Stack Pointer */ 451 CNTHP_CTL_EL2, 452 CNTHP_CVAL_EL2, 453 CNTHV_CTL_EL2, 454 CNTHV_CVAL_EL2, 455 456 __VNCR_START__, /* Any VNCR-capable reg goes after this point */ 457 458 VNCR(SCTLR_EL1),/* System Control Register */ 459 VNCR(ACTLR_EL1),/* Auxiliary Control Register */ 460 VNCR(CPACR_EL1),/* Coprocessor Access Control */ 461 VNCR(ZCR_EL1), /* SVE Control */ 462 VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */ 463 VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */ 464 VNCR(TCR_EL1), /* Translation Control Register */ 465 VNCR(TCR2_EL1), /* Extended Translation Control Register */ 466 VNCR(ESR_EL1), /* Exception Syndrome Register */ 467 VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */ 468 VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */ 469 VNCR(FAR_EL1), /* Fault Address Register */ 470 VNCR(MAIR_EL1), /* Memory Attribute Indirection Register */ 471 VNCR(VBAR_EL1), /* Vector Base Address Register */ 472 VNCR(CONTEXTIDR_EL1), /* Context ID Register */ 473 VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */ 474 VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */ 475 VNCR(ELR_EL1), 476 VNCR(SP_EL1), 477 VNCR(SPSR_EL1), 478 VNCR(TFSR_EL1), /* Tag Fault Status Register (EL1) */ 479 VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */ 480 VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */ 481 VNCR(HCR_EL2), /* Hypervisor Configuration Register */ 482 VNCR(HSTR_EL2), /* Hypervisor System Trap Register */ 483 VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */ 484 VNCR(VTCR_EL2), /* Virtualization Translation Control Register */ 485 VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */ 486 VNCR(HCRX_EL2), /* Extended Hypervisor Configuration Register */ 487 488 /* Permission Indirection Extension registers */ 489 VNCR(PIR_EL1), /* Permission Indirection Register 1 (EL1) */ 490 VNCR(PIRE0_EL1), /* Permission Indirection Register 0 (EL1) */ 491 492 VNCR(HFGRTR_EL2), 493 VNCR(HFGWTR_EL2), 494 VNCR(HFGITR_EL2), 495 VNCR(HDFGRTR_EL2), 496 VNCR(HDFGWTR_EL2), 497 VNCR(HAFGRTR_EL2), 498 499 VNCR(CNTVOFF_EL2), 500 VNCR(CNTV_CVAL_EL0), 501 VNCR(CNTV_CTL_EL0), 502 VNCR(CNTP_CVAL_EL0), 503 VNCR(CNTP_CTL_EL0), 504 505 NR_SYS_REGS /* Nothing after this line! */ 506 }; 507 508 struct kvm_sysreg_masks { 509 struct { 510 u64 res0; 511 u64 res1; 512 } mask[NR_SYS_REGS - __VNCR_START__]; 513 }; 514 515 struct kvm_cpu_context { 516 struct user_pt_regs regs; /* sp = sp_el0 */ 517 518 u64 spsr_abt; 519 u64 spsr_und; 520 u64 spsr_irq; 521 u64 spsr_fiq; 522 523 struct user_fpsimd_state fp_regs; 524 525 u64 sys_regs[NR_SYS_REGS]; 526 527 struct kvm_vcpu *__hyp_running_vcpu; 528 529 /* This pointer has to be 4kB aligned. */ 530 u64 *vncr_array; 531 }; 532 533 struct kvm_host_data { 534 struct kvm_cpu_context host_ctxt; 535 }; 536 537 struct kvm_host_psci_config { 538 /* PSCI version used by host. */ 539 u32 version; 540 u32 smccc_version; 541 542 /* Function IDs used by host if version is v0.1. */ 543 struct psci_0_1_function_ids function_ids_0_1; 544 545 bool psci_0_1_cpu_suspend_implemented; 546 bool psci_0_1_cpu_on_implemented; 547 bool psci_0_1_cpu_off_implemented; 548 bool psci_0_1_migrate_implemented; 549 }; 550 551 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); 552 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config) 553 554 extern s64 kvm_nvhe_sym(hyp_physvirt_offset); 555 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset) 556 557 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; 558 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map) 559 560 struct vcpu_reset_state { 561 unsigned long pc; 562 unsigned long r0; 563 bool be; 564 bool reset; 565 }; 566 567 struct kvm_vcpu_arch { 568 struct kvm_cpu_context ctxt; 569 570 /* 571 * Guest floating point state 572 * 573 * The architecture has two main floating point extensions, 574 * the original FPSIMD and SVE. These have overlapping 575 * register views, with the FPSIMD V registers occupying the 576 * low 128 bits of the SVE Z registers. When the core 577 * floating point code saves the register state of a task it 578 * records which view it saved in fp_type. 579 */ 580 void *sve_state; 581 enum fp_type fp_type; 582 unsigned int sve_max_vl; 583 u64 svcr; 584 u64 fpmr; 585 586 /* Stage 2 paging state used by the hardware on next switch */ 587 struct kvm_s2_mmu *hw_mmu; 588 589 /* Values of trap registers for the guest. */ 