xref: /linux/arch/arm64/include/asm/kvm_host.h (revision e3234e547a4db0572e271e490d044bdb4cb7233b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32 
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34 
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38 
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40 
41 #define KVM_VCPU_MAX_FEATURES 7
42 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
43 
44 #define KVM_REQ_SLEEP \
45 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
46 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
47 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
48 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
49 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
50 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
51 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
52 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
53 
54 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
55 				     KVM_DIRTY_LOG_INITIALLY_SET)
56 
57 #define KVM_HAVE_MMU_RWLOCK
58 
59 /*
60  * Mode of operation configurable with kvm-arm.mode early param.
61  * See Documentation/admin-guide/kernel-parameters.txt for more information.
62  */
63 enum kvm_mode {
64 	KVM_MODE_DEFAULT,
65 	KVM_MODE_PROTECTED,
66 	KVM_MODE_NV,
67 	KVM_MODE_NONE,
68 };
69 #ifdef CONFIG_KVM
70 enum kvm_mode kvm_get_mode(void);
71 #else
72 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
73 #endif
74 
75 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
76 
77 extern unsigned int __ro_after_init kvm_sve_max_vl;
78 int __init kvm_arm_init_sve(void);
79 
80 u32 __attribute_const__ kvm_target_cpu(void);
81 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
82 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
83 
84 struct kvm_hyp_memcache {
85 	phys_addr_t head;
86 	unsigned long nr_pages;
87 };
88 
89 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
90 				     phys_addr_t *p,
91 				     phys_addr_t (*to_pa)(void *virt))
92 {
93 	*p = mc->head;
94 	mc->head = to_pa(p);
95 	mc->nr_pages++;
96 }
97 
98 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
99 				     void *(*to_va)(phys_addr_t phys))
100 {
101 	phys_addr_t *p = to_va(mc->head);
102 
103 	if (!mc->nr_pages)
104 		return NULL;
105 
106 	mc->head = *p;
107 	mc->nr_pages--;
108 
109 	return p;
110 }
111 
112 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
113 				       unsigned long min_pages,
114 				       void *(*alloc_fn)(void *arg),
115 				       phys_addr_t (*to_pa)(void *virt),
116 				       void *arg)
117 {
118 	while (mc->nr_pages < min_pages) {
119 		phys_addr_t *p = alloc_fn(arg);
120 
121 		if (!p)
122 			return -ENOMEM;
123 		push_hyp_memcache(mc, p, to_pa);
124 	}
125 
126 	return 0;
127 }
128 
129 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
130 				       void (*free_fn)(void *virt, void *arg),
131 				       void *(*to_va)(phys_addr_t phys),
132 				       void *arg)
133 {
134 	while (mc->nr_pages)
135 		free_fn(pop_hyp_memcache(mc, to_va), arg);
136 }
137 
138 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
139 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
140 
141 struct kvm_vmid {
142 	atomic64_t id;
143 };
144 
145 struct kvm_s2_mmu {
146 	struct kvm_vmid vmid;
147 
148 	/*
149 	 * stage2 entry level table
150 	 *
151 	 * Two kvm_s2_mmu structures in the same VM can point to the same
152 	 * pgd here.  This happens when running a guest using a
153 	 * translation regime that isn't affected by its own stage-2
154 	 * translation, such as a non-VHE hypervisor running at vEL2, or
155 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
156 	 * canonical stage-2 page tables.
157 	 */
158 	phys_addr_t	pgd_phys;
159 	struct kvm_pgtable *pgt;
160 
161 	/*
162 	 * VTCR value used on the host. For a non-NV guest (or a NV
163 	 * guest that runs in a context where its own S2 doesn't
164 	 * apply), its T0SZ value reflects that of the IPA size.
165 	 *
166 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
167 	 * the guest.
168 	 */
169 	u64	vtcr;
170 
171 	/* The last vcpu id that ran on each physical CPU */
172 	int __percpu *last_vcpu_ran;
173 
174 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
175 	/*
176 	 * Memory cache used to split
177 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
178 	 * is used to allocate stage2 page tables while splitting huge
179 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
180 	 * influences both the capacity of the split page cache, and
181 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
182 	 * too high.
