xref: /linux/arch/arm64/include/asm/kvm_host.h (revision b3ad940a088761fd183dccd65c6ee20b360e8c4b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31 
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33 
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35 
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39 
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41 
42 #define KVM_VCPU_MAX_FEATURES 7
43 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44 
45 #define KVM_REQ_SLEEP \
46 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP	KVM_ARCH_REQ(8)
55 
56 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
57 				     KVM_DIRTY_LOG_INITIALLY_SET)
58 
59 #define KVM_HAVE_MMU_RWLOCK
60 
61 /*
62  * Mode of operation configurable with kvm-arm.mode early param.
63  * See Documentation/admin-guide/kernel-parameters.txt for more information.
64  */
65 enum kvm_mode {
66 	KVM_MODE_DEFAULT,
67 	KVM_MODE_PROTECTED,
68 	KVM_MODE_NV,
69 	KVM_MODE_NONE,
70 };
71 #ifdef CONFIG_KVM
72 enum kvm_mode kvm_get_mode(void);
73 #else
74 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
75 #endif
76 
77 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78 
79 extern unsigned int __ro_after_init kvm_sve_max_vl;
80 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
81 int __init kvm_arm_init_sve(void);
82 
83 u32 __attribute_const__ kvm_target_cpu(void);
84 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
85 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
86 
87 struct kvm_hyp_memcache {
88 	phys_addr_t head;
89 	unsigned long nr_pages;
90 };
91 
92 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
93 				     phys_addr_t *p,
94 				     phys_addr_t (*to_pa)(void *virt))
95 {
96 	*p = mc->head;
97 	mc->head = to_pa(p);
98 	mc->nr_pages++;
99 }
100 
101 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
102 				     void *(*to_va)(phys_addr_t phys))
103 {
104 	phys_addr_t *p = to_va(mc->head);
105 
106 	if (!mc->nr_pages)
107 		return NULL;
108 
109 	mc->head = *p;
110 	mc->nr_pages--;
111 
112 	return p;
113 }
114 
115 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
116 				       unsigned long min_pages,
117 				       void *(*alloc_fn)(void *arg),
118 				       phys_addr_t (*to_pa)(void *virt),
119 				       void *arg)
120 {
121 	while (mc->nr_pages < min_pages) {
122 		phys_addr_t *p = alloc_fn(arg);
123 
124 		if (!p)
125 			return -ENOMEM;
126 		push_hyp_memcache(mc, p, to_pa);
127 	}
128 
129 	return 0;
130 }
131 
132 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
133 				       void (*free_fn)(void *virt, void *arg),
134 				       void *(*to_va)(phys_addr_t phys),
135 				       void *arg)
136 {
137 	while (mc->nr_pages)
138 		free_fn(pop_hyp_memcache(mc, to_va), arg);
139 }
140 
141 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
142 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
143 
144 struct kvm_vmid {
145 	atomic64_t id;
146 };
147 
148 struct kvm_s2_mmu {
149 	struct kvm_vmid vmid;
150 
151 	/*
152 	 * stage2 entry level table
153 	 *
154 	 * Two kvm_s2_mmu structures in the same VM can point to the same
155 	 * pgd here.  This happens when running a guest using a
156 	 * translation regime that isn't affected by its own stage-2
157 	 * translation, such as a non-VHE hypervisor running at vEL2, or
158 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
159 	 * canonical stage-2 page tables.
160 	 */
161 	phys_addr_t	pgd_phys;
162 	struct kvm_pgtable *pgt;
163 
164 	/*
165 	 * VTCR value used on the host. For a non-NV guest (or a NV
166 	 * guest that runs in a context where its own S2 doesn't
167 	 * apply), its T0SZ value reflects that of the IPA size.
168 	 *
169 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
170 	 * the guest.
171 	 */
172 	u64	vtcr;
173 
174 	/* The last vcpu id that ran on each physical CPU */
175 	int __percpu *last_vcpu_ran;
176 
177 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
178 	/*
179 	 * Memory cache used to split
180 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
181 	 * is used to allocate stage2 page tables while splitting huge
182 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
183 	 * influences both the capacity of the split page cache, and
184 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
185 	 * too high.
186 	 *
187 	 * Protected by kvm->slots_lock.
188 	 */
189 	struct kvm_mmu_memory_cache split_page_cache;
190 	uint64_t split_page_chunk_size;
191 
192 	struct kvm_arch *arch;
193 
194 	/*
195 	 * For a shadow stage-2 MMU, the virtual vttbr used by the
196 	 * host to parse the guest S2.
197 	 * This either contains:
198 	 * - the virtual VTTBR programmed by the guest hypervisor with
199          *   CnP cleared
200 	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
201 	 *
202 	 * We also cache the full VTCR which gets used for TLB invalidation,
203 	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
204 	 * to be cached in a TLB" to the letter.
205 	 */
206 	u64	tlb_vttbr;
207 	u64	tlb_vtcr;
208 
209 	/*
210 	 * true when this represents a nested context where virtual
211 	 * HCR_EL2.VM == 1
212 	 */
213 	bool	nested_stage2_enabled;
214 
215 	/*
216 	 * true when this MMU needs to be unmapped before being used for a new
217 	 * purpose.
218 	 */
219 	bool	pending_unmap;
220 
221 	/*
222 	 *  0: Nobody is currently using this, check vttbr for validity
223 	 * >0: Somebody is actively using this.
