xref: /linux/arch/arm64/include/asm/kvm_host.h (revision a594533df0f6ca391da003f43d53b336a2d23ffa)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/percpu.h>
20 #include <linux/psci.h>
21 #include <asm/arch_gicv3.h>
22 #include <asm/barrier.h>
23 #include <asm/cpufeature.h>
24 #include <asm/cputype.h>
25 #include <asm/daifflags.h>
26 #include <asm/fpsimd.h>
27 #include <asm/kvm.h>
28 #include <asm/kvm_asm.h>
29 
30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
31 
32 #define KVM_HALT_POLL_NS_DEFAULT 500000
33 
34 #include <kvm/arm_vgic.h>
35 #include <kvm/arm_arch_timer.h>
36 #include <kvm/arm_pmu.h>
37 
38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
39 
40 #define KVM_VCPU_MAX_FEATURES 7
41 
42 #define KVM_REQ_SLEEP \
43 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
48 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
49 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
50 
51 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
52 				     KVM_DIRTY_LOG_INITIALLY_SET)
53 
54 #define KVM_HAVE_MMU_RWLOCK
55 
56 /*
57  * Mode of operation configurable with kvm-arm.mode early param.
58  * See Documentation/admin-guide/kernel-parameters.txt for more information.
59  */
60 enum kvm_mode {
61 	KVM_MODE_DEFAULT,
62 	KVM_MODE_PROTECTED,
63 	KVM_MODE_NONE,
64 };
65 enum kvm_mode kvm_get_mode(void);
66 
67 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68 
69 extern unsigned int kvm_sve_max_vl;
70 int kvm_arm_init_sve(void);
71 
72 u32 __attribute_const__ kvm_target_cpu(void);
73 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
74 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
75 
76 struct kvm_vmid {
77 	atomic64_t id;
78 };
79 
80 struct kvm_s2_mmu {
81 	struct kvm_vmid vmid;
82 
83 	/*
84 	 * stage2 entry level table
85 	 *
86 	 * Two kvm_s2_mmu structures in the same VM can point to the same
87 	 * pgd here.  This happens when running a guest using a
88 	 * translation regime that isn't affected by its own stage-2
89 	 * translation, such as a non-VHE hypervisor running at vEL2, or
90 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
91 	 * canonical stage-2 page tables.
92 	 */
93 	phys_addr_t	pgd_phys;
94 	struct kvm_pgtable *pgt;
95 
96 	/* The last vcpu id that ran on each physical CPU */
97 	int __percpu *last_vcpu_ran;
98 
99 	struct kvm_arch *arch;
100 };
101 
102 struct kvm_arch_memory_slot {
103 };
104 
105 /**
106  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
107  *
108  * @std_bmap: Bitmap of standard secure service calls
109  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
110  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
111  */
112 struct kvm_smccc_features {
113 	unsigned long std_bmap;
114 	unsigned long std_hyp_bmap;
115 	unsigned long vendor_hyp_bmap;
116 };
117 
118 struct kvm_arch {
119 	struct kvm_s2_mmu mmu;
120 
121 	/* VTCR_EL2 value for this VM */
122 	u64    vtcr;
123 
124 	/* Interrupt controller */
125 	struct vgic_dist	vgic;
126 
127 	/* Mandated version of PSCI */
128 	u32 psci_version;
129 
130 	/*
131 	 * If we encounter a data abort without valid instruction syndrome
132 	 * information, report this to user space.  User space can (and
133 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
134 	 * supported.
135 	 */
136 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
137 	/* Memory Tagging Extension enabled for the guest */
138 #define KVM_ARCH_FLAG_MTE_ENABLED			1
139 	/* At least one vCPU has ran in the VM */
140 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
141 	/*
142 	 * The following two bits are used to indicate the guest's EL1
143 	 * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
144 	 * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
145 	 * Otherwise, the guest's EL1 register width has not yet been
146 	 * determined yet.
