xref: /linux/arch/arm64/include/asm/kvm_host.h (revision de5c2827fb44ae3074638e373bcea64ac9107689)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31 
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33 
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35 
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39 
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41 
42 #define KVM_VCPU_MAX_FEATURES 7
43 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44 
45 #define KVM_REQ_SLEEP \
46 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP	KVM_ARCH_REQ(8)
55 
56 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
57 				     KVM_DIRTY_LOG_INITIALLY_SET)
58 
59 #define KVM_HAVE_MMU_RWLOCK
60 
61 /*
62  * Mode of operation configurable with kvm-arm.mode early param.
63  * See Documentation/admin-guide/kernel-parameters.txt for more information.
64  */
65 enum kvm_mode {
66 	KVM_MODE_DEFAULT,
67 	KVM_MODE_PROTECTED,
68 	KVM_MODE_NV,
69 	KVM_MODE_NONE,
70 };
71 #ifdef CONFIG_KVM
72 enum kvm_mode kvm_get_mode(void);
73 #else
74 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
75 #endif
76 
77 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78 
79 extern unsigned int __ro_after_init kvm_sve_max_vl;
80 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
81 int __init kvm_arm_init_sve(void);
82 
83 u32 __attribute_const__ kvm_target_cpu(void);
84 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
85 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
86 
87 struct kvm_hyp_memcache {
88 	phys_addr_t head;
89 	unsigned long nr_pages;
90 };
91 
92 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
93 				     phys_addr_t *p,
94 				     phys_addr_t (*to_pa)(void *virt))
95 {
96 	*p = mc->head;
97 	mc->head = to_pa(p);
98 	mc->nr_pages++;
99 }
100 
101 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
102 				     void *(*to_va)(phys_addr_t phys))
103 {
104 	phys_addr_t *p = to_va(mc->head);
105 
106 	if (!mc->nr_pages)
107 		return NULL;
108 
109 	mc->head = *p;
110 	mc->nr_pages--;
111 
112 	return p;
113 }
114 
115 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
116 				       unsigned long min_pages,
117 				       void *(*alloc_fn)(void *arg),
118 				       phys_addr_t (*to_pa)(void *virt),
119 				       void *arg)
120 {
121 	while (mc->nr_pages < min_pages) {
122 		phys_addr_t *p = alloc_fn(arg);
123 
124 		if (!p)
125 			return -ENOMEM;
126 		push_hyp_memcache(mc, p, to_pa);
127 	}
128 
129 	return 0;
130 }
131 
132 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
133 				       void (*free_fn)(void *virt, void *arg),
134 				       void *(*to_va)(phys_addr_t phys),
135 				       void *arg)
136 {
137 	while (mc->nr_pages)
138 		free_fn(pop_hyp_memcache(mc, to_va), arg);
139 }
140 
141 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
142 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
143 
144 struct kvm_vmid {
145 	atomic64_t id;
146 };
147 
148 struct kvm_s2_mmu {
149 	struct kvm_vmid vmid;
150 
151 	/*
152 	 * stage2 entry level table
153 	 *
154 	 * Two kvm_s2_mmu structures in the same VM can point to the same
155 	 * pgd here.  This happens when running a guest using a
156 	 * translation regime that isn't affected by its own stage-2
157 	 * translation, such as a non-VHE hypervisor running at vEL2, or
158 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
159 	 * canonical stage-2 page tables.
160 	 */
161 	phys_addr_t	pgd_phys;
162 	struct kvm_pgtable *pgt;
163 
164 	/*
165 	 * VTCR value used on the host. For a non-NV guest (or a NV
166 	 * guest that runs in a context where its own S2 doesn't
167 	 * apply), its T0SZ value reflects that of the IPA size.
168 	 *
169 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
170 	 * the guest.
171 	 */
172 	u64	vtcr;
173 
174 	/* The last vcpu id that ran on each physical CPU */
175 	int __percpu *last_vcpu_ran;
176 
177 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
178 	/*
179 	 * Memory cache used to split
180 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
181 	 * is used to allocate stage2 page tables while splitting huge
182 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
183 	 * influences both the capacity of the split page cache, and
184 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
185 	 * too high.
186 	 *
187 	 * Protected by kvm->slots_lock.
188 	 */
189 	struct kvm_mmu_memory_cache split_page_cache;
190 	uint64_t split_page_chunk_size;
191 
192 	struct kvm_arch *arch;
193 
194 	/*
195 	 * For a shadow stage-2 MMU, the virtual vttbr used by the
196 	 * host to parse the guest S2.
197 	 * This either contains:
198 	 * - the virtual VTTBR programmed by the guest hypervisor with
199          *   CnP cleared
200 	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
201 	 *
202 	 * We also cache the full VTCR which gets used for TLB invalidation,
203 	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
204 	 * to be cached in a TLB" to the letter.
205 	 */
206 	u64	tlb_vttbr;
207 	u64	tlb_vtcr;
208 
209 	/*
210 	 * true when this represents a nested context where virtual
211 	 * HCR_EL2.VM == 1
212 	 */
213 	bool	nested_stage2_enabled;
214 
215 	/*
216 	 * true when this MMU needs to be unmapped before being used for a new
217 	 * purpose.
218 	 */
219 	bool	pending_unmap;
220 
221 	/*
222 	 *  0: Nobody is currently using this, check vttbr for validity
223 	 * >0: Somebody is actively using this.