224 	 */
225 	atomic_t refcnt;
226 };
227 
228 struct kvm_arch_memory_slot {
229 };
230 
231 /**
232  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
233  *
234  * @std_bmap: Bitmap of standard secure service calls
235  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
236  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
237  */
238 struct kvm_smccc_features {
239 	unsigned long std_bmap;
240 	unsigned long std_hyp_bmap;
241 	unsigned long vendor_hyp_bmap;
242 };
243 
244 typedef unsigned int pkvm_handle_t;
245 
246 struct kvm_protected_vm {
247 	pkvm_handle_t handle;
248 	struct kvm_hyp_memcache teardown_mc;
249 	bool enabled;
250 };
251 
252 struct kvm_mpidr_data {
253 	u64			mpidr_mask;
254 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
255 };
256 
257 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
258 {
259 	unsigned long index = 0, mask = data->mpidr_mask;
260 	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
261 
262 	bitmap_gather(&index, &aff, &mask, fls(mask));
263 
264 	return index;
265 }
266 
267 struct kvm_sysreg_masks;
268 
269 enum fgt_group_id {
270 	__NO_FGT_GROUP__,
271 	HFGxTR_GROUP,
272 	HDFGRTR_GROUP,
273 	HDFGWTR_GROUP = HDFGRTR_GROUP,
274 	HFGITR_GROUP,
275 	HAFGRTR_GROUP,
276 
277 	/* Must be last */
278 	__NR_FGT_GROUP_IDS__
279 };
280 
281 struct kvm_arch {
282 	struct kvm_s2_mmu mmu;
283 
284 	/*
285 	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
286 	 * architecture. We track them globally, as we present the
287 	 * same feature-set to all vcpus.
288 	 *
289 	 * Index 0 is currently spare.
290 	 */
291 	u64 fgu[__NR_FGT_GROUP_IDS__];
292 
293 	/*
294 	 * Stage 2 paging state for VMs with nested S2 using a virtual
295 	 * VMID.
296 	 */
297 	struct kvm_s2_mmu *nested_mmus;
298 	size_t nested_mmus_size;
299 	int nested_mmus_next;
300 
301 	/* Interrupt controller */
302 	struct vgic_dist	vgic;
303 
304 	/* Timers */
305 	struct arch_timer_vm_data timer_data;
306 
307 	/* Mandated version of PSCI */
308 	u32 psci_version;
309 
310 	/* Protects VM-scoped configuration data */
311 	struct mutex config_lock;
312 
313 	/*
314 	 * If we encounter a data abort without valid instruction syndrome
315 	 * information, report this to user space.  User space can (and
316 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
317 	 * supported.
318 	 */
319 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
320 	/* Memory Tagging Extension enabled for the guest */
321 #define KVM_ARCH_FLAG_MTE_ENABLED			1
322 	/* At least one vCPU has ran in the VM */
323 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
324 	/* The vCPU feature set for the VM is configured */
325 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
326 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
327 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
328 	/* VM counter offset */
329 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
330 	/* Timer PPIs made immutable */
331 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
332 	/* Initial ID reg values loaded */
333 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
334 	/* Fine-Grained UNDEF initialised */
335 #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
336 	unsigned long flags;
337 
338 	/* VM-wide vCPU feature set */
339 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
340 
341 	/* MPIDR to vcpu index mapping, optional */
342 	struct kvm_mpidr_data *mpidr_data;
343 
344 	/*
345 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
346 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
347 	 */
348 	unsigned long *pmu_filter;
349 	struct arm_pmu *arm_pmu;
350 
351 	cpumask_var_t supported_cpus;
352 
353 	/* PMCR_EL0.N value for the guest */
354 	u8 pmcr_n;
355 
356 	/* Iterator for idreg debugfs */
357 	u8	idreg_debugfs_iter;
358 
359 	/* Hypercall features firmware registers' descriptor */
360 	struct kvm_smccc_features smccc_feat;
361 	struct maple_tree smccc_filter;
362 
363 	/*
364 	 * Emulated CPU ID registers per VM
365 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
366 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
367 	 *
368 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
369 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
370 	 */
371 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
372 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
373 	u64 id_regs[KVM_ARM_ID_REG_NUM];
374 
375 	u64 ctr_el0;
376 
377 	/* Masks for VNCR-backed and general EL2 sysregs */
378 	struct kvm_sysreg_masks	*sysreg_masks;
379 
380 	/*
381 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
382 	 * the associated pKVM instance in the hypervisor.
383 	 */
384 	struct kvm_protected_vm pkvm;
385 };
386 
387 struct kvm_vcpu_fault_info {
388 	u64 esr_el2;		/* Hyp Syndrom Register */
389 	u64 far_el2;		/* Hyp Fault Address Register */
390 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
391 	u64 disr_el1;		/* Deferred [SError] Status Register */
392 };
393 
394 /*
395  * VNCR() just places the VNCR_capable registers in the enum after
396  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
397  * from the VNCR base. As we don't require the enum to be otherwise ordered,
398  * we need the terrible hack below to ensure that we correctly size the
399  * sys_regs array, no matter what.