183 	 *
184 	 * Protected by kvm->slots_lock.
185 	 */
186 	struct kvm_mmu_memory_cache split_page_cache;
187 	uint64_t split_page_chunk_size;
188 
189 	struct kvm_arch *arch;
190 };
191 
192 struct kvm_arch_memory_slot {
193 };
194 
195 /**
196  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
197  *
198  * @std_bmap: Bitmap of standard secure service calls
199  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
200  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
201  */
202 struct kvm_smccc_features {
203 	unsigned long std_bmap;
204 	unsigned long std_hyp_bmap;
205 	unsigned long vendor_hyp_bmap;
206 };
207 
208 typedef unsigned int pkvm_handle_t;
209 
210 struct kvm_protected_vm {
211 	pkvm_handle_t handle;
212 	struct kvm_hyp_memcache teardown_mc;
213 };
214 
215 struct kvm_mpidr_data {
216 	u64			mpidr_mask;
217 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
218 };
219 
220 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
221 {
222 	unsigned long mask = data->mpidr_mask;
223 	u64 aff = mpidr & MPIDR_HWID_BITMASK;
224 	int nbits, bit, bit_idx = 0;
225 	u16 index = 0;
226 
227 	/*
228 	 * If this looks like RISC-V's BEXT or x86's PEXT
229 	 * instructions, it isn't by accident.
230 	 */
231 	nbits = fls(mask);
232 	for_each_set_bit(bit, &mask, nbits) {
233 		index |= (aff & BIT(bit)) >> (bit - bit_idx);
234 		bit_idx++;
235 	}
236 
237 	return index;
238 }
239 
240 struct kvm_arch {
241 	struct kvm_s2_mmu mmu;
242 
243 	/* Interrupt controller */
244 	struct vgic_dist	vgic;
245 
246 	/* Timers */
247 	struct arch_timer_vm_data timer_data;
248 
249 	/* Mandated version of PSCI */
250 	u32 psci_version;
251 
252 	/* Protects VM-scoped configuration data */
253 	struct mutex config_lock;
254 
255 	/*
256 	 * If we encounter a data abort without valid instruction syndrome
257 	 * information, report this to user space.  User space can (and
258 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
259 	 * supported.
260 	 */
261 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
262 	/* Memory Tagging Extension enabled for the guest */
263 #define KVM_ARCH_FLAG_MTE_ENABLED			1
264 	/* At least one vCPU has ran in the VM */
265 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
266 	/* The vCPU feature set for the VM is configured */
267 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
268 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
269 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
270 	/* VM counter offset */
271 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
272 	/* Timer PPIs made immutable */
273 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
274 	/* Initial ID reg values loaded */
275 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
276 	unsigned long flags;
277 
278 	/* VM-wide vCPU feature set */
279 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
280 
281 	/* MPIDR to vcpu index mapping, optional */
282 	struct kvm_mpidr_data *mpidr_data;
283 
284 	/*
285 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
286 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
287 	 */
288 	unsigned long *pmu_filter;
289 	struct arm_pmu *arm_pmu;
290 
291 	cpumask_var_t supported_cpus;
292 
293 	/* PMCR_EL0.N value for the guest */
294 	u8 pmcr_n;
295 
296 	/* Hypercall features firmware registers' descriptor */
297 	struct kvm_smccc_features smccc_feat;
298 	struct maple_tree smccc_filter;
299 
300 	/*
301 	 * Emulated CPU ID registers per VM
302 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
303 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
304 	 *
305 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
306 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
307 	 */
308 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
309 #define IDREG(kvm, id)		((kvm)->arch.id_regs[IDREG_IDX(id)])
310 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
311 	u64 id_regs[KVM_ARM_ID_REG_NUM];
312 
313 	/*
314 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
315 	 * the associated pKVM instance in the hypervisor.