224 	 */
225 	atomic_t refcnt;
226 };
227 
228 struct kvm_arch_memory_slot {
229 };
230 
231 /**
232  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
233  *
234  * @std_bmap: Bitmap of standard secure service calls
235  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
236  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
237  */
238 struct kvm_smccc_features {
239 	unsigned long std_bmap;
240 	unsigned long std_hyp_bmap;
241 	unsigned long vendor_hyp_bmap;
242 };
243 
244 typedef unsigned int pkvm_handle_t;
245 
246 struct kvm_protected_vm {
247 	pkvm_handle_t handle;
248 	struct kvm_hyp_memcache teardown_mc;
249 	bool enabled;
250 };
251 
252 struct kvm_mpidr_data {
253 	u64			mpidr_mask;
254 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
255 };
256 
257 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
258 {
259 	unsigned long index = 0, mask = data->mpidr_mask;
260 	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
261 
262 	bitmap_gather(&index, &aff, &mask, fls(mask));
263 
264 	return index;
265 }
266 
267 struct kvm_sysreg_masks;
268 
269 enum fgt_group_id {
270 	__NO_FGT_GROUP__,
271 	HFGxTR_GROUP,
272 	HDFGRTR_GROUP,
273 	HDFGWTR_GROUP = HDFGRTR_GROUP,
274 	HFGITR_GROUP,
275 	HAFGRTR_GROUP,
276 
277 	/* Must be last */
278 	__NR_FGT_GROUP_IDS__
279 };
280 
281 struct kvm_arch {
282 	struct kvm_s2_mmu mmu;
283 
284 	/*
285 	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
286 	 * architecture. We track them globally, as we present the
287 	 * same feature-set to all vcpus.
288 	 *
289 	 * Index 0 is currently spare.
290 	 */
291 	u64 fgu[__NR_FGT_GROUP_IDS__];
292 
293 	/*
294 	 * Stage 2 paging state for VMs with nested S2 using a virtual
295 	 * VMID.
296 	 */
297 	struct kvm_s2_mmu *nested_mmus;
298 	size_t nested_mmus_size;
299 	int nested_mmus_next;
300 
301 	/* Interrupt controller */
302 	struct vgic_dist	vgic;
303 
304 	/* Timers */
305 	struct arch_timer_vm_data timer_data;
306 
307 	/* Mandated version of PSCI */
308 	u32 psci_version;
309 
310 	/* Protects VM-scoped configuration data */
311 	struct mutex config_lock;
312 
313 	/*
314 	 * If we encounter a data abort without valid instruction syndrome
315 	 * information, report this to user space.  User space can (and
316 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
317 	 * supported.
318 	 */
319 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
320 	/* Memory Tagging Extension enabled for the guest */
321 #define KVM_ARCH_FLAG_MTE_ENABLED			1
322 	/* At least one vCPU has ran in the VM */
323 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
324 	/* The vCPU feature set for the VM is configured */
325 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
326 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
327 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
328 	/* VM counter offset */
329 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
330 	/* Timer PPIs made immutable */
331 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
332 	/* Initial ID reg values loaded */
333 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
334 	/* Fine-Grained UNDEF initialised */
335 #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
336 	unsigned long flags;
337 
338 	/* VM-wide vCPU feature set */
339 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
340 
341 	/* MPIDR to vcpu index mapping, optional */
342 	struct kvm_mpidr_data *mpidr_data;
343 
344 	/*
345 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
346 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
347 	 */
348 	unsigned long *pmu_filter;
349 	struct arm_pmu *arm_pmu;
350 
351 	cpumask_var_t supported_cpus;
352 
353 	/* PMCR_EL0.N value for the guest */
354 	u8 pmcr_n;
355 
356 	/* Iterator for idreg debugfs */
357 	u8	idreg_debugfs_iter;
358 
359 	/* Hypercall features firmware registers' descriptor */
360 	struct kvm_smccc_features smccc_feat;
361 	struct maple_tree smccc_filter;
362 
363 	/*
364 	 * Emulated CPU ID registers per VM
365 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
366 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
367 	 *
368 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
369 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
370 	 */
371 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
372 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
373 	u64 id_regs[KVM_ARM_ID_REG_NUM];
374 
375 	u64 ctr_el0;
376 
377 	/* Masks for VNCR-backed and general EL2 sysregs */
378 	struct kvm_sysreg_masks	*sysreg_masks;
379 
380 	/*
381 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
382 	 * the associated pKVM instance in the hypervisor.
383 	 */
384 	struct kvm_protected_vm pkvm;
385 };
386 
387 struct kvm_vcpu_fault_info {
388 	u64 esr_el2;		/* Hyp Syndrom Register */
389 	u64 far_el2;		/* Hyp Fault Address Register */
390 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
391 	u64 disr_el1;		/* Deferred [SError] Status Register */
392 };
393 
394 /*
395  * VNCR() just places the VNCR_capable registers in the enum after
396  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
397  * from the VNCR base. As we don't require the enum to be otherwise ordered,
398  * we need the terrible hack below to ensure that we correctly size the
399  * sys_regs array, no matter what.