590 u64 hcr_el2; 591 u64 hcrx_el2; 592 u64 mdcr_el2; 593 u64 cptr_el2; 594 595 /* Values of trap registers for the host before guest entry. */ 596 u64 mdcr_el2_host; 597 598 /* Exception Information */ 599 struct kvm_vcpu_fault_info fault; 600 601 /* Ownership of the FP regs */ 602 enum { 603 FP_STATE_FREE, 604 FP_STATE_HOST_OWNED, 605 FP_STATE_GUEST_OWNED, 606 } fp_state; 607 608 /* Configuration flags, set once and for all before the vcpu can run */ 609 u8 cflags; 610 611 /* Input flags to the hypervisor code, potentially cleared after use */ 612 u8 iflags; 613 614 /* State flags for kernel bookkeeping, unused by the hypervisor code */ 615 u8 sflags; 616 617 /* 618 * Don't run the guest (internal implementation need). 619 * 620 * Contrary to the flags above, this is set/cleared outside of 621 * a vcpu context, and thus cannot be mixed with the flags 622 * themselves (or the flag accesses need to be made atomic). 623 */ 624 bool pause; 625 626 /* 627 * We maintain more than a single set of debug registers to support 628 * debugging the guest from the host and to maintain separate host and 629 * guest state during world switches. vcpu_debug_state are the debug 630 * registers of the vcpu as the guest sees them. host_debug_state are 631 * the host registers which are saved and restored during 632 * world switches. external_debug_state contains the debug 633 * values we want to debug the guest. This is set via the 634 * KVM_SET_GUEST_DEBUG ioctl. 635 * 636 * debug_ptr points to the set of debug registers that should be loaded 637 * onto the hardware when running the guest. 638 */ 639 struct kvm_guest_debug_arch *debug_ptr; 640 struct kvm_guest_debug_arch vcpu_debug_state; 641 struct kvm_guest_debug_arch external_debug_state; 642 643 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 644 struct task_struct *parent_task; 645 646 struct { 647 /* {Break,watch}point registers */ 648 struct kvm_guest_debug_arch regs; 649 /* Statistical profiling extension */ 650 u64 pmscr_el1; 651 /* Self-hosted trace */ 652 u64 trfcr_el1; 653 } host_debug_state; 654 655 /* VGIC state */ 656 struct vgic_cpu vgic_cpu; 657 struct arch_timer_cpu timer_cpu; 658 struct kvm_pmu pmu; 659 660 /* 661 * Guest registers we preserve during guest debugging. 662 * 663 * These shadow registers are updated by the kvm_handle_sys_reg 664 * trap handler if the guest accesses or updates them while we 665 * are using guest debug. 666 */ 667 struct { 668 u32 mdscr_el1; 669 bool pstate_ss; 670 } guest_debug_preserved; 671 672 /* vcpu power state */ 673 struct kvm_mp_state mp_state; 674 spinlock_t mp_state_lock; 675 676 /* Cache some mmu pages needed inside spinlock regions */ 677 struct kvm_mmu_memory_cache mmu_page_cache; 678 679 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 680 u64 vsesr_el2; 681 682 /* Additional reset state */ 683 struct vcpu_reset_state reset_state; 684 685 /* Guest PV state */ 686 struct { 687 u64 last_steal; 688 gpa_t base; 689 } steal; 690 691 /* Per-vcpu CCSIDR override or NULL */ 692 u32 *ccsidr; 693 }; 694 695 /* 696 * Each 'flag' is composed of a comma-separated triplet: 697 * 698 * - the flag-set it belongs to in the vcpu->arch structure 699 * - the value for that flag 700 * - the mask for that flag 701 * 702 * __vcpu_single_flag() builds such a triplet for a single-bit flag. 703 * unpack_vcpu_flag() extract the flag value from the triplet for 704 * direct use outside of the flag accessors. 705 */ 706 #define __vcpu_single_flag(_set, _f) _set, (_f), (_f) 707 708 #define __unpack_flag(_set, _f, _m) _f 709 #define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__) 710 711 #define __build_check_flag(v, flagset, f, m) \ 712 do { \ 713 typeof(v->arch.flagset) *_fset; \ 714 \ 715 /* Check that the flags fit in the mask */ \ 716 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \ 717 /* Check that the flags fit in the type */ \ 718 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \ 719 } while (0) 720 721 #define __vcpu_get_flag(v, flagset, f, m) \ 722 ({ \ 723 __build_check_flag(v, flagset, f, m); \ 724 \ 725 READ_ONCE(v->arch.flagset) & (m); \ 726 }) 727 728 /* 729 * Note that the set/clear accessors must be preempt-safe in order to 730 * avoid nesting them with load/put which also manipulate flags... 