316 	 */
317 	struct kvm_protected_vm pkvm;
318 };
319 
320 struct kvm_vcpu_fault_info {
321 	u64 esr_el2;		/* Hyp Syndrom Register */
322 	u64 far_el2;		/* Hyp Fault Address Register */
323 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
324 	u64 disr_el1;		/* Deferred [SError] Status Register */
325 };
326 
327 enum vcpu_sysreg {
328 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
329 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
330 	CLIDR_EL1,	/* Cache Level ID Register */
331 	CSSELR_EL1,	/* Cache Size Selection Register */
332 	SCTLR_EL1,	/* System Control Register */
333 	ACTLR_EL1,	/* Auxiliary Control Register */
334 	CPACR_EL1,	/* Coprocessor Access Control */
335 	ZCR_EL1,	/* SVE Control */
336 	TTBR0_EL1,	/* Translation Table Base Register 0 */
337 	TTBR1_EL1,	/* Translation Table Base Register 1 */
338 	TCR_EL1,	/* Translation Control Register */
339 	TCR2_EL1,	/* Extended Translation Control Register */
340 	ESR_EL1,	/* Exception Syndrome Register */
341 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
342 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
343 	FAR_EL1,	/* Fault Address Register */
344 	MAIR_EL1,	/* Memory Attribute Indirection Register */
345 	VBAR_EL1,	/* Vector Base Address Register */
346 	CONTEXTIDR_EL1,	/* Context ID Register */
347 	TPIDR_EL0,	/* Thread ID, User R/W */
348 	TPIDRRO_EL0,	/* Thread ID, User R/O */
349 	TPIDR_EL1,	/* Thread ID, Privileged */
350 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
351 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
352 	PAR_EL1,	/* Physical Address Register */
353 	MDSCR_EL1,	/* Monitor Debug System Control Register */
354 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
355 	OSLSR_EL1,	/* OS Lock Status Register */
356 	DISR_EL1,	/* Deferred Interrupt Status Register */
357 
358 	/* Performance Monitors Registers */
359 	PMCR_EL0,	/* Control Register */
360 	PMSELR_EL0,	/* Event Counter Selection Register */
361 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
362 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
363 	PMCCNTR_EL0,	/* Cycle Counter Register */
364 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
365 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
366 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
367 	PMCNTENSET_EL0,	/* Count Enable Set Register */
368 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
369 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
370 	PMUSERENR_EL0,	/* User Enable Register */
371 
372 	/* Pointer Authentication Registers in a strict increasing order. */
373 	APIAKEYLO_EL1,
374 	APIAKEYHI_EL1,
375 	APIBKEYLO_EL1,
376 	APIBKEYHI_EL1,
377 	APDAKEYLO_EL1,
378 	APDAKEYHI_EL1,
379 	APDBKEYLO_EL1,
380 	APDBKEYHI_EL1,
381 	APGAKEYLO_EL1,
382 	APGAKEYHI_EL1,
383 
384 	ELR_EL1,
385 	SP_EL1,
386 	SPSR_EL1,
387 
388 	CNTVOFF_EL2,
389 	CNTV_CVAL_EL0,
390 	CNTV_CTL_EL0,
391 	CNTP_CVAL_EL0,
392 	CNTP_CTL_EL0,
393 
394 	/* Memory Tagging Extension registers */
395 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
396 	GCR_EL1,	/* Tag Control Register */
397 	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
398 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
399 
400 	/* Permission Indirection Extension registers */
401 	PIR_EL1,       /* Permission Indirection Register 1 (EL1) */
402 	PIRE0_EL1,     /*  Permission Indirection Register 0 (EL1) */
403 
404 	/* 32bit specific registers. */
405 	DACR32_EL2,	/* Domain Access Control Register */
406 	IFSR32_EL2,	/* Instruction Fault Status Register */
407 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
408 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
409 
410 	/* EL2 registers */
411 	VPIDR_EL2,	/* Virtualization Processor ID Register */
412 	VMPIDR_EL2,	/* Virtualization Multiprocessor ID Register */
413 	SCTLR_EL2,	/* System Control Register (EL2) */
414 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
415 	HCR_EL2,	/* Hypervisor Configuration Register */
416 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
417 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
418 	HSTR_EL2,	/* Hypervisor System Trap Register */
419 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