400  *
401  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
402  * treasure trove of bit hacks:
403  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
404  */
405 #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
406 #define VNCR(r)						\
407 	__before_##r,					\
408 	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
409 	__after_##r = __MAX__(__before_##r - 1, r)
410 
411 #define MARKER(m)				\
412 	m, __after_##m = m - 1
413 
414 enum vcpu_sysreg {
415 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
416 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
417 	CLIDR_EL1,	/* Cache Level ID Register */
418 	CSSELR_EL1,	/* Cache Size Selection Register */
419 	TPIDR_EL0,	/* Thread ID, User R/W */
420 	TPIDRRO_EL0,	/* Thread ID, User R/O */
421 	TPIDR_EL1,	/* Thread ID, Privileged */
422 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
423 	PAR_EL1,	/* Physical Address Register */
424 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
425 	OSLSR_EL1,	/* OS Lock Status Register */
426 	DISR_EL1,	/* Deferred Interrupt Status Register */
427 
428 	/* Performance Monitors Registers */
429 	PMCR_EL0,	/* Control Register */
430 	PMSELR_EL0,	/* Event Counter Selection Register */
431 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
432 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
433 	PMCCNTR_EL0,	/* Cycle Counter Register */
434 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
435 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
436 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
437 	PMCNTENSET_EL0,	/* Count Enable Set Register */
438 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
439 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
440 	PMUSERENR_EL0,	/* User Enable Register */
441 
442 	/* Pointer Authentication Registers in a strict increasing order. */
443 	APIAKEYLO_EL1,
444 	APIAKEYHI_EL1,
445 	APIBKEYLO_EL1,
446 	APIBKEYHI_EL1,
447 	APDAKEYLO_EL1,
448 	APDAKEYHI_EL1,
449 	APDBKEYLO_EL1,
450 	APDBKEYHI_EL1,
451 	APGAKEYLO_EL1,
452 	APGAKEYHI_EL1,
453 
454 	/* Memory Tagging Extension registers */
455 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
456 	GCR_EL1,	/* Tag Control Register */
457 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
458 
459 	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
460 
461 	/* FP/SIMD/SVE */
462 	SVCR,
463 	FPMR,
464 
465 	/* 32bit specific registers. */
466 	DACR32_EL2,	/* Domain Access Control Register */
467 	IFSR32_EL2,	/* Instruction Fault Status Register */
468 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
469 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
470 
471 	/* EL2 registers */
472 	SCTLR_EL2,	/* System Control Register (EL2) */
473 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
474 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
475 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
476 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
477 	ZCR_EL2,	/* SVE Control Register (EL2) */
478 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
479 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
480 	TCR_EL2,	/* Translation Control Register (EL2) */
481 	PIRE0_EL2,	/* Permission Indirection Register 0 (EL2) */
482 	PIR_EL2,	/* Permission Indirection Register 1 (EL2) */
483 	POR_EL2,	/* Permission Overlay Register 2 (EL2) */
484 	SPSR_EL2,	/* EL2 saved program status register */
485 	ELR_EL2,	/* EL2 exception link register */
486 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
487 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
488 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
489 	FAR_EL2,	/* Fault Address Register (EL2) */
490 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
491 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
492 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
493 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
494 	RVBAR_EL2,	/* Reset Vector Base Address Register */
495 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
496 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
497 	SP_EL2,		/* EL2 Stack Pointer */
498 	CNTHP_CTL_EL2,
499 	CNTHP_CVAL_EL2,
500 	CNTHV_CTL_EL2,
501 	CNTHV_CVAL_EL2,
502 
503 	/* Anything from this can be RES0/RES1 sanitised */
504 	MARKER(__SANITISED_REG_START__),
505 	TCR2_EL2,	/* Extended Translation Control Register (EL2) */
506 
507 	/* Any VNCR-capable reg goes after this point */
508 	MARKER(__VNCR_START__),
509 
510 	VNCR(SCTLR_EL1),/* System Control Register */
511 	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
512 	VNCR(CPACR_EL1),/* Coprocessor Access Control */
513 	VNCR(ZCR_EL1),	/* SVE Control */
514 	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
515 	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
516 	VNCR(TCR_EL1),	/* Translation Control Register */
517 	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
518 	VNCR(ESR_EL1),	/* Exception Syndrome Register */
519 	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
520 	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
521 	VNCR(FAR_EL1),	/* Fault Address Register */
522 	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
523 	VNCR(VBAR_EL1),	/* Vector Base Address Register */
524 	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
525 	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
526 	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
527 	VNCR(ELR_EL1),
528 	VNCR(SP_EL1),
529 	VNCR(SPSR_EL1),
530 	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
531 	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
532 	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
533 	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
534 	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
535 	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
536 	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
537 	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
538 	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
539 
540 	/* Permission Indirection Extension registers */
541 	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
542 	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
543 
544 	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
545 
546 	VNCR(HFGRTR_EL2),
547 	VNCR(HFGWTR_EL2),
548 	VNCR(HFGITR_EL2),
549 	VNCR(HDFGRTR_EL2),
550 	VNCR(HDFGWTR_EL2),
551 	VNCR(HAFGRTR_EL2),
552 
553 	VNCR(CNTVOFF_EL2),
554 	VNCR(CNTV_CVAL_EL0),
555 	VNCR(CNTV_CTL_EL0),
556 	VNCR(CNTP_CVAL_EL0),
557 	VNCR(CNTP_CTL_EL0),
558 
559 	VNCR(ICH_HCR_EL2),
560 
561 	NR_SYS_REGS	/* Nothing after this line! */
562 };
563 
564 struct kvm_sysreg_masks {
565 	struct {
566 		u64	res0;
567 		u64	res1;
568 	} mask[NR_SYS_REGS - __SANITISED_REG_START__];
569 };
570 
571 struct kvm_cpu_context {
572 	struct user_pt_regs regs;	/* sp = sp_el0 */
573 
574 	u64	spsr_abt;
575 	u64	spsr_und;
576 	u64	spsr_irq;
577 	u64	spsr_fiq;
578 
579 	struct user_fpsimd_state fp_regs;
580 
581 	u64 sys_regs[NR_SYS_REGS];
582 
583 	struct kvm_vcpu *__hyp_running_vcpu;
584 
585 	/* This pointer has to be 4kB aligned. */
586 	u64 *vncr_array;
587 };
588 
589 struct cpu_sve_state {
590 	__u64 zcr_el1;
591 
592 	/*
593 	 * Ordering is important since __sve_save_state/__sve_restore_state
594 	 * relies on it.