400  *
401  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
402  * treasure trove of bit hacks:
403  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
404  */
405 #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
406 #define VNCR(r)						\
407 	__before_##r,					\
408 	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
409 	__after_##r = __MAX__(__before_##r - 1, r)
410 
411 #define MARKER(m)				\
412 	m, __after_##m = m - 1
413 
414 enum vcpu_sysreg {
415 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
416 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
417 	CLIDR_EL1,	/* Cache Level ID Register */
418 	CSSELR_EL1,	/* Cache Size Selection Register */
419 	TPIDR_EL0,	/* Thread ID, User R/W */
420 	TPIDRRO_EL0,	/* Thread ID, User R/O */
421 	TPIDR_EL1,	/* Thread ID, Privileged */
422 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
423 	PAR_EL1,	/* Physical Address Register */
424 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
425 	OSLSR_EL1,	/* OS Lock Status Register */
426 	DISR_EL1,	/* Deferred Interrupt Status Register */
427 
428 	/* Performance Monitors Registers */
429 	PMCR_EL0,	/* Control Register */
430 	PMSELR_EL0,	/* Event Counter Selection Register */
431 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
432 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
433 	PMCCNTR_EL0,	/* Cycle Counter Register */
434 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
435 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
436 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
437 	PMCNTENSET_EL0,	/* Count Enable Set Register */
438 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
439 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
440 	PMUSERENR_EL0,	/* User Enable Register */
441 
442 	/* Pointer Authentication Registers in a strict increasing order. */
443 	APIAKEYLO_EL1,
444 	APIAKEYHI_EL1,
445 	APIBKEYLO_EL1,
446 	APIBKEYHI_EL1,
447 	APDAKEYLO_EL1,
448 	APDAKEYHI_EL1,
449 	APDBKEYLO_EL1,
450 	APDBKEYHI_EL1,
451 	APGAKEYLO_EL1,
452 	APGAKEYHI_EL1,
453 
454 	/* Memory Tagging Extension registers */
455 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
456 	GCR_EL1,	/* Tag Control Register */
457 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
458 
459 	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
460 
461 	/* FP/SIMD/SVE */
462 	SVCR,
463 	FPMR,
464 
465 	/* 32bit specific registers. */
466 	DACR32_EL2,	/* Domain Access Control Register */
467 	IFSR32_EL2,	/* Instruction Fault Status Register */
468 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
469 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
470 
471 	/* EL2 registers */
472 	SCTLR_EL2,	/* System Control Register (EL2) */
473 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
474 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
475 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
476 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
477 	ZCR_EL2,	/* SVE Control Register (EL2) */
478 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
479 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
480 	TCR_EL2,	/* Translation Control Register (EL2) */
481 	PIRE0_EL2,	/* Permission Indirection Register 0 (EL2) */
482 	PIR_EL2,	/* Permission Indirection Register 1 (EL2) */
483 	SPSR_EL2,	/* EL2 saved program status register */
484 	ELR_EL2,	/* EL2 exception link register */
485 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
486 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
487 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
488 	FAR_EL2,	/* Fault Address Register (EL2) */
489 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
490 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
491 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
492 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
493 	RVBAR_EL2,	/* Reset Vector Base Address Register */
494 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
495 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
496 	SP_EL2,		/* EL2 Stack Pointer */
497 	CNTHP_CTL_EL2,
498 	CNTHP_CVAL_EL2,
499 	CNTHV_CTL_EL2,
500 	CNTHV_CVAL_EL2,
501 
502 	/* Anything from this can be RES0/RES1 sanitised */
503 	MARKER(__SANITISED_REG_START__),
504 	TCR2_EL2,	/* Extended Translation Control Register (EL2) */
505 
506 	/* Any VNCR-capable reg goes after this point */
507 	MARKER(__VNCR_START__),
508 
509 	VNCR(SCTLR_EL1),/* System Control Register */
510 	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
511 	VNCR(CPACR_EL1),/* Coprocessor Access Control */
512 	VNCR(ZCR_EL1),	/* SVE Control */
513 	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
514 	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
515 	VNCR(TCR_EL1),	/* Translation Control Register */
516 	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
517 	VNCR(ESR_EL1),	/* Exception Syndrome Register */
518 	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
519 	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
520 	VNCR(FAR_EL1),	/* Fault Address Register */
521 	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
522 	VNCR(VBAR_EL1),	/* Vector Base Address Register */
523 	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
524 	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
525 	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
526 	VNCR(ELR_EL1),
527 	VNCR(SP_EL1),
528 	VNCR(SPSR_EL1),
529 	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
530 	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
531 	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
532 	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
533 	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
534 	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
535 	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
536 	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
537 	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
538 
539 	/* Permission Indirection Extension registers */
540 	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
541 	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
542 
543 	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
544 
545 	VNCR(HFGRTR_EL2),
546 	VNCR(HFGWTR_EL2),
547 	VNCR(HFGITR_EL2),
548 	VNCR(HDFGRTR_EL2),
549 	VNCR(HDFGWTR_EL2),
550 	VNCR(HAFGRTR_EL2),
551 
552 	VNCR(CNTVOFF_EL2),
553 	VNCR(CNTV_CVAL_EL0),
554 	VNCR(CNTV_CTL_EL0),
555 	VNCR(CNTP_CVAL_EL0),
556 	VNCR(CNTP_CTL_EL0),
557 
558 	VNCR(ICH_HCR_EL2),
559 
560 	NR_SYS_REGS	/* Nothing after this line! */
561 };
562 
563 struct kvm_sysreg_masks {
564 	struct {
565 		u64	res0;
566 		u64	res1;
567 	} mask[NR_SYS_REGS - __SANITISED_REG_START__];
568 };
569 
570 struct kvm_cpu_context {
571 	struct user_pt_regs regs;	/* sp = sp_el0 */
572 
573 	u64	spsr_abt;
574 	u64	spsr_und;
575 	u64	spsr_irq;
576 	u64	spsr_fiq;
577 
578 	struct user_fpsimd_state fp_regs;
579 
580 	u64 sys_regs[NR_SYS_REGS];
581 
582 	struct kvm_vcpu *__hyp_running_vcpu;
583 
584 	/* This pointer has to be 4kB aligned. */
585 	u64 *vncr_array;
586 };
587 
588 struct cpu_sve_state {
589 	__u64 zcr_el1;
590 
591 	/*
592 	 * Ordering is important since __sve_save_state/__sve_restore_state
593 	 * relies on it.