420 	HCRX_EL2,	/* Extended Hypervisor Configuration Register */
421 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
422 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
423 	TCR_EL2,	/* Translation Control Register (EL2) */
424 	VTTBR_EL2,	/* Virtualization Translation Table Base Register */
425 	VTCR_EL2,	/* Virtualization Translation Control Register */
426 	SPSR_EL2,	/* EL2 saved program status register */
427 	ELR_EL2,	/* EL2 exception link register */
428 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
429 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
430 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
431 	FAR_EL2,	/* Fault Address Register (EL2) */
432 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
433 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
434 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
435 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
436 	RVBAR_EL2,	/* Reset Vector Base Address Register */
437 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
438 	TPIDR_EL2,	/* EL2 Software Thread ID Register */
439 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
440 	SP_EL2,		/* EL2 Stack Pointer */
441 	HFGRTR_EL2,
442 	HFGWTR_EL2,
443 	HFGITR_EL2,
444 	HDFGRTR_EL2,
445 	HDFGWTR_EL2,
446 	CNTHP_CTL_EL2,
447 	CNTHP_CVAL_EL2,
448 	CNTHV_CTL_EL2,
449 	CNTHV_CVAL_EL2,
450 
451 	NR_SYS_REGS	/* Nothing after this line! */
452 };
453 
454 struct kvm_cpu_context {
455 	struct user_pt_regs regs;	/* sp = sp_el0 */
456 
457 	u64	spsr_abt;
458 	u64	spsr_und;
459 	u64	spsr_irq;
460 	u64	spsr_fiq;
461 
462 	struct user_fpsimd_state fp_regs;
463 
464 	u64 sys_regs[NR_SYS_REGS];
465 
466 	struct kvm_vcpu *__hyp_running_vcpu;
467 };
468 
469 struct kvm_host_data {
470 	struct kvm_cpu_context host_ctxt;
471 };
472 
473 struct kvm_host_psci_config {
474 	/* PSCI version used by host. */
475 	u32 version;
476 	u32 smccc_version;
477 
478 	/* Function IDs used by host if version is v0.1. */
479 	struct psci_0_1_function_ids function_ids_0_1;
480 
481 	bool psci_0_1_cpu_suspend_implemented;
482 	bool psci_0_1_cpu_on_implemented;
483 	bool psci_0_1_cpu_off_implemented;
484 	bool psci_0_1_migrate_implemented;
485 };
486 
487 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
488 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
489 
490 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
491 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
492 
493 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
494 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
495 
496 struct vcpu_reset_state {
497 	unsigned long	pc;
498 	unsigned long	r0;
499 	bool		be;
500 	bool		reset;
501 };
502 
503 struct kvm_vcpu_arch {
504 	struct kvm_cpu_context ctxt;
505 
506 	/*
507 	 * Guest floating point state
508 	 *
509 	 * The architecture has two main floating point extensions,
510 	 * the original FPSIMD and SVE.  These have overlapping
511 	 * register views, with the FPSIMD V registers occupying the
512 	 * low 128 bits of the SVE Z registers.  When the core
513 	 * floating point code saves the register state of a task it
514 	 * records which view it saved in fp_type.
515 	 */
516 	void *sve_state;
517 	enum fp_type fp_type;
518 	unsigned int sve_max_vl;
519 	u64 svcr;
520 
521 	/* Stage 2 paging state used by the hardware on next switch */
522 	struct kvm_s2_mmu *hw_mmu;
523 
524 	/* Values of trap registers for the guest. */
525 	u64 hcr_el2;
526 	u64 mdcr_el2;
527 	u64 cptr_el2;
528 
529 	/* Values of trap registers for the host before guest entry. */
530 	u64 mdcr_el2_host;
531 
532 	/* Exception Information */
533 	struct kvm_vcpu_fault_info fault;
534 
535 	/* Ownership of the FP regs */
536 	enum {
537 		FP_STATE_FREE,
538 		FP_STATE_HOST_OWNED,
539 		FP_STATE_GUEST_OWNED,
540 	} fp_state;
541 
542 	/* Configuration flags, set once and for all before the vcpu can run */
543 	u8 cflags;
544 
545 	/* Input flags to the hypervisor code, potentially cleared after use */
546 	u8 iflags;
547 
548 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
549 	u8 sflags;
550 
551 	/*
552 	 * Don't run the guest (internal implementation need).