731 */ 732 #ifdef __KVM_NVHE_HYPERVISOR__ 733 /* the nVHE hypervisor is always non-preemptible */ 734 #define __vcpu_flags_preempt_disable() 735 #define __vcpu_flags_preempt_enable() 736 #else 737 #define __vcpu_flags_preempt_disable() preempt_disable() 738 #define __vcpu_flags_preempt_enable() preempt_enable() 739 #endif 740 741 #define __vcpu_set_flag(v, flagset, f, m) \ 742 do { \ 743 typeof(v->arch.flagset) *fset; \ 744 \ 745 __build_check_flag(v, flagset, f, m); \ 746 \ 747 fset = &v->arch.flagset; \ 748 __vcpu_flags_preempt_disable(); \ 749 if (HWEIGHT(m) > 1) \ 750 *fset &= ~(m); \ 751 *fset |= (f); \ 752 __vcpu_flags_preempt_enable(); \ 753 } while (0) 754 755 #define __vcpu_clear_flag(v, flagset, f, m) \ 756 do { \ 757 typeof(v->arch.flagset) *fset; \ 758 \ 759 __build_check_flag(v, flagset, f, m); \ 760 \ 761 fset = &v->arch.flagset; \ 762 __vcpu_flags_preempt_disable(); \ 763 *fset &= ~(m); \ 764 __vcpu_flags_preempt_enable(); \ 765 } while (0) 766 767 #define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__) 768 #define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__) 769 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__) 770 771 /* SVE exposed to guest */ 772 #define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0)) 773 /* SVE config completed */ 774 #define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1)) 775 /* PTRAUTH exposed to guest */ 776 #define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2)) 777 /* KVM_ARM_VCPU_INIT completed */ 778 #define VCPU_INITIALIZED __vcpu_single_flag(cflags, BIT(3)) 779 780 /* Exception pending */ 781 #define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0)) 782 /* 783 * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't 784 * be set together with an exception... 785 */ 786 #define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1)) 787 /* Target EL/MODE (not a single flag, but let's abuse the macro) */ 788 #define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1)) 789 790 /* Helpers to encode exceptions with minimum fuss */ 791 #define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK) 792 #define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL) 793 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL 794 795 /* 796 * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following 797 * values: 798 * 799 * For AArch32 EL1: 800 */ 801 #define EXCEPT_AA32_UND __vcpu_except_flags(0) 802 #define EXCEPT_AA32_IABT __vcpu_except_flags(1) 803 #define EXCEPT_AA32_DABT __vcpu_except_flags(2) 804 /* For AArch64: */ 805 #define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0) 806 #define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1) 807 #define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2) 808 #define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3) 809 /* For AArch64 with NV: */ 810 #define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4) 811 #define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5) 812 #define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6) 813 #define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7) 814 /* Guest debug is live */ 815 #define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4)) 816 /* Save SPE context if active */ 817 #define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5)) 818 /* Save TRBE context if active */ 819 #define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6)) 820 /* vcpu running in HYP context */ 821 #define VCPU_HYP_CONTEXT __vcpu_single_flag(iflags, BIT(7)) 822 823 /* SVE enabled for host EL0 */ 824 #define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0)) 825 /* SME enabled for EL0 */ 826 #define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1)) 827 /* Physical CPU not in supported_cpus */ 828 #define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2)) 829 /* WFIT instruction trapped */ 830 #define IN_WFIT __vcpu_single_flag(sflags, BIT(3)) 831 /* vcpu system registers loaded on physical CPU */ 832 #define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4)) 833 /* Software step state is Active-pending */ 834 #define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5)) 835 /* PMUSERENR for the guest EL0 is on physical CPU */ 836 #define PMUSERENR_ON_CPU __vcpu_single_flag(sflags, BIT(6)) 837 /* WFI instruction trapped */ 838 #define IN_WFI __vcpu_single_flag(sflags, BIT(7)) 839 840 841 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 842 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \ 843 sve_ffr_offset((vcpu)->arch.sve_max_vl)) 