594 	 */
595 	__u32 fpsr;
596 	__u32 fpcr;
597 
598 	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
599 	__u8 sve_regs[];
600 };
601 
602 /*
603  * This structure is instantiated on a per-CPU basis, and contains
604  * data that is:
605  *
606  * - tied to a single physical CPU, and
607  * - either have a lifetime that does not extend past vcpu_put()
608  * - or is an invariant for the lifetime of the system
609  *
610  * Use host_data_ptr(field) as a way to access a pointer to such a
611  * field.
612  */
613 struct kvm_host_data {
614 	struct kvm_cpu_context host_ctxt;
615 
616 	/*
617 	 * All pointers in this union are hyp VA.
618 	 * sve_state is only used in pKVM and if system_supports_sve().
619 	 */
620 	union {
621 		struct user_fpsimd_state *fpsimd_state;
622 		struct cpu_sve_state *sve_state;
623 	};
624 
625 	union {
626 		/* HYP VA pointer to the host storage for FPMR */
627 		u64	*fpmr_ptr;
628 		/*
629 		 * Used by pKVM only, as it needs to provide storage
630 		 * for the host
631 		 */
632 		u64	fpmr;
633 	};
634 
635 	/* Ownership of the FP regs */
636 	enum {
637 		FP_STATE_FREE,
638 		FP_STATE_HOST_OWNED,
639 		FP_STATE_GUEST_OWNED,
640 	} fp_owner;
641 
642 	/*
643 	 * host_debug_state contains the host registers which are
644 	 * saved and restored during world switches.
645 	 */
646 	 struct {
647 		/* {Break,watch}point registers */
648 		struct kvm_guest_debug_arch regs;
649 		/* Statistical profiling extension */
650 		u64 pmscr_el1;
651 		/* Self-hosted trace */
652 		u64 trfcr_el1;
653 		/* Values of trap registers for the host before guest entry. */
654 		u64 mdcr_el2;
655 	} host_debug_state;
656 };
657 
658 struct kvm_host_psci_config {
659 	/* PSCI version used by host. */
660 	u32 version;
661 	u32 smccc_version;
662 
663 	/* Function IDs used by host if version is v0.1. */
664 	struct psci_0_1_function_ids function_ids_0_1;
665 
666 	bool psci_0_1_cpu_suspend_implemented;
667 	bool psci_0_1_cpu_on_implemented;
668 	bool psci_0_1_cpu_off_implemented;
669 	bool psci_0_1_migrate_implemented;
670 };
671 
672 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
673 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
674 
675 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
676 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
677 
678 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
679 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
680 
681 struct vcpu_reset_state {
682 	unsigned long	pc;
683 	unsigned long	r0;
684 	bool		be;
685 	bool		reset;
686 };
687 
688 struct kvm_vcpu_arch {
689 	struct kvm_cpu_context ctxt;
690 
691 	/*
692 	 * Guest floating point state
693 	 *
694 	 * The architecture has two main floating point extensions,
695 	 * the original FPSIMD and SVE.  These have overlapping
696 	 * register views, with the FPSIMD V registers occupying the
697 	 * low 128 bits of the SVE Z registers.  When the core
698 	 * floating point code saves the register state of a task it
699 	 * records which view it saved in fp_type.
700 	 */
701 	void *sve_state;
702 	enum fp_type fp_type;
703 	unsigned int sve_max_vl;
704 
705 	/* Stage 2 paging state used by the hardware on next switch */
706 	struct kvm_s2_mmu *hw_mmu;
707 
708 	/* Values of trap registers for the guest. */
709 	u64 hcr_el2;
710 	u64 hcrx_el2;
711 	u64 mdcr_el2;
712 	u64 cptr_el2;
713 
714 	/* Exception Information */
715 	struct kvm_vcpu_fault_info fault;
716 
717 	/* Configuration flags, set once and for all before the vcpu can run */
718 	u8 cflags;
719 
720 	/* Input flags to the hypervisor code, potentially cleared after use */
721 	u8 iflags;
722 
723 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
724 	u8 sflags;
725 
726 	/*
727 	 * Don't run the guest (internal implementation need).
728 	 *
729 	 * Contrary to the flags above, this is set/cleared outside of
730 	 * a vcpu context, and thus cannot be mixed with the flags
731 	 * themselves (or the flag accesses need to be made atomic).