553 	 *
554 	 * Contrary to the flags above, this is set/cleared outside of
555 	 * a vcpu context, and thus cannot be mixed with the flags
556 	 * themselves (or the flag accesses need to be made atomic).
557 	 */
558 	bool pause;
559 
560 	/*
561 	 * We maintain more than a single set of debug registers to support
562 	 * debugging the guest from the host and to maintain separate host and
563 	 * guest state during world switches. vcpu_debug_state are the debug
564 	 * registers of the vcpu as the guest sees them.  host_debug_state are
565 	 * the host registers which are saved and restored during
566 	 * world switches. external_debug_state contains the debug
567 	 * values we want to debug the guest. This is set via the
568 	 * KVM_SET_GUEST_DEBUG ioctl.
569 	 *
570 	 * debug_ptr points to the set of debug registers that should be loaded
571 	 * onto the hardware when running the guest.
572 	 */
573 	struct kvm_guest_debug_arch *debug_ptr;
574 	struct kvm_guest_debug_arch vcpu_debug_state;
575 	struct kvm_guest_debug_arch external_debug_state;
576 
577 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
578 	struct task_struct *parent_task;
579 
580 	struct {
581 		/* {Break,watch}point registers */
582 		struct kvm_guest_debug_arch regs;
583 		/* Statistical profiling extension */
584 		u64 pmscr_el1;
585 		/* Self-hosted trace */
586 		u64 trfcr_el1;
587 	} host_debug_state;
588 
589 	/* VGIC state */
590 	struct vgic_cpu vgic_cpu;
591 	struct arch_timer_cpu timer_cpu;
592 	struct kvm_pmu pmu;
593 
594 	/*
595 	 * Guest registers we preserve during guest debugging.
596 	 *
597 	 * These shadow registers are updated by the kvm_handle_sys_reg
598 	 * trap handler if the guest accesses or updates them while we
599 	 * are using guest debug.
600 	 */
601 	struct {
602 		u32	mdscr_el1;
603 		bool	pstate_ss;
604 	} guest_debug_preserved;
605 
606 	/* vcpu power state */
607 	struct kvm_mp_state mp_state;
608 	spinlock_t mp_state_lock;
609 
610 	/* Cache some mmu pages needed inside spinlock regions */
611 	struct kvm_mmu_memory_cache mmu_page_cache;
612 
613 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
614 	u64 vsesr_el2;
615 
616 	/* Additional reset state */
617 	struct vcpu_reset_state	reset_state;
618 
619 	/* Guest PV state */
620 	struct {
621 		u64 last_steal;
622 		gpa_t base;
623 	} steal;
624 
625 	/* Per-vcpu CCSIDR override or NULL */
626 	u32 *ccsidr;
627 };
628 
629 /*
630  * Each 'flag' is composed of a comma-separated triplet:
631  *
632  * - the flag-set it belongs to in the vcpu->arch structure
633  * - the value for that flag
634  * - the mask for that flag
635  *
636  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
637  * unpack_vcpu_flag() extract the flag value from the triplet for
638  * direct use outside of the flag accessors.
639  */
640 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
641 
642 #define __unpack_flag(_set, _f, _m)	_f
643 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
644 
645 #define __build_check_flag(v, flagset, f, m)			\
646 	do {							\
647 		typeof(v->arch.flagset) *_fset;			\
648 								\
649 		/* Check that the flags fit in the mask */	\
650 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
651 		/* Check that the flags fit in the type */	\
652 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
653 	} while (0)
654 
655 #define __vcpu_get_flag(v, flagset, f, m)			\
656 	({							\
657 		__build_check_flag(v, flagset, f, m);		\
658 								\
659 		READ_ONCE(v->arch.flagset) & (m);		\
660 	})
661 
662 /*
663  * Note that the set/clear accessors must be preempt-safe in order to
664  * avoid nesting them with load/put which also manipulate flags...