844 845 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl) 846 847 #define vcpu_sve_state_size(vcpu) ({ \ 848 size_t __size_ret; \ 849 unsigned int __vcpu_vq; \ 850 \ 851 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 852 __size_ret = 0; \ 853 } else { \ 854 __vcpu_vq = vcpu_sve_max_vq(vcpu); \ 855 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 856 } \ 857 \ 858 __size_ret; \ 859 }) 860 861 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ 862 KVM_GUESTDBG_USE_SW_BP | \ 863 KVM_GUESTDBG_USE_HW | \ 864 KVM_GUESTDBG_SINGLESTEP) 865 866 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 867 vcpu_get_flag(vcpu, GUEST_HAS_SVE)) 868 869 #ifdef CONFIG_ARM64_PTR_AUTH 870 #define vcpu_has_ptrauth(vcpu) \ 871 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 872 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 873 vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH)) 874 #else 875 #define vcpu_has_ptrauth(vcpu) false 876 #endif 877 878 #define vcpu_on_unsupported_cpu(vcpu) \ 879 vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU) 880 881 #define vcpu_set_on_unsupported_cpu(vcpu) \ 882 vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU) 883 884 #define vcpu_clear_on_unsupported_cpu(vcpu) \ 885 vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU) 886 887 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) 888 889 /* 890 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the 891 * memory backed version of a register, and not the one most recently 892 * accessed by a running VCPU. For example, for userspace access or 893 * for system registers that are never context switched, but only 894 * emulated. 895 * 896 * Don't bother with VNCR-based accesses in the nVHE code, it has no 897 * business dealing with NV. 898 */ 899 static inline u64 *__ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r) 900 { 901 #if !defined (__KVM_NVHE_HYPERVISOR__) 902 if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) && 903 r >= __VNCR_START__ && ctxt->vncr_array)) 904 return &ctxt->vncr_array[r - __VNCR_START__]; 905 #endif 906 return (u64 *)&ctxt->sys_regs[r]; 907 } 908 909 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) 910 911 u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *, enum vcpu_sysreg); 912 #define __vcpu_sys_reg(v,r) \ 913 (*({ \ 914 const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt; \ 915 u64 *__r = __ctxt_sys_reg(ctxt, (r)); \ 916 if (vcpu_has_nv((v)) && (r) >= __VNCR_START__) \ 917 *__r = kvm_vcpu_sanitise_vncr_reg((v), (r)); \ 918 __r; \ 919 })) 920 921 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 922 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 923 924 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) 925 { 926 /* 927 * *** VHE ONLY *** 928 * 929 * System registers listed in the switch are not saved on every 930 * exit from the guest but are only saved on vcpu_put. 931 * 932 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 933 * should never be listed below, because the guest cannot modify its 934 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's 935 * thread when emulating cross-VCPU communication. 936 */ 937 if (!has_vhe()) 938 return false; 939 940 switch (reg) { 941 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; 942 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; 943 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; 944 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; 945 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; 946 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; 947 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; 948 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; 949 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; 950 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; 951 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; 952 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; 953 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; 954 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; 955 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; 956 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; 957 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; 958 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; 959 case SPSR_EL1: *val = read_sysreg_s(SYS_SPSR_EL12); break; 960 case PAR_EL1: *val = read_sysreg_par(); break; 