147 	 */
148 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED		3
149 #define KVM_ARCH_FLAG_EL1_32BIT				4
150 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
151 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		5
152 
153 	unsigned long flags;
154 
155 	/*
156 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
157 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
158 	 */
159 	unsigned long *pmu_filter;
160 	struct arm_pmu *arm_pmu;
161 
162 	cpumask_var_t supported_cpus;
163 
164 	u8 pfr0_csv2;
165 	u8 pfr0_csv3;
166 
167 	/* Hypercall features firmware registers' descriptor */
168 	struct kvm_smccc_features smccc_feat;
169 };
170 
171 struct kvm_vcpu_fault_info {
172 	u64 esr_el2;		/* Hyp Syndrom Register */
173 	u64 far_el2;		/* Hyp Fault Address Register */
174 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
175 	u64 disr_el1;		/* Deferred [SError] Status Register */
176 };
177 
178 enum vcpu_sysreg {
179 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
180 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
181 	CSSELR_EL1,	/* Cache Size Selection Register */
182 	SCTLR_EL1,	/* System Control Register */
183 	ACTLR_EL1,	/* Auxiliary Control Register */
184 	CPACR_EL1,	/* Coprocessor Access Control */
185 	ZCR_EL1,	/* SVE Control */
186 	TTBR0_EL1,	/* Translation Table Base Register 0 */
187 	TTBR1_EL1,	/* Translation Table Base Register 1 */
188 	TCR_EL1,	/* Translation Control Register */
189 	ESR_EL1,	/* Exception Syndrome Register */
190 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
191 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
192 	FAR_EL1,	/* Fault Address Register */
193 	MAIR_EL1,	/* Memory Attribute Indirection Register */
194 	VBAR_EL1,	/* Vector Base Address Register */
195 	CONTEXTIDR_EL1,	/* Context ID Register */
196 	TPIDR_EL0,	/* Thread ID, User R/W */
197 	TPIDRRO_EL0,	/* Thread ID, User R/O */
198 	TPIDR_EL1,	/* Thread ID, Privileged */
199 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
200 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
201 	PAR_EL1,	/* Physical Address Register */
202 	MDSCR_EL1,	/* Monitor Debug System Control Register */
203 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
204 	OSLSR_EL1,	/* OS Lock Status Register */
205 	DISR_EL1,	/* Deferred Interrupt Status Register */
206 
207 	/* Performance Monitors Registers */
208 	PMCR_EL0,	/* Control Register */
209 	PMSELR_EL0,	/* Event Counter Selection Register */
210 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
211 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
212 	PMCCNTR_EL0,	/* Cycle Counter Register */
213 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
214 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
215 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
216 	PMCNTENSET_EL0,	/* Count Enable Set Register */
217 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
218 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
219 	PMUSERENR_EL0,	/* User Enable Register */
220 
221 	/* Pointer Authentication Registers in a strict increasing order. */
222 	APIAKEYLO_EL1,
223 	APIAKEYHI_EL1,
224 	APIBKEYLO_EL1,
225 	APIBKEYHI_EL1,
226 	APDAKEYLO_EL1,
227 	APDAKEYHI_EL1,
228 	APDBKEYLO_EL1,
229 	APDBKEYHI_EL1,
230 	APGAKEYLO_EL1,
231 	APGAKEYHI_EL1,
232 
233 	ELR_EL1,
234 	SP_EL1,
235 	SPSR_EL1,
236 
237 	CNTVOFF_EL2,
238 	CNTV_CVAL_EL0,
239 	CNTV_CTL_EL0,
240 	CNTP_CVAL_EL0,
241 	CNTP_CTL_EL0,
242 
243 	/* Memory Tagging Extension registers */
244 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
245 	GCR_EL1,	/* Tag Control Register */
246 	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
247 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
248 
249 	/* 32bit specific registers. Keep them at the end of the range */
250 	DACR32_EL2,	/* Domain Access Control Register */
251 	IFSR32_EL2,	/* Instruction Fault Status Register */
252 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
253 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
254 
255 	NR_SYS_REGS	/* Nothing after this line! */
256 };
257 
258 struct kvm_cpu_context {
259 	struct user_pt_regs regs;	/* sp = sp_el0 */
260 
261 	u64	spsr_abt;
262 	u64	spsr_und;
263 	u64	spsr_irq;
264 	u64	spsr_fiq;
265 
266 	struct user_fpsimd_state fp_regs;
267 
268 	u64 sys_regs[NR_SYS_REGS];
269 
270 	struct kvm_vcpu *__hyp_running_vcpu;
271 };
272 
273 struct kvm_host_data {
274 	struct kvm_cpu_context host_ctxt;
275 };
276 
277 struct kvm_host_psci_config {
278 	/* PSCI version used by host. */
279 	u32 version;
280 
281 	/* Function IDs used by host if version is v0.1. */
282 	struct psci_0_1_function_ids function_ids_0_1;
283 
284 	bool psci_0_1_cpu_suspend_implemented;
285 	bool psci_0_1_cpu_on_implemented;
286 	bool psci_0_1_cpu_off_implemented;
287 	bool psci_0_1_migrate_implemented;
288 };
289 
290 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
291 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
292 
293 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
294 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
295 
296 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
297 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
298 
299 struct vcpu_reset_state {
300 	unsigned long	pc;
301 	unsigned long	r0;
302 	bool		be;
303 	bool		reset;
304 };
305 
306 struct kvm_vcpu_arch {
307 	struct kvm_cpu_context ctxt;
308 
309 	/*
310 	 * Guest floating point state
311 	 *
312 	 * The architecture has two main floating point extensions,
313 	 * the original FPSIMD and SVE.  These have overlapping
314 	 * register views, with the FPSIMD V registers occupying the
315 	 * low 128 bits of the SVE Z registers.  When the core
316 	 * floating point code saves the register state of a task it
317 	 * records which view it saved in fp_type.