665  */
666 #ifdef __KVM_NVHE_HYPERVISOR__
667 /* the nVHE hypervisor is always non-preemptible */
668 #define __vcpu_flags_preempt_disable()
669 #define __vcpu_flags_preempt_enable()
670 #else
671 #define __vcpu_flags_preempt_disable()	preempt_disable()
672 #define __vcpu_flags_preempt_enable()	preempt_enable()
673 #endif
674 
675 #define __vcpu_set_flag(v, flagset, f, m)			\
676 	do {							\
677 		typeof(v->arch.flagset) *fset;			\
678 								\
679 		__build_check_flag(v, flagset, f, m);		\
680 								\
681 		fset = &v->arch.flagset;			\
682 		__vcpu_flags_preempt_disable();			\
683 		if (HWEIGHT(m) > 1)				\
684 			*fset &= ~(m);				\
685 		*fset |= (f);					\
686 		__vcpu_flags_preempt_enable();			\
687 	} while (0)
688 
689 #define __vcpu_clear_flag(v, flagset, f, m)			\
690 	do {							\
691 		typeof(v->arch.flagset) *fset;			\
692 								\
693 		__build_check_flag(v, flagset, f, m);		\
694 								\
695 		fset = &v->arch.flagset;			\
696 		__vcpu_flags_preempt_disable();			\
697 		*fset &= ~(m);					\
698 		__vcpu_flags_preempt_enable();			\
699 	} while (0)
700 
701 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
702 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
703 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
704 
705 /* SVE exposed to guest */
706 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
707 /* SVE config completed */
708 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
709 /* PTRAUTH exposed to guest */
710 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
711 /* KVM_ARM_VCPU_INIT completed */
712 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
713 
714 /* Exception pending */
715 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
716 /*
717  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
718  * be set together with an exception...
719  */
720 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
721 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
722 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
723 
724 /* Helpers to encode exceptions with minimum fuss */
725 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
726 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
727 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
728 
729 /*
730  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
731  * values:
732  *
733  * For AArch32 EL1:
734  */
735 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
736 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
737 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
738 /* For AArch64: */
739 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
740 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
741 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
742 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
743 /* For AArch64 with NV: */
744 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
745 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
746 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
747 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
748 /* Guest debug is live */
749 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
750 /* Save SPE context if active  */
751 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
752 /* Save TRBE context if active  */
753 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
754 /* vcpu running in HYP context */
755 #define VCPU_HYP_CONTEXT	__vcpu_single_flag(iflags, BIT(7))
756 
757 /* SVE enabled for host EL0 */
758 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
759 /* SME enabled for EL0 */
760 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
761 /* Physical CPU not in supported_cpus */
762 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
763 /* WFIT instruction trapped */
764 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
765 /* vcpu system registers loaded on physical CPU */
766 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
767 /* Software step state is Active-pending */
768 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
769 /* PMUSERENR for the guest EL0 is on physical CPU */
770 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
771 /* WFI instruction trapped */
772 #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
773 
774 
775 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
776 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
777 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
778 
779 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
780 
781 #define vcpu_sve_state_size(vcpu) ({					\
782 	size_t __size_ret;						\
783 	unsigned int __vcpu_vq;						\
784 									\
785 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
786 		__size_ret = 0;						\
787 	} else {							\
788 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
789 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
790 	}								\
791 									\
792 	__size_ret;							\
793 })
794 
795 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
796 				 KVM_GUESTDBG_USE_SW_BP | \
797 				 KVM_GUESTDBG_USE_HW | \
798 				 KVM_GUESTDBG_SINGLESTEP)
799 
800 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
801 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
802 
803 #ifdef CONFIG_ARM64_PTR_AUTH
804 #define vcpu_has_ptrauth(vcpu)						\
805 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
806 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
807 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
808 #else
809 #define vcpu_has_ptrauth(vcpu)		false
810 #endif
811 
812 #define vcpu_on_unsupported_cpu(vcpu)					\
813 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
814 
815 #define vcpu_set_on_unsupported_cpu(vcpu)				\
816 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
817 
818 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
819 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
820 
821 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
822 
823 /*
824  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
825  * memory backed version of a register, and not the one most recently
826  * accessed by a running VCPU.  For example, for userspace access or
827  * for system registers that are never context switched, but only
828  * emulated.