961 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; 962 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; 963 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; 964 default: return false; 965 } 966 967 return true; 968 } 969 970 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) 971 { 972 /* 973 * *** VHE ONLY *** 974 * 975 * System registers listed in the switch are not restored on every 976 * entry to the guest but are only restored on vcpu_load. 977 * 978 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 979 * should never be listed below, because the MPIDR should only be set 980 * once, before running the VCPU, and never changed later. 981 */ 982 if (!has_vhe()) 983 return false; 984 985 switch (reg) { 986 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; 987 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; 988 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; 989 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; 990 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; 991 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; 992 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; 993 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; 994 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; 995 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; 996 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; 997 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; 998 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; 999 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; 1000 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; 1001 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; 1002 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; 1003 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; 1004 case SPSR_EL1: write_sysreg_s(val, SYS_SPSR_EL12); break; 1005 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; 1006 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; 1007 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; 1008 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; 1009 default: return false; 1010 } 1011 1012 return true; 1013 } 1014 1015 struct kvm_vm_stat { 1016 struct kvm_vm_stat_generic generic; 1017 }; 1018 1019 struct kvm_vcpu_stat { 1020 struct kvm_vcpu_stat_generic generic; 1021 u64 hvc_exit_stat; 1022 u64 wfe_exit_stat; 1023 u64 wfi_exit_stat; 1024 u64 mmio_exit_user; 1025 u64 mmio_exit_kernel; 1026 u64 signal_exits; 1027 u64 exits; 1028 }; 1029 1030 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 1031 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 1032 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 1033 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 1034 1035 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); 1036 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); 1037 1038 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1039 struct kvm_vcpu_events *events); 1040 1041 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1042 struct kvm_vcpu_events *events); 1043 1044 void kvm_arm_halt_guest(struct kvm *kvm); 1045 void kvm_arm_resume_guest(struct kvm *kvm); 1046 1047 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid) 1048 1049 #ifndef __KVM_NVHE_HYPERVISOR__ 1050 #define kvm_call_hyp_nvhe(f, ...) \ 1051 ({ \ 1052 struct arm_smccc_res res; \ 1053 \ 1054 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ 1055 ##__VA_ARGS__, &res); \ 1056 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ 1057 \ 1058 res.a1; \ 1059 }) 1060 1061 /* 1062 * The couple of isb() below are there to guarantee the same behaviour 1063 * on VHE as on !VHE, where the eret to EL1 acts as a context 1064 * synchronization event. 1065 */ 1066 #define kvm_call_hyp(f, ...) \ 1067 do { \ 1068 if (has_vhe()) { \ 1069 f(__VA_ARGS__); \ 1070 isb(); \ 1071 } else { \ 1072 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 1073 } \ 1074 } while(0) 1075 1076 #define kvm_call_hyp_ret(f, ...) \ 1077 ({ \ 1078 typeof(f(__VA_ARGS__)) ret; \ 1079 \ 1080 if (has_vhe()) { \ 1081 ret = f(__VA_ARGS__); \ 1082 isb(); \ 1083 } else { \ 1084 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 1085 } \ 1086 \ 1087 ret; \ 1088 }) 1089 #else /* __KVM_NVHE_HYPERVISOR__ */ 1090 #define kvm_call_hyp(f, ...) f(__VA_ARGS__) 1091 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__) 1092 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__) 