732 	 */
733 	bool pause;
734 
735 	/*
736 	 * We maintain more than a single set of debug registers to support
737 	 * debugging the guest from the host and to maintain separate host and
738 	 * guest state during world switches. vcpu_debug_state are the debug
739 	 * registers of the vcpu as the guest sees them.
740 	 *
741 	 * external_debug_state contains the debug values we want to debug the
742 	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
743 	 *
744 	 * debug_ptr points to the set of debug registers that should be loaded
745 	 * onto the hardware when running the guest.
746 	 */
747 	struct kvm_guest_debug_arch *debug_ptr;
748 	struct kvm_guest_debug_arch vcpu_debug_state;
749 	struct kvm_guest_debug_arch external_debug_state;
750 
751 	/* VGIC state */
752 	struct vgic_cpu vgic_cpu;
753 	struct arch_timer_cpu timer_cpu;
754 	struct kvm_pmu pmu;
755 
756 	/*
757 	 * Guest registers we preserve during guest debugging.
758 	 *
759 	 * These shadow registers are updated by the kvm_handle_sys_reg
760 	 * trap handler if the guest accesses or updates them while we
761 	 * are using guest debug.
762 	 */
763 	struct {
764 		u32	mdscr_el1;
765 		bool	pstate_ss;
766 	} guest_debug_preserved;
767 
768 	/* vcpu power state */
769 	struct kvm_mp_state mp_state;
770 	spinlock_t mp_state_lock;
771 
772 	/* Cache some mmu pages needed inside spinlock regions */
773 	struct kvm_mmu_memory_cache mmu_page_cache;
774 
775 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
776 	u64 vsesr_el2;
777 
778 	/* Additional reset state */
779 	struct vcpu_reset_state	reset_state;
780 
781 	/* Guest PV state */
782 	struct {
783 		u64 last_steal;
784 		gpa_t base;
785 	} steal;
786 
787 	/* Per-vcpu CCSIDR override or NULL */
788 	u32 *ccsidr;
789 };
790 
791 /*
792  * Each 'flag' is composed of a comma-separated triplet:
793  *
794  * - the flag-set it belongs to in the vcpu->arch structure
795  * - the value for that flag
796  * - the mask for that flag
797  *
798  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
799  * unpack_vcpu_flag() extract the flag value from the triplet for
800  * direct use outside of the flag accessors.
801  */
802 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
803 
804 #define __unpack_flag(_set, _f, _m)	_f
805 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
806 
807 #define __build_check_flag(v, flagset, f, m)			\
808 	do {							\
809 		typeof(v->arch.flagset) *_fset;			\
810 								\
811 		/* Check that the flags fit in the mask */	\
812 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
813 		/* Check that the flags fit in the type */	\
814 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
815 	} while (0)
816 
817 #define __vcpu_get_flag(v, flagset, f, m)			\
818 	({							\
819 		__build_check_flag(v, flagset, f, m);		\
820 								\
821 		READ_ONCE(v->arch.flagset) & (m);		\
822 	})
823 
824 /*
825  * Note that the set/clear accessors must be preempt-safe in order to
826  * avoid nesting them with load/put which also manipulate flags...
827  */
828 #ifdef __KVM_NVHE_HYPERVISOR__
829 /* the nVHE hypervisor is always non-preemptible */
830 #define __vcpu_flags_preempt_disable()
831 #define __vcpu_flags_preempt_enable()
832 #else
833 #define __vcpu_flags_preempt_disable()	preempt_disable()
834 #define __vcpu_flags_preempt_enable()	preempt_enable()
835 #endif
836 
837 #define __vcpu_set_flag(v, flagset, f, m)			\
838 	do {							\
839 		typeof(v->arch.flagset) *fset;			\
840 								\
841 		__build_check_flag(v, flagset, f, m);		\
842 								\
843 		fset = &v->arch.flagset;			\
844 		__vcpu_flags_preempt_disable();			\
845 		if (HWEIGHT(m) > 1)				\
846 			*fset &= ~(m);				\
847 		*fset |= (f);					\
848 		__vcpu_flags_preempt_enable();			\
849 	} while (0)
850 
851 #define __vcpu_clear_flag(v, flagset, f, m)			\
852 	do {							\
853 		typeof(v->arch.flagset) *fset;			\
854 								\
855 		__build_check_flag(v, flagset, f, m);		\
856 								\
857 		fset = &v->arch.flagset;			\
858 		__vcpu_flags_preempt_disable();			\
859 		*fset &= ~(m);					\
860 		__vcpu_flags_preempt_enable();			\
861 	} while (0)
862 
863 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
864 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
865 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
866 
867 /* SVE exposed to guest */
868 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
869 /* SVE config completed */
870 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
871 /* PTRAUTH exposed to guest */
872 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
873 /* KVM_ARM_VCPU_INIT completed */
874 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
875 
876 /* Exception pending */
877 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
878 /*
879  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
880  * be set together with an exception...