318 	 */
319 	void *sve_state;
320 	enum fp_type fp_type;
321 	unsigned int sve_max_vl;
322 	u64 svcr;
323 
324 	/* Stage 2 paging state used by the hardware on next switch */
325 	struct kvm_s2_mmu *hw_mmu;
326 
327 	/* Values of trap registers for the guest. */
328 	u64 hcr_el2;
329 	u64 mdcr_el2;
330 	u64 cptr_el2;
331 
332 	/* Values of trap registers for the host before guest entry. */
333 	u64 mdcr_el2_host;
334 
335 	/* Exception Information */
336 	struct kvm_vcpu_fault_info fault;
337 
338 	/* Ownership of the FP regs */
339 	enum {
340 		FP_STATE_FREE,
341 		FP_STATE_HOST_OWNED,
342 		FP_STATE_GUEST_OWNED,
343 	} fp_state;
344 
345 	/* Configuration flags, set once and for all before the vcpu can run */
346 	u8 cflags;
347 
348 	/* Input flags to the hypervisor code, potentially cleared after use */
349 	u8 iflags;
350 
351 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
352 	u8 sflags;
353 
354 	/*
355 	 * Don't run the guest (internal implementation need).
356 	 *
357 	 * Contrary to the flags above, this is set/cleared outside of
358 	 * a vcpu context, and thus cannot be mixed with the flags
359 	 * themselves (or the flag accesses need to be made atomic).
360 	 */
361 	bool pause;
362 
363 	/*
364 	 * We maintain more than a single set of debug registers to support
365 	 * debugging the guest from the host and to maintain separate host and
366 	 * guest state during world switches. vcpu_debug_state are the debug
367 	 * registers of the vcpu as the guest sees them.  host_debug_state are
368 	 * the host registers which are saved and restored during
369 	 * world switches. external_debug_state contains the debug
370 	 * values we want to debug the guest. This is set via the
371 	 * KVM_SET_GUEST_DEBUG ioctl.
372 	 *
373 	 * debug_ptr points to the set of debug registers that should be loaded
374 	 * onto the hardware when running the guest.
375 	 */
376 	struct kvm_guest_debug_arch *debug_ptr;
377 	struct kvm_guest_debug_arch vcpu_debug_state;
378 	struct kvm_guest_debug_arch external_debug_state;
379 
380 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
381 	struct task_struct *parent_task;
382 
383 	struct {
384 		/* {Break,watch}point registers */
385 		struct kvm_guest_debug_arch regs;
386 		/* Statistical profiling extension */
387 		u64 pmscr_el1;
388 		/* Self-hosted trace */
389 		u64 trfcr_el1;
390 	} host_debug_state;
391 
392 	/* VGIC state */
393 	struct vgic_cpu vgic_cpu;
394 	struct arch_timer_cpu timer_cpu;
395 	struct kvm_pmu pmu;
396 
397 	/*
398 	 * Guest registers we preserve during guest debugging.
399 	 *
400 	 * These shadow registers are updated by the kvm_handle_sys_reg
401 	 * trap handler if the guest accesses or updates them while we
402 	 * are using guest debug.