1093 #endif /* __KVM_NVHE_HYPERVISOR__ */ 1094 1095 int handle_exit(struct kvm_vcpu *vcpu, int exception_index); 1096 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); 1097 1098 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); 1099 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); 1100 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); 1101 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); 1102 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); 1103 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu); 1104 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu); 1105 1106 void kvm_sys_regs_create_debugfs(struct kvm *kvm); 1107 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu); 1108 1109 int __init kvm_sys_reg_table_init(void); 1110 struct sys_reg_desc; 1111 int __init populate_sysreg_config(const struct sys_reg_desc *sr, 1112 unsigned int idx); 1113 int __init populate_nv_trap_config(void); 1114 1115 bool lock_all_vcpus(struct kvm *kvm); 1116 void unlock_all_vcpus(struct kvm *kvm); 1117 1118 void kvm_init_sysreg(struct kvm_vcpu *); 1119 1120 /* MMIO helpers */ 1121 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 1122 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 1123 1124 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); 1125 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); 1126 1127 /* 1128 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event, 1129 * arrived in guest context. For arm64, any event that arrives while a vCPU is 1130 * loaded is considered to be "in guest". 1131 */ 1132 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu) 1133 { 1134 return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu; 1135 } 1136 1137 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 1138 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 1139 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 1140 1141 bool kvm_arm_pvtime_supported(void); 1142 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 1143 struct kvm_device_attr *attr); 1144 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 1145 struct kvm_device_attr *attr); 1146 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 1147 struct kvm_device_attr *attr); 1148 1149 extern unsigned int __ro_after_init kvm_arm_vmid_bits; 1150 int __init kvm_arm_vmid_alloc_init(void); 1151 void __init kvm_arm_vmid_alloc_free(void); 1152 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid); 1153 void kvm_arm_vmid_clear_active(void); 1154 1155 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 1156 { 1157 vcpu_arch->steal.base = INVALID_GPA; 1158 } 1159 1160 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 1161 { 1162 return (vcpu_arch->steal.base != INVALID_GPA); 1163 } 1164 1165 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 1166 1167 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 1168 1169 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); 1170 1171 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 1172 { 1173 /* The host's MPIDR is immutable, so let's set it up at boot time */ 1174 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); 1175 } 1176 1177 static inline bool kvm_system_needs_idmapped_vectors(void) 1178 { 1179 return cpus_have_final_cap(ARM64_SPECTRE_V3A); 1180 } 1181 1182 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 1183 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 1184 1185 void kvm_arm_init_debug(void); 1186 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu); 1187 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 1188 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 1189 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 1190 1191 #define kvm_vcpu_os_lock_enabled(vcpu) \ 1192 (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK)) 1193 1194 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 1195 struct kvm_device_attr *attr); 1196 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 1197 struct kvm_device_attr *attr); 1198 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 1199 struct kvm_device_attr *attr); 1200 1201 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, 1202 struct kvm_arm_copy_mte_tags *copy_tags); 1203 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, 1204 struct kvm_arm_counter_offset *offset); 1205 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, 1206 struct