881  */
882 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
883 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
884 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
885 
886 /* Helpers to encode exceptions with minimum fuss */
887 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
888 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
889 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
890 
891 /*
892  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
893  * values:
894  *
895  * For AArch32 EL1:
896  */
897 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
898 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
899 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
900 /* For AArch64: */
901 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
902 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
903 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
904 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
905 /* For AArch64 with NV: */
906 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
907 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
908 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
909 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
910 /* Guest debug is live */
911 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
912 /* Save SPE context if active  */
913 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
914 /* Save TRBE context if active  */
915 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
916 
917 /* SVE enabled for host EL0 */
918 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
919 /* SME enabled for EL0 */
920 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
921 /* Physical CPU not in supported_cpus */
922 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
923 /* WFIT instruction trapped */
924 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
925 /* vcpu system registers loaded on physical CPU */
926 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
927 /* Software step state is Active-pending */
928 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
929 /* PMUSERENR for the guest EL0 is on physical CPU */
930 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
931 /* WFI instruction trapped */
932 #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
933 
934 
935 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
936 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
937 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
938 
939 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
940 
941 #define vcpu_sve_zcr_elx(vcpu)						\
942 	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
943 
944 #define vcpu_sve_state_size(vcpu) ({					\
945 	size_t __size_ret;						\
946 	unsigned int __vcpu_vq;						\
947 									\
948 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
949 		__size_ret = 0;						\
950 	} else {							\
951 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
952 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
953 	}								\
954 									\
955 	__size_ret;							\
956 })
957 
958 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
959 				 KVM_GUESTDBG_USE_SW_BP | \
960 				 KVM_GUESTDBG_USE_HW | \
961 				 KVM_GUESTDBG_SINGLESTEP)
962 
963 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
964 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
965 
966 #ifdef CONFIG_ARM64_PTR_AUTH
967 #define vcpu_has_ptrauth(vcpu)						\
968 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
969 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
970 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
971 #else
972 #define vcpu_has_ptrauth(vcpu)		false
973 #endif
974 
975 #define vcpu_on_unsupported_cpu(vcpu)					\
976 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
977 
978 #define vcpu_set_on_unsupported_cpu(vcpu)				\
979 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
980 
981 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
982 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
983 
984 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
985 
986 /*
987  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
988  * memory backed version of a register, and not the one most recently
989  * accessed by a running VCPU.  For example, for userspace access or
990  * for system registers that are never context switched, but only
991  * emulated.
992  *
993  * Don't bother with VNCR-based accesses in the nVHE code, it has no
994  * business dealing with NV.
995  */
996 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
997 {
998 #if !defined (__KVM_NVHE_HYPERVISOR__)
999 	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
1000 		     r >= __VNCR_START__ && ctxt->vncr_array))
1001 		return &ctxt->vncr_array[r - __VNCR_START__];
1002 #endif
1003 	return (u64 *)&ctxt->sys_regs[r];
1004 }
1005 
1006 #define __ctxt_sys_reg(c,r)						\
1007 	({								\
1008 		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
1009 			     (r) >= NR_SYS_REGS);			\
1010 		___ctxt_sys_reg(c, r);					\
1011 	})
1012 
1013 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1014 
1015 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1016 #define __vcpu_sys_reg(v,r)						\
1017 	(*({								\
1018 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1019 		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
1020 		if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__)	\
1021 			*__r = kvm_vcpu_apply_reg_masks((v), (r), *__r);\
1022 		__r;							\
1023 	}))
1024 
1025 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1026 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1027 
1028 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1029 {
1030 	/*
1031 	 * *** VHE ONLY ***
1032 	 *
1033 	 * System registers listed in the switch are not saved on every
1034 	 * exit from the guest but are only saved on vcpu_put.
1035 	 *
1036 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1037 	 * should never be listed below, because the guest cannot modify its
1038 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1039 	 * thread when emulating cross-VCPU communication.
1040 	 */
1041 	if (!has_vhe())
1042 		return false;
1043 
1044 	switch (reg) {
1045 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
1046 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
1047 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
1048 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
1049 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
1050 	case TCR2_EL1:		*val = read_sysreg_s(SYS_TCR2_EL12);	break;
1051 	case PIR_EL1:		*val = read_sysreg_s(SYS_PIR_EL12);	break;
1052 	case PIRE0_EL1:		*val = read_sysreg_s(SYS_PIRE0_EL12);	break;
1053 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
1054 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
1055 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
1056 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
1057 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
1058 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
1059 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1060 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
1061 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
1062 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
1063 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
1064 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
1065 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
1066 	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
1067 	case PAR_EL1:		*val = read_sysreg_par();		break;
1068 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
1069 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
1070 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
1071 	case ZCR_EL1:		*val = read_sysreg_s(SYS_ZCR_EL12);	break;
1072 	default:		return false;
1073 	}
1074 
1075 	return true;
1076 }
1077 
1078 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1079 {
1080 	/*
1081 	 * *** VHE ONLY ***
1082 	 *
1083 	 * System registers listed in the switch are not restored on every
1084 	 * entry to the guest but are only restored on vcpu_load.
1085 	 *
1086 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1087 	 * should never be listed below, because the MPIDR should only be set
1088 	 * once, before running the VCPU, and never changed later.