595 	 */
596 	__u32 fpsr;
597 	__u32 fpcr;
598 
599 	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
600 	__u8 sve_regs[];
601 };
602 
603 /*
604  * This structure is instantiated on a per-CPU basis, and contains
605  * data that is:
606  *
607  * - tied to a single physical CPU, and
608  * - either have a lifetime that does not extend past vcpu_put()
609  * - or is an invariant for the lifetime of the system
610  *
611  * Use host_data_ptr(field) as a way to access a pointer to such a
612  * field.
613  */
614 struct kvm_host_data {
615 	struct kvm_cpu_context host_ctxt;
616 
617 	/*
618 	 * All pointers in this union are hyp VA.
619 	 * sve_state is only used in pKVM and if system_supports_sve().
620 	 */
621 	union {
622 		struct user_fpsimd_state *fpsimd_state;
623 		struct cpu_sve_state *sve_state;
624 	};
625 
626 	union {
627 		/* HYP VA pointer to the host storage for FPMR */
628 		u64	*fpmr_ptr;
629 		/*
630 		 * Used by pKVM only, as it needs to provide storage
631 		 * for the host
632 		 */
633 		u64	fpmr;
634 	};
635 
636 	/* Ownership of the FP regs */
637 	enum {
638 		FP_STATE_FREE,
639 		FP_STATE_HOST_OWNED,
640 		FP_STATE_GUEST_OWNED,
641 	} fp_owner;
642 
643 	/*
644 	 * host_debug_state contains the host registers which are
645 	 * saved and restored during world switches.
646 	 */
647 	 struct {
648 		/* {Break,watch}point registers */
649 		struct kvm_guest_debug_arch regs;
650 		/* Statistical profiling extension */
651 		u64 pmscr_el1;
652 		/* Self-hosted trace */
653 		u64 trfcr_el1;
654 		/* Values of trap registers for the host before guest entry. */
655 		u64 mdcr_el2;
656 	} host_debug_state;
657 };
658 
659 struct kvm_host_psci_config {
660 	/* PSCI version used by host. */
661 	u32 version;
662 	u32 smccc_version;
663 
664 	/* Function IDs used by host if version is v0.1. */
665 	struct psci_0_1_function_ids function_ids_0_1;
666 
667 	bool psci_0_1_cpu_suspend_implemented;
668 	bool psci_0_1_cpu_on_implemented;
669 	bool psci_0_1_cpu_off_implemented;
670 	bool psci_0_1_migrate_implemented;
671 };
672 
673 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
674 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
675 
676 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
677 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
678 
679 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
680 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
681 
682 struct vcpu_reset_state {
683 	unsigned long	pc;
684 	unsigned long	r0;
685 	bool		be;
686 	bool		reset;
687 };
688 
689 struct kvm_vcpu_arch {
690 	struct kvm_cpu_context ctxt;
691 
692 	/*
693 	 * Guest floating point state
694 	 *
695 	 * The architecture has two main floating point extensions,
696 	 * the original FPSIMD and SVE.  These have overlapping
697 	 * register views, with the FPSIMD V registers occupying the
698 	 * low 128 bits of the SVE Z registers.  When the core
699 	 * floating point code saves the register state of a task it
700 	 * records which view it saved in fp_type.
701 	 */
702 	void *sve_state;
703 	enum fp_type fp_type;
704 	unsigned int sve_max_vl;
705 
706 	/* Stage 2 paging state used by the hardware on next switch */
707 	struct kvm_s2_mmu *hw_mmu;
708 
709 	/* Values of trap registers for the guest. */
710 	u64 hcr_el2;
711 	u64 hcrx_el2;
712 	u64 mdcr_el2;
713 	u64 cptr_el2;
714 
715 	/* Exception Information */
716 	struct kvm_vcpu_fault_info fault;
717 
718 	/* Configuration flags, set once and for all before the vcpu can run */
719 	u8 cflags;
720 
721 	/* Input flags to the hypervisor code, potentially cleared after use */
722 	u8 iflags;
723 
724 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
725 	u8 sflags;
726 
727 	/*
728 	 * Don't run the guest (internal implementation need).
729 	 *
730 	 * Contrary to the flags above, this is set/cleared outside of
731 	 * a vcpu context, and thus cannot be mixed with the flags
732 	 * themselves (or the flag accesses need to be made atomic).
733 	 */
734 	bool pause;
735 
736 	/*
737 	 * We maintain more than a single set of debug registers to support
738 	 * debugging the guest from the host and to maintain separate host and
739 	 * guest state during world switches. vcpu_debug_state are the debug
740 	 * registers of the vcpu as the guest sees them.