829  */
830 #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
831 
832 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
833 
834 #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
835 
836 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
837 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
838 
839 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
840 {
841 	/*
842 	 * *** VHE ONLY ***
843 	 *
844 	 * System registers listed in the switch are not saved on every
845 	 * exit from the guest but are only saved on vcpu_put.
846 	 *
847 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
848 	 * should never be listed below, because the guest cannot modify its
849 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
850 	 * thread when emulating cross-VCPU communication.
851 	 */
852 	if (!has_vhe())
853 		return false;
854 
855 	switch (reg) {
856 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
857 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
858 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
859 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
860 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
861 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
862 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
863 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
864 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
865 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
866 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
867 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
868 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
869 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
870 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
871 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
872 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
873 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
874 	case PAR_EL1:		*val = read_sysreg_par();		break;
875 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
876 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
877 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
878 	default:		return false;
879 	}
880 
881 	return true;
882 }
883 
884 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
885 {
886 	/*
887 	 * *** VHE ONLY ***
888 	 *
889 	 * System registers listed in the switch are not restored on every
890 	 * entry to the guest but are only restored on vcpu_load.
891 	 *
892 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
893 	 * should never be listed below, because the MPIDR should only be set
894 	 * once, before running the VCPU, and never changed later.
895 	 */
896 	if (!has_vhe())
897 		return false;
898 
899 	switch (reg) {
900 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
901 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
902 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
903 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
904 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
905 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
906 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
907 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
908 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
909 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
910 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
911 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
912 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
913 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
914 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
915 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
916 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
917 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
918 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
919 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
920 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
921 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
922 	default:		return false;
923 	}
924 
925 	return true;
926 }
927 
928 struct kvm_vm_stat {
929 	struct kvm_vm_stat_generic generic;
930 };
931 
932 struct kvm_vcpu_stat {
933 	struct kvm_vcpu_stat_generic generic;
934 	u64 hvc_exit_stat;
935 	u64 wfe_exit_stat;
936 	u64 wfi_exit_stat;
937 	u64 mmio_exit_user;
938 	u64 mmio_exit_kernel;
939 	u64 signal_exits;
940 	u64 exits;
941 };
942 
943 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
944 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
945 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
946 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
947 
948 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
949 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
950 
951 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
952 			      struct kvm_vcpu_events *events);
953 
954 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
955 			      struct kvm_vcpu_events *events);
956 
957 #define KVM_ARCH_WANT_MMU_NOTIFIER
958 
959 void kvm_arm_halt_guest(struct kvm *kvm);
960 void kvm_arm_resume_guest(struct kvm *kvm);
961 
962 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
963 
964 #ifndef __KVM_NVHE_HYPERVISOR__
965 #define kvm_call_hyp_nvhe(f, ...)						\
966 	({								\
967 		struct arm_smccc_res res;				\
968 									\
969 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
970 				  ##__VA_ARGS__, &res);			\
971 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
972 									\
973 		res.a1;							\
974 	})
975 
976 /*
977  * The couple of isb() below are there to guarantee the same behaviour
978  * on VHE as on !VHE, where the eret to EL1 acts as a context
979  * synchronization event.
980  */
981 #define kvm_call_hyp(f, ...)						\
982 	do {								\
983 		if (has_vhe()) {					\
984 			f(__VA_ARGS__);					\
985 			isb();						\
986 		} else {						\
987 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
988 		}							\
989 	} while(0)
990 
991 #define kvm_call_hyp_ret(f, ...)					\
992 	({								\
993 		typeof(f(__VA_ARGS__)) ret;				\
994 									\
995 		if (has_vhe()) {					\
996 			ret = f(__VA_ARGS__);				\
997 			isb();						\
998 		} else {						\
999 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1000 		}							\
1001 									\
1002 		ret;							\
1003 	})
1004 #else /* __KVM_NVHE_HYPERVISOR__ */
1005 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1006 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1007 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1008 #endif /* __KVM_NVHE_HYPERVISOR__ */
1009 
1010 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1011 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1012 
1013 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1014 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1015 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1016 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1017 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1018 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1019 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1020 
1021 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1022 
1023 int __init kvm_sys_reg_table_init(void);
1024 int __init populate_nv_trap_config(void);
1025 
1026 bool lock_all_vcpus(struct kvm *kvm);
1027 void unlock_all_vcpus(struct kvm *kvm);
1028 
1029 /* MMIO helpers */
1030 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1031 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1032 
1033 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1034 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1035 
1036 /*
1037  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1038  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1039  * loaded is considered to be "in guest".