1089 	 */
1090 	if (!has_vhe())
1091 		return false;
1092 
1093 	switch (reg) {
1094 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
1095 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
1096 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
1097 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
1098 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
1099 	case TCR2_EL1:		write_sysreg_s(val, SYS_TCR2_EL12);	break;
1100 	case PIR_EL1:		write_sysreg_s(val, SYS_PIR_EL12);	break;
1101 	case PIRE0_EL1:		write_sysreg_s(val, SYS_PIRE0_EL12);	break;
1102 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
1103 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
1104 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
1105 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
1106 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
1107 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
1108 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1109 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
1110 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1111 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1112 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1113 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1114 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1115 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1116 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1117 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1118 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1119 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1120 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
1121 	default:		return false;
1122 	}
1123 
1124 	return true;
1125 }
1126 
1127 struct kvm_vm_stat {
1128 	struct kvm_vm_stat_generic generic;
1129 };
1130 
1131 struct kvm_vcpu_stat {
1132 	struct kvm_vcpu_stat_generic generic;
1133 	u64 hvc_exit_stat;
1134 	u64 wfe_exit_stat;
1135 	u64 wfi_exit_stat;
1136 	u64 mmio_exit_user;
1137 	u64 mmio_exit_kernel;
1138 	u64 signal_exits;
1139 	u64 exits;
1140 };
1141 
1142 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1143 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1144 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1145 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1146 
1147 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1148 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1149 
1150 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1151 			      struct kvm_vcpu_events *events);
1152 
1153 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1154 			      struct kvm_vcpu_events *events);
1155 
1156 void kvm_arm_halt_guest(struct kvm *kvm);
1157 void kvm_arm_resume_guest(struct kvm *kvm);
1158 
1159 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
1160 
1161 #ifndef __KVM_NVHE_HYPERVISOR__
1162 #define kvm_call_hyp_nvhe(f, ...)						\
1163 	({								\
1164 		struct arm_smccc_res res;				\
1165 									\
1166 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1167 				  ##__VA_ARGS__, &res);			\
1168 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1169 									\
1170 		res.a1;							\
1171 	})
1172 
1173 /*
1174  * The couple of isb() below are there to guarantee the same behaviour
1175  * on VHE as on !VHE, where the eret to EL1 acts as a context
1176  * synchronization event.
1177  */
1178 #define kvm_call_hyp(f, ...)						\
1179 	do {								\
1180 		if (has_vhe()) {					\
1181 			f(__VA_ARGS__);					\
1182 			isb();						\
1183 		} else {						\
1184 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1185 		}							\
1186 	} while(0)
1187 
1188 #define kvm_call_hyp_ret(f, ...)					\
1189 	({								\
1190 		typeof(f(__VA_ARGS__)) ret;				\
1191 									\
1192 		if (has_vhe()) {					\
1193 			ret = f(__VA_ARGS__);				\
1194 			isb();						\
1195 		} else {						\
1196 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1197 		}							\
1198 									\
1199 		ret;							\
1200 	})
1201 #else /* __KVM_NVHE_HYPERVISOR__ */
1202 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1203 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1204 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1205 #endif /* __KVM_NVHE_HYPERVISOR__ */
1206 
1207 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1208 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1209 
1210 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1211 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1212 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1213 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1214 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1215 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1216 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1217 
1218 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1219 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1220 
1221 int __init kvm_sys_reg_table_init(void);
1222 struct sys_reg_desc;
1223 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1224 				  unsigned int idx);
1225 int __init populate_nv_trap_config(void);
1226 
1227 bool lock_all_vcpus(struct kvm *kvm);
1228 void unlock_all_vcpus(struct kvm *kvm);
1229 
1230 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1231 
1232 /* MMIO helpers */
1233 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1234 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1235 
1236 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1237 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1238 
1239 /*
1240  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1241  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1242  * loaded is considered to be "in guest".
1243  */
1244 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1245 {
1246 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1247 }
1248 
1249 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1250 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1251 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1252 
1253 bool kvm_arm_pvtime_supported(void);
1254 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1255 			    struct kvm_device_attr *attr);
1256 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1257 			    struct kvm_device_attr *attr);
1258 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1259 			    struct kvm_device_attr *attr);
1260 
1261 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1262 int __init kvm_arm_vmid_alloc_init(void);
1263 void __init kvm_arm_vmid_alloc_free(void);
1264 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1265 void kvm_arm_vmid_clear_active(void);
1266 
1267 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1268 {
1269 	vcpu_arch->steal.base = INVALID_GPA;
1270 }
1271 
1272 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1273 {
1274 	return (vcpu_arch->steal.base != INVALID_GPA);
1275 }
1276 
1277 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1278 
1279 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1280 
1281 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1282 
1283 /*
1284  * How we access per-CPU host data depends on the where we access it from,
1285  * and the mode we're in:
1286  *
1287  * - VHE and nVHE hypervisor bits use their locally defined instance
1288  *
1289  * - the rest of the kernel use either the VHE or nVHE one, depending on
1290  *   the mode we're running in.
1291  *
1292  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1293  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1294  *   In this case, the EL1 code uses the *VHE* data as its private state
1295  *   (which makes sense in a way as there shouldn't be any shared state
1296  *   between the host and the hypervisor).
1297  *
1298  * Yes, this is all totally trivial. Shoot me now.