741 	 *
742 	 * external_debug_state contains the debug values we want to debug the
743 	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
744 	 *
745 	 * debug_ptr points to the set of debug registers that should be loaded
746 	 * onto the hardware when running the guest.
747 	 */
748 	struct kvm_guest_debug_arch *debug_ptr;
749 	struct kvm_guest_debug_arch vcpu_debug_state;
750 	struct kvm_guest_debug_arch external_debug_state;
751 
752 	/* VGIC state */
753 	struct vgic_cpu vgic_cpu;
754 	struct arch_timer_cpu timer_cpu;
755 	struct kvm_pmu pmu;
756 
757 	/*
758 	 * Guest registers we preserve during guest debugging.
759 	 *
760 	 * These shadow registers are updated by the kvm_handle_sys_reg
761 	 * trap handler if the guest accesses or updates them while we
762 	 * are using guest debug.
763 	 */
764 	struct {
765 		u32	mdscr_el1;
766 		bool	pstate_ss;
767 	} guest_debug_preserved;
768 
769 	/* vcpu power state */
770 	struct kvm_mp_state mp_state;
771 	spinlock_t mp_state_lock;
772 
773 	/* Cache some mmu pages needed inside spinlock regions */
774 	struct kvm_mmu_memory_cache mmu_page_cache;
775 
776 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
777 	u64 vsesr_el2;
778 
779 	/* Additional reset state */
780 	struct vcpu_reset_state	reset_state;
781 
782 	/* Guest PV state */
783 	struct {
784 		u64 last_steal;
785 		gpa_t base;
786 	} steal;
787 
788 	/* Per-vcpu CCSIDR override or NULL */
789 	u32 *ccsidr;
790 };
791 
792 /*
793  * Each 'flag' is composed of a comma-separated triplet:
794  *
795  * - the flag-set it belongs to in the vcpu->arch structure
796  * - the value for that flag
797  * - the mask for that flag
798  *
799  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
800  * unpack_vcpu_flag() extract the flag value from the triplet for
801  * direct use outside of the flag accessors.
802  */
803 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
804 
805 #define __unpack_flag(_set, _f, _m)	_f
806 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
807 
808 #define __build_check_flag(v, flagset, f, m)			\
809 	do {							\
810 		typeof(v->arch.flagset) *_fset;			\
811 								\
812 		/* Check that the flags fit in the mask */	\
813 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
814 		/* Check that the flags fit in the type */	\
815 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
816 	} while (0)
817 
818 #define __vcpu_get_flag(v, flagset, f, m)			\
819 	({							\
820 		__build_check_flag(v, flagset, f, m);		\
821 								\
822 		READ_ONCE(v->arch.flagset) & (m);		\
823 	})
824 
825 /*
826  * Note that the set/clear accessors must be preempt-safe in order to
827  * avoid nesting them with load/put which also manipulate flags...
828  */
829 #ifdef __KVM_NVHE_HYPERVISOR__
830 /* the nVHE hypervisor is always non-preemptible */
831 #define __vcpu_flags_preempt_disable()
832 #define __vcpu_flags_preempt_enable()
833 #else
834 #define __vcpu_flags_preempt_disable()	preempt_disable()
835 #define __vcpu_flags_preempt_enable()	preempt_enable()
836 #endif
837 
838 #define __vcpu_set_flag(v, flagset, f, m)			\
839 	do {							\
840 		typeof(v->arch.flagset) *fset;			\
841 								\
842 		__build_check_flag(v, flagset, f, m);		\
843 								\
844 		fset = &v->arch.flagset;			\
845 		__vcpu_flags_preempt_disable();			\
846 		if (HWEIGHT(m) > 1)				\
847 			*fset &= ~(m);				\
848 		*fset |= (f);					\
849 		__vcpu_flags_preempt_enable();			\
850 	} while (0)
851 
852 #define __vcpu_clear_flag(v, flagset, f, m)			\
853 	do {							\
854 		typeof(v->arch.flagset) *fset;			\
855 								\
856 		__build_check_flag(v, flagset, f, m);		\
857 								\
858 		fset = &v->arch.flagset;			\
859 		__vcpu_flags_preempt_disable();			\
860 		*fset &= ~(m);					\
861 		__vcpu_flags_preempt_enable();			\
862 	} while (0)
863 
864 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
865 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
866 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
867 
868 /* SVE exposed to guest */
869 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
870 /* SVE config completed */
871 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
872 /* PTRAUTH exposed to guest */
873 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
874 /* KVM_ARM_VCPU_INIT completed */
875 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
876 
877 /* Exception pending */
878 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
879 /*
880  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
881  * be set together with an exception...