1040  */
1041 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1042 {
1043 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1044 }
1045 
1046 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1047 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1048 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1049 
1050 bool kvm_arm_pvtime_supported(void);
1051 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1052 			    struct kvm_device_attr *attr);
1053 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1054 			    struct kvm_device_attr *attr);
1055 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1056 			    struct kvm_device_attr *attr);
1057 
1058 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1059 int __init kvm_arm_vmid_alloc_init(void);
1060 void __init kvm_arm_vmid_alloc_free(void);
1061 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1062 void kvm_arm_vmid_clear_active(void);
1063 
1064 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1065 {
1066 	vcpu_arch->steal.base = INVALID_GPA;
1067 }
1068 
1069 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1070 {
1071 	return (vcpu_arch->steal.base != INVALID_GPA);
1072 }
1073 
1074 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1075 
1076 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1077 
1078 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1079 
1080 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1081 {
1082 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1083 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1084 }
1085 
1086 static inline bool kvm_system_needs_idmapped_vectors(void)
1087 {
1088 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1089 }
1090 
1091 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1092 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1093 
1094 void kvm_arm_init_debug(void);
1095 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1096 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1097 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1098 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1099 
1100 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1101 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1102 
1103 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1104 			       struct kvm_device_attr *attr);
1105 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1106 			       struct kvm_device_attr *attr);
1107 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1108 			       struct kvm_device_attr *attr);
1109 
1110 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1111 			       struct kvm_arm_copy_mte_tags *copy_tags);
1112 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1113 				    struct kvm_arm_counter_offset *offset);
1114 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1115 					struct reg_mask_range *range);
1116 
1117 /* Guest/host FPSIMD coordination helpers */
1118 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1119 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1120 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1121 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1122 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1123 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1124 
1125 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1126 {
1127 	return (!has_vhe() && attr->exclude_host);
1128 }
1129 
1130 /* Flags for host debug state */
1131 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1132 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1133 
1134 #ifdef CONFIG_KVM
1135 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1136 void kvm_clr_pmu_events(u32 clr);
1137 bool kvm_set_pmuserenr(u64 val);
1138 #else
1139 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1140 static inline void kvm_clr_pmu_events(u32 clr) {}
1141 static inline bool kvm_set_pmuserenr(u64 val)
1142 {
1143 	return false;
1144 }
1145 #endif
1146 
1147 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1148 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1149 
1150 int __init kvm_set_ipa_limit(void);
1151 
1152 #define __KVM_HAVE_ARCH_VM_ALLOC
1153 struct kvm *kvm_arch_alloc_vm(void);
1154 
1155 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1156 
1157 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1158 
1159 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1160 {
1161 	return false;
1162 }
1163 
1164 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1165 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1166 
1167 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1168 
1169 #define kvm_has_mte(kvm)					\
1170 	(system_supports_mte() &&				\
1171 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1172 
1173 #define kvm_supports_32bit_el0()				\
1174 	(system_supports_32bit_el0() &&				\
1175 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1176 
1177 #define kvm_vm_has_ran_once(kvm)					\
1178 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1179 
1180 int kvm_trng_call(struct kvm_vcpu *vcpu);
1181 #ifdef CONFIG_KVM
1182 extern phys_addr_t hyp_mem_base;
1183 extern phys_addr_t hyp_mem_size;
1184 void __init kvm_hyp_reserve(void);
1185 #else
1186 static inline void kvm_hyp_reserve(void) { }
1187 #endif
1188 
1189 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1190 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1191 
1192 #endif /* __ARM64_KVM_HOST_H__ */
1193