reg_mask_range *range); 1207 1208 /* Guest/host FPSIMD coordination helpers */ 1209 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 1210 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 1211 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu); 1212 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 1213 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 1214 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu); 1215 1216 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 1217 { 1218 return (!has_vhe() && attr->exclude_host); 1219 } 1220 1221 /* Flags for host debug state */ 1222 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu); 1223 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu); 1224 1225 #ifdef CONFIG_KVM 1226 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 1227 void kvm_clr_pmu_events(u32 clr); 1228 bool kvm_set_pmuserenr(u64 val); 1229 #else 1230 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 1231 static inline void kvm_clr_pmu_events(u32 clr) {} 1232 static inline bool kvm_set_pmuserenr(u64 val) 1233 { 1234 return false; 1235 } 1236 #endif 1237 1238 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu); 1239 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu); 1240 1241 int __init kvm_set_ipa_limit(void); 1242 1243 #define __KVM_HAVE_ARCH_VM_ALLOC 1244 struct kvm *kvm_arch_alloc_vm(void); 1245 1246 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1247 1248 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1249 1250 static inline bool kvm_vm_is_protected(struct kvm *kvm) 1251 { 1252 return false; 1253 } 1254 1255 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 1256 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 1257 1258 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED) 1259 1260 #define kvm_has_mte(kvm) \ 1261 (system_supports_mte() && \ 1262 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags)) 1263 1264 #define kvm_supports_32bit_el0() \ 1265 (system_supports_32bit_el0() && \ 1266 !static_branch_unlikely(&arm64_mismatched_32bit_el0)) 1267 1268 #define kvm_vm_has_ran_once(kvm) \ 1269 (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags)) 1270 1271 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature) 1272 { 1273 return test_bit(feature, ka->vcpu_features); 1274 } 1275 1276 #define vcpu_has_feature(v, f) __vcpu_has_feature(&(v)->kvm->arch, (f)) 1277 1278 int kvm_trng_call(struct kvm_vcpu *vcpu); 1279 #ifdef CONFIG_KVM 1280 extern phys_addr_t hyp_mem_base; 1281 extern phys_addr_t hyp_mem_size; 1282 void __init kvm_hyp_reserve(void); 1283 #else 1284 static inline void kvm_hyp_reserve(void) { } 1285 #endif 1286 1287 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu); 1288 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu); 1289 1290 #define __expand_field_sign_unsigned(id, fld, val) \ 1291 ((u64)SYS_FIELD_VALUE(id, fld, val)) 1292 1293 #define __expand_field_sign_signed(id, fld, val) \ 1294 ({ \ 1295 u64 __val = SYS_FIELD_VALUE(id, fld, val); \ 1296 sign_extend64(__val, id##_##fld##_WIDTH - 1); \ 1297 }) 1298 1299 #define expand_field_sign(id, fld, val) \ 1300 (id##_##fld##_SIGNED ? \ 1301 __expand_field_sign_signed(id, fld, val) : \ 1302 __expand_field_sign_unsigned(id, fld, val)) 1303 1304 #define get_idreg_field_unsigned(kvm, id, fld) \ 1305 ({ \ 1306 u64 __val = IDREG((kvm), SYS_##id); \ 1307 FIELD_GET(id##_##fld##_MASK, __val); \ 1308 }) 1309 1310 #define get_idreg_field_signed(kvm, id, fld) \ 1311 ({ \ 1312 u64 __val = get_idreg_field_unsigned(kvm, id, fld); \ 1313 sign_extend64(__val, id##_##fld##_WIDTH - 1); \ 1314 }) 1315 1316 #define get_idreg_field_enum(kvm, id, fld) \ 1317 get_idreg_field_unsigned(kvm, id, fld) 1318 1319 #define get_idreg_field(kvm, id, fld) \ 1320 (id##_##fld##_SIGNED ? \ 1321 get_idreg_field_signed(kvm, id, fld) : \ 1322 get_idreg_field_unsigned(kvm, id, fld)) 1323 1324 #define kvm_has_feat(kvm, id, fld, limit) \ 1325 (get_idreg_field((kvm), id, fld) >= expand_field_sign(id, fld, limit)) 1326 1327 #define kvm_has_feat_enum(kvm, id, fld, val) \ 1328 (get_idreg_field_unsigned((kvm), id, fld) == __expand_field_sign_unsigned(id, fld, val)) 1329 1330 #define kvm_has_feat_range(kvm, id, fld, min, max) \ 1331 (get_idreg_field((kvm), id, fld) >= expand_field_sign(id, fld, min) && \ 1332 get_idreg_field((kvm), id, fld) <= expand_field_sign(id, fld, max)) 1333 1334 #endif /* __ARM64_KVM_HOST_H__ */ 1335