882  */
883 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
884 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
885 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
886 
887 /* Helpers to encode exceptions with minimum fuss */
888 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
889 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
890 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
891 
892 /*
893  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
894  * values:
895  *
896  * For AArch32 EL1:
897  */
898 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
899 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
900 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
901 /* For AArch64: */
902 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
903 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
904 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
905 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
906 /* For AArch64 with NV: */
907 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
908 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
909 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
910 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
911 /* Guest debug is live */
912 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
913 /* Save SPE context if active  */
914 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
915 /* Save TRBE context if active  */
916 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
917 
918 /* SVE enabled for host EL0 */
919 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
920 /* SME enabled for EL0 */
921 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
922 /* Physical CPU not in supported_cpus */
923 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
924 /* WFIT instruction trapped */
925 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
926 /* vcpu system registers loaded on physical CPU */
927 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
928 /* Software step state is Active-pending */
929 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
930 /* PMUSERENR for the guest EL0 is on physical CPU */
931 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
932 /* WFI instruction trapped */
933 #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
934 
935 
936 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
937 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
938 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
939 
940 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
941 
942 #define vcpu_sve_zcr_elx(vcpu)						\
943 	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
944 
945 #define vcpu_sve_state_size(vcpu) ({					\
946 	size_t __size_ret;						\
947 	unsigned int __vcpu_vq;						\
948 									\
949 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
950 		__size_ret = 0;						\
951 	} else {							\
952 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
953 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
954 	}								\
955 									\
956 	__size_ret;							\
957 })
958 
959 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
960 				 KVM_GUESTDBG_USE_SW_BP | \
961 				 KVM_GUESTDBG_USE_HW | \
962 				 KVM_GUESTDBG_SINGLESTEP)
963 
964 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
965 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
966 
967 #ifdef CONFIG_ARM64_PTR_AUTH
968 #define vcpu_has_ptrauth(vcpu)						\
969 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
970 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
971 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
972 #else
973 #define vcpu_has_ptrauth(vcpu)		false
974 #endif
975 
976 #define vcpu_on_unsupported_cpu(vcpu)					\
977 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
978 
979 #define vcpu_set_on_unsupported_cpu(vcpu)				\
980 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
981 
982 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
983 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
984 
985 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
986 
987 /*
988  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
989  * memory backed version of a register, and not the one most recently
990  * accessed by a running VCPU.  For example, for userspace access or
991  * for system registers that are never context switched, but only
992  * emulated.
993  *
994  * Don't bother with VNCR-based accesses in the nVHE code, it has no
995  * business dealing with NV.
996  */
997 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
998 {
999 #if !defined (__KVM_NVHE_HYPERVISOR__)
1000 	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
1001 		     r >= __VNCR_START__ && ctxt->vncr_array))
1002 		return &ctxt->vncr_array[r - __VNCR_START__];
1003 #endif
1004 	return (u64 *)&ctxt->sys_regs[r];
1005 }
1006 
1007 #define __ctxt_sys_reg(c,r)						\
1008 	({								\
1009 		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
1010 			     (r) >= NR_SYS_REGS);			\
1011 		___ctxt_sys_reg(c, r);					\
1012 	})
1013 
1014 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1015 
1016 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1017 #define __vcpu_sys_reg(v,r)						\
1018 	(*({								\
1019 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1020 		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
1021 		if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__)	\
1022 			*__r = kvm_vcpu_apply_reg_masks((v), (r), *__r);\
1023 		__r;							\
1024 	}))
1025 
1026 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1027 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1028 
1029 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1030 {
1031 	/*
1032 	 * *** VHE ONLY ***
1033 	 *
1034 	 * System registers listed in the switch are not saved on every
1035 	 * exit from the guest but are only saved on vcpu_put.
1036 	 *
1037 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1038 	 * should never be listed below, because the guest cannot modify its
1039 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1040 	 * thread when emulating cross-VCPU communication.
1041 	 */
1042 	if (!has_vhe())
1043 		return false;
1044 
1045 	switch (reg) {
1046 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
1047 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
1048 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
1049 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
1050 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
1051 	case TCR2_EL1:		*val = read_sysreg_s(SYS_TCR2_EL12);	break;
1052 	case PIR_EL1:		*val = read_sysreg_s(SYS_PIR_EL12);	break;
1053 	case PIRE0_EL1:		*val = read_sysreg_s(SYS_PIRE0_EL12);	break;
1054 	case POR_EL1:		*val = read_sysreg_s(SYS_POR_EL12);	break;
1055 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
1056 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
1057 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
1058 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
1059 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
1060 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
1061 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1062 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
1063 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
1064 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
1065 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
1066 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
1067 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
1068 	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
1069 	case PAR_EL1:		*val = read_sysreg_par();		break;
1070 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
1071 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
1072 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
1073 	case ZCR_EL1:		*val = read_sysreg_s(SYS_ZCR_EL12);	break;
1074 	default:		return false;
1075 	}
1076 
1077 	return true;
1078 }
1079 
1080 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1081 {
1082 	/*
1083 	 * *** VHE ONLY ***
1084 	 *
1085 	 * System registers listed in the switch are not restored on every
1086 	 * entry to the guest but are only restored on vcpu_load.
1087 	 *
1088 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1089 	 * should never be listed below, because the MPIDR should only be set
1090 	 * once, before running the VCPU, and never changed later.