1299  */
1300 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1301 #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1302 #else
1303 #define host_data_ptr(f)						\
1304 	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1305 	 &this_cpu_ptr(&kvm_host_data)->f :				\
1306 	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1307 #endif
1308 
1309 /* Check whether the FP regs are owned by the guest */
1310 static inline bool guest_owns_fp_regs(void)
1311 {
1312 	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1313 }
1314 
1315 /* Check whether the FP regs are owned by the host */
1316 static inline bool host_owns_fp_regs(void)
1317 {
1318 	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1319 }
1320 
1321 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1322 {
1323 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1324 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1325 }
1326 
1327 static inline bool kvm_system_needs_idmapped_vectors(void)
1328 {
1329 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1330 }
1331 
1332 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1333 
1334 void kvm_arm_init_debug(void);
1335 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1336 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1337 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1338 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1339 
1340 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1341 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1342 
1343 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1344 			       struct kvm_device_attr *attr);
1345 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1346 			       struct kvm_device_attr *attr);
1347 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1348 			       struct kvm_device_attr *attr);
1349 
1350 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1351 			       struct kvm_arm_copy_mte_tags *copy_tags);
1352 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1353 				    struct kvm_arm_counter_offset *offset);
1354 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1355 					struct reg_mask_range *range);
1356 
1357 /* Guest/host FPSIMD coordination helpers */
1358 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1359 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1360 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1361 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1362 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1363 
1364 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1365 {
1366 	return (!has_vhe() && attr->exclude_host);
1367 }
1368 
1369 /* Flags for host debug state */
1370 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1371 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1372 
1373 #ifdef CONFIG_KVM
1374 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1375 void kvm_clr_pmu_events(u64 clr);
1376 bool kvm_set_pmuserenr(u64 val);
1377 #else
1378 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
1379 static inline void kvm_clr_pmu_events(u64 clr) {}
1380 static inline bool kvm_set_pmuserenr(u64 val)
1381 {
1382 	return false;
1383 }
1384 #endif
1385 
1386 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1387 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1388 
1389 int __init kvm_set_ipa_limit(void);
1390 u32 kvm_get_pa_bits(struct kvm *kvm);
1391 
1392 #define __KVM_HAVE_ARCH_VM_ALLOC
1393 struct kvm *kvm_arch_alloc_vm(void);
1394 
1395 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1396 
1397 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1398 
1399 #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1400 
1401 #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1402 
1403 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1404 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1405 
1406 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1407 
1408 #define kvm_has_mte(kvm)					\
1409 	(system_supports_mte() &&				\
1410 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1411 
1412 #define kvm_supports_32bit_el0()				\
1413 	(system_supports_32bit_el0() &&				\
1414 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1415 
1416 #define kvm_vm_has_ran_once(kvm)					\
1417 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1418 
1419 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1420 {
1421 	return test_bit(feature, ka->vcpu_features);
1422 }
1423 
1424 #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1425 
1426 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1427 
1428 int kvm_trng_call(struct kvm_vcpu *vcpu);
1429 #ifdef CONFIG_KVM
1430 extern phys_addr_t hyp_mem_base;
1431 extern phys_addr_t hyp_mem_size;
1432 void __init kvm_hyp_reserve(void);
1433 #else
1434 static inline void kvm_hyp_reserve(void) { }
1435 #endif
1436 
1437 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1438 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1439 
1440 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1441 {
1442 	switch (reg) {
1443 	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1444 		return &ka->id_regs[IDREG_IDX(reg)];
1445 	case SYS_CTR_EL0:
1446 		return &ka->ctr_el0;
1447 	default:
1448 		WARN_ON_ONCE(1);
1449 		return NULL;
1450 	}
1451 }
1452 
1453 #define kvm_read_vm_id_reg(kvm, reg)					\
1454 	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1455 
1456 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1457 
1458 #define __expand_field_sign_unsigned(id, fld, val)			\
1459 	((u64)SYS_FIELD_VALUE(id, fld, val))
1460 
1461 #define __expand_field_sign_signed(id, fld, val)			\
1462 	({								\
1463 		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1464 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1465 	})
1466 
1467 #define get_idreg_field_unsigned(kvm, id, fld)				\
1468 	({								\
1469 		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1470 		FIELD_GET(id##_##fld##_MASK, __val);			\
1471 	})
1472 
1473 #define get_idreg_field_signed(kvm, id, fld)				\
1474 	({								\
1475 		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1476 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1477 	})
1478 
1479 #define get_idreg_field_enum(kvm, id, fld)				\
1480 	get_idreg_field_unsigned(kvm, id, fld)
1481 
1482 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1483 	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1484 
1485 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1486 	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1487 
1488 #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1489 	(id##_##fld##_SIGNED ?						\
1490 	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1491 	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1492 
1493 #define kvm_has_feat(kvm, id, fld, limit)				\
1494 	kvm_cmp_feat(kvm, id, fld, >=, limit)
1495 
1496 #define kvm_has_feat_enum(kvm, id, fld, val)				\
1497 	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1498 
1499 #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1500 	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1501 	kvm_cmp_feat(kvm, id, fld, <=, max))
1502 
1503 /* Check for a given level of PAuth support */
1504 #define kvm_has_pauth(k, l)						\
1505 	({								\
1506 		bool pa, pi, pa3;					\
1507 									\
1508 		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1509 		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1510 		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1511 		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1512 		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1513 		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1514 									\
1515 		(pa + pi + pa3) == 1;					\
1516 	})
1517 
1518 #define kvm_has_fpmr(k)					\
1519 	(system_supports_fpmr() &&			\
1520 	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1521 
1522 #endif /* __ARM64_KVM_HOST_H__ */
1523