1091 	 */
1092 	if (!has_vhe())
1093 		return false;
1094 
1095 	switch (reg) {
1096 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
1097 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
1098 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
1099 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
1100 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
1101 	case TCR2_EL1:		write_sysreg_s(val, SYS_TCR2_EL12);	break;
1102 	case PIR_EL1:		write_sysreg_s(val, SYS_PIR_EL12);	break;
1103 	case PIRE0_EL1:		write_sysreg_s(val, SYS_PIRE0_EL12);	break;
1104 	case POR_EL1:		write_sysreg_s(val, SYS_POR_EL12);	break;
1105 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
1106 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
1107 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
1108 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
1109 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
1110 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
1111 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1112 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
1113 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1114 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1115 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1116 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1117 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1118 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1119 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1120 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1121 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1122 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1123 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
1124 	default:		return false;
1125 	}
1126 
1127 	return true;
1128 }
1129 
1130 struct kvm_vm_stat {
1131 	struct kvm_vm_stat_generic generic;
1132 };
1133 
1134 struct kvm_vcpu_stat {
1135 	struct kvm_vcpu_stat_generic generic;
1136 	u64 hvc_exit_stat;
1137 	u64 wfe_exit_stat;
1138 	u64 wfi_exit_stat;
1139 	u64 mmio_exit_user;
1140 	u64 mmio_exit_kernel;
1141 	u64 signal_exits;
1142 	u64 exits;
1143 };
1144 
1145 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1146 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1147 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1148 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1149 
1150 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1151 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1152 
1153 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1154 			      struct kvm_vcpu_events *events);
1155 
1156 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1157 			      struct kvm_vcpu_events *events);
1158 
1159 void kvm_arm_halt_guest(struct kvm *kvm);
1160 void kvm_arm_resume_guest(struct kvm *kvm);
1161 
1162 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
1163 
1164 #ifndef __KVM_NVHE_HYPERVISOR__
1165 #define kvm_call_hyp_nvhe(f, ...)						\
1166 	({								\
1167 		struct arm_smccc_res res;				\
1168 									\
1169 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1170 				  ##__VA_ARGS__, &res);			\
1171 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1172 									\
1173 		res.a1;							\
1174 	})
1175 
1176 /*
1177  * The couple of isb() below are there to guarantee the same behaviour
1178  * on VHE as on !VHE, where the eret to EL1 acts as a context
1179  * synchronization event.
1180  */
1181 #define kvm_call_hyp(f, ...)						\
1182 	do {								\
1183 		if (has_vhe()) {					\
1184 			f(__VA_ARGS__);					\
1185 			isb();						\
1186 		} else {						\
1187 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1188 		}							\
1189 	} while(0)
1190 
1191 #define kvm_call_hyp_ret(f, ...)					\
1192 	({								\
1193 		typeof(f(__VA_ARGS__)) ret;				\
1194 									\
1195 		if (has_vhe()) {					\
1196 			ret = f(__VA_ARGS__);				\
1197 			isb();						\
1198 		} else {						\
1199 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1200 		}							\
1201 									\
1202 		ret;							\
1203 	})
1204 #else /* __KVM_NVHE_HYPERVISOR__ */
1205 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1206 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1207 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1208 #endif /* __KVM_NVHE_HYPERVISOR__ */
1209 
1210 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1211 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1212 
1213 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1214 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1215 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1216 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1217 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1218 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1219 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1220 
1221 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1222 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1223 
1224 int __init kvm_sys_reg_table_init(void);
1225 struct sys_reg_desc;
1226 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1227 				  unsigned int idx);
1228 int __init populate_nv_trap_config(void);
1229 
1230 bool lock_all_vcpus(struct kvm *kvm);
1231 void unlock_all_vcpus(struct kvm *kvm);
1232 
1233 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1234 
1235 /* MMIO helpers */
1236 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1237 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1238 
1239 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1240 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1241 
1242 /*
1243  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1244  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1245  * loaded is considered to be "in guest".
1246  */
1247 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1248 {
1249 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1250 }
1251 
1252 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1253 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1254 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1255 
1256 bool kvm_arm_pvtime_supported(void);
1257 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1258 			    struct kvm_device_attr *attr);
1259 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1260 			    struct kvm_device_attr *attr);
1261 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1262 			    struct kvm_device_attr *attr);
1263 
1264 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1265 int __init kvm_arm_vmid_alloc_init(void);
1266 void __init kvm_arm_vmid_alloc_free(void);
1267 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1268 void kvm_arm_vmid_clear_active(void);
1269 
1270 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1271 {
1272 	vcpu_arch->steal.base = INVALID_GPA;
1273 }
1274 
1275 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1276 {
1277 	return (vcpu_arch->steal.base != INVALID_GPA);
1278 }
1279 
1280 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1281 
1282 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1283 
1284 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1285 
1286 /*
1287  * How we access per-CPU host data depends on the where we access it from,
1288  * and the mode we're in:
1289  *
1290  * - VHE and nVHE hypervisor bits use their locally defined instance
1291  *
1292  * - the rest of the kernel use either the VHE or nVHE one, depending on
1293  *   the mode we're running in.
1294  *
1295  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1296  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1297  *   In this case, the EL1 code uses the *VHE* data as its private state
1298  *   (which makes sense in a way as there shouldn't be any shared state
1299  *   between the host and the hypervisor).
1300  *
1301  * Yes, this is all totally trivial. Shoot me now.
1302  */
1303 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1304 #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1305 #else
1306 #define host_data_ptr(f)						\
1307 	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1308 	 &this_cpu_ptr(&kvm_host_data)->f :				\
1309 	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1310 #endif
1311 
1312 /* Check whether the FP regs are owned by the guest */
1313 static inline bool guest_owns_fp_regs(void)
1314 {
1315 	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1316 }
1317 
1318 /* Check whether the FP regs are owned by the host */
1319 static inline bool host_owns_fp_regs(void)
1320 {
1321 	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1322 }
1323 
1324 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1325 {
1326 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1327 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1328 }
1329 
1330 static inline bool kvm_system_needs_idmapped_vectors(void)
1331 {
1332 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1333 }
1334 
1335 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1336 
1337 void kvm_arm_init_debug(void);
1338 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1339 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1340 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1341 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1342 
1343 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1344 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1345 
1346 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1347 			       struct kvm_device_attr *attr);
1348 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1349 			       struct kvm_device_attr *attr);
1350 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1351 			       struct kvm_device_attr *attr);
1352 
1353 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1354 			       struct kvm_arm_copy_mte_tags *copy_tags);
1355 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1356 				    struct kvm_arm_counter_offset *offset);
1357 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1358 					struct reg_mask_range *range);
1359 
1360 /* Guest/host FPSIMD coordination helpers */
1361 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1362 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1363 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1364 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1365 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1366 
1367 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1368 {
1369 	return (!has_vhe() && attr->exclude_host);
1370 }
1371 
1372 /* Flags for host debug state */
1373 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1374 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1375 
1376 #ifdef CONFIG_KVM
1377 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1378 void kvm_clr_pmu_events(u64 clr);
1379 bool kvm_set_pmuserenr(u64 val);
1380 #else
1381 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
1382 static inline void kvm_clr_pmu_events(u64 clr) {}
1383 static inline bool kvm_set_pmuserenr(u64 val)
1384 {
1385 	return false;
1386 }
1387 #endif
1388 
1389 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1390 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1391 
1392 int __init kvm_set_ipa_limit(void);
1393 u32 kvm_get_pa_bits(struct kvm *kvm);
1394 
1395 #define __KVM_HAVE_ARCH_VM_ALLOC
1396 struct kvm *kvm_arch_alloc_vm(void);
1397 
1398 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1399 
1400 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1401 
1402 #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1403 
1404 #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1405 
1406 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1407 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1408 
1409 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1410 
1411 #define kvm_has_mte(kvm)					\
1412 	(system_supports_mte() &&				\
1413 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1414 
1415 #define kvm_supports_32bit_el0()				\
1416 	(system_supports_32bit_el0() &&				\
1417 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1418 
1419 #define kvm_vm_has_ran_once(kvm)					\
1420 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1421 
1422 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1423 {
1424 	return test_bit(feature, ka->vcpu_features);
1425 }
1426 
1427 #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1428 
1429 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1430 
1431 int kvm_trng_call(struct kvm_vcpu *vcpu);
1432 #ifdef CONFIG_KVM
1433 extern phys_addr_t hyp_mem_base;
1434 extern phys_addr_t hyp_mem_size;
1435 void __init kvm_hyp_reserve(void);
1436 #else
1437 static inline void kvm_hyp_reserve(void) { }
1438 #endif
1439 
1440 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1441 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1442 
1443 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1444 {
1445 	switch (reg) {
1446 	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1447 		return &ka->id_regs[IDREG_IDX(reg)];
1448 	case SYS_CTR_EL0:
1449 		return &ka->ctr_el0;
1450 	default:
1451 		WARN_ON_ONCE(1);
1452 		return NULL;
1453 	}
1454 }
1455 
1456 #define kvm_read_vm_id_reg(kvm, reg)					\
1457 	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1458 
1459 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1460 
1461 #define __expand_field_sign_unsigned(id, fld, val)			\
1462 	((u64)SYS_FIELD_VALUE(id, fld, val))
1463 
1464 #define __expand_field_sign_signed(id, fld, val)			\
1465 	({								\
1466 		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1467 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1468 	})
1469 
1470 #define get_idreg_field_unsigned(kvm, id, fld)				\
1471 	({								\
1472 		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1473 		FIELD_GET(id##_##fld##_MASK, __val);			\
1474 	})
1475 
1476 #define get_idreg_field_signed(kvm, id, fld)				\
1477 	({								\
1478 		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1479 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1480 	})
1481 
1482 #define get_idreg_field_enum(kvm, id, fld)				\
1483 	get_idreg_field_unsigned(kvm, id, fld)
1484 
1485 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1486 	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1487 
1488 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1489 	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1490 
1491 #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1492 	(id##_##fld##_SIGNED ?						\
1493 	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1494 	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1495 
1496 #define kvm_has_feat(kvm, id, fld, limit)				\
1497 	kvm_cmp_feat(kvm, id, fld, >=, limit)
1498 
1499 #define kvm_has_feat_enum(kvm, id, fld, val)				\
1500 	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1501 
1502 #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1503 	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1504 	kvm_cmp_feat(kvm, id, fld, <=, max))
1505 
1506 /* Check for a given level of PAuth support */
1507 #define kvm_has_pauth(k, l)						\
1508 	({								\
1509 		bool pa, pi, pa3;					\
1510 									\
1511 		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1512 		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1513 		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1514 		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1515 		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1516 		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1517 									\
1518 		(pa + pi + pa3) == 1;					\
1519 	})
1520 
1521 #define kvm_has_fpmr(k)					\
1522 	(system_supports_fpmr() &&			\
1523 	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1524 
1525 #define kvm_has_tcr2(k)				\
1526 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, TCRX, IMP))
1527 
1528 #define kvm_has_s1pie(k)				\
1529 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1PIE, IMP))
1530 
1531 #define kvm_has_s1poe(k)				\
1532 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1POE, IMP))
1533 
1534 #endif /* __ARM64_KVM_HOST_H__ */
1535