403 	 */
404 	struct {
405 		u32	mdscr_el1;
406 		bool	pstate_ss;
407 	} guest_debug_preserved;
408 
409 	/* vcpu power state */
410 	struct kvm_mp_state mp_state;
411 
412 	/* Cache some mmu pages needed inside spinlock regions */
413 	struct kvm_mmu_memory_cache mmu_page_cache;
414 
415 	/* Target CPU and feature flags */
416 	int target;
417 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
418 
419 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
420 	u64 vsesr_el2;
421 
422 	/* Additional reset state */
423 	struct vcpu_reset_state	reset_state;
424 
425 	/* Guest PV state */
426 	struct {
427 		u64 last_steal;
428 		gpa_t base;
429 	} steal;
430 };
431 
432 /*
433  * Each 'flag' is composed of a comma-separated triplet:
434  *
435  * - the flag-set it belongs to in the vcpu->arch structure
436  * - the value for that flag
437  * - the mask for that flag
438  *
439  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
440  * unpack_vcpu_flag() extract the flag value from the triplet for
441  * direct use outside of the flag accessors.
442  */
443 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
444 
445 #define __unpack_flag(_set, _f, _m)	_f
446 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
447 
448 #define __build_check_flag(v, flagset, f, m)			\
449 	do {							\
450 		typeof(v->arch.flagset) *_fset;			\
451 								\
452 		/* Check that the flags fit in the mask */	\
453 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
454 		/* Check that the flags fit in the type */	\
455 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
456 	} while (0)
457 
458 #define __vcpu_get_flag(v, flagset, f, m)			\
459 	({							\
460 		__build_check_flag(v, flagset, f, m);		\
461 								\
462 		v->arch.flagset & (m);				\
463 	})
464 
465 #define __vcpu_set_flag(v, flagset, f, m)			\
466 	do {							\
467 		typeof(v->arch.flagset) *fset;			\
468 								\
469 		__build_check_flag(v, flagset, f, m);		\
470 								\
471 		fset = &v->arch.flagset;			\
472 		if (HWEIGHT(m) > 1)				\
473 			*fset &= ~(m);				\
474 		*fset |= (f);					\
475 	} while (0)
476 
477 #define __vcpu_clear_flag(v, flagset, f, m)			\
478 	do {							\
479 		typeof(v->arch.flagset) *fset;			\
480 								\
481 		__build_check_flag(v, flagset, f, m);		\
482 								\
483 		fset = &v->arch.flagset;			\
484 		*fset &= ~(m);					\
485 	} while (0)
486 
487 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
488 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
489 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
490 
491 /* SVE exposed to guest */
492 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
493 /* SVE config completed */
494 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
495 /* PTRAUTH exposed to guest */
496 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
497 
498 /* Exception pending */
499 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
500 /*
501  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
502  * be set together with an exception...
503  */
504 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
505 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
506 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
507 
508 /* Helpers to encode exceptions with minimum fuss */
509 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
510 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
511 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
512 
513 /*
514  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
515  * values:
516  *
517  * For AArch32 EL1:
518  */
519 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
520 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
521 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
522 /* For AArch64: */
523 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
524 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
525 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
526 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
527 /* For AArch64 with NV (one day): */
528 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
529 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
530 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
531 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
532 /* Guest debug is live */
533 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
534 /* Save SPE context if active  */
535 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
536 /* Save TRBE context if active  */
537 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
538 
539 /* SVE enabled for host EL0 */
540 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
541 /* SME enabled for EL0 */
542 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
543 /* Physical CPU not in supported_cpus */
544 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
545 /* WFIT instruction trapped */
546 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
547 /* vcpu system registers loaded on physical CPU */
548 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
549 /* Software step state is Active-pending */
550 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
551 
552 
553 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
554 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
555 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
556 
557 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
558 
559 #define vcpu_sve_state_size(vcpu) ({					\
560 	size_t __size_ret;						\
561 	unsigned int __vcpu_vq;						\
562 									\
563 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
564 		__size_ret = 0;						\
565 	} else {							\
566 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
567 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
568 	}								\
569 									\
570 	__size_ret;							\
571 })
572 
573 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
574 				 KVM_GUESTDBG_USE_SW_BP | \
575 				 KVM_GUESTDBG_USE_HW | \
576 				 KVM_GUESTDBG_SINGLESTEP)
577 
578 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
579 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
580 
581 #ifdef CONFIG_ARM64_PTR_AUTH
582 #define vcpu_has_ptrauth(vcpu)						\
583 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
584 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
585 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
586 #else
587 #define vcpu_has_ptrauth(vcpu)		false
588 #endif
589 
590 #define vcpu_on_unsupported_cpu(vcpu)					\
591 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
592 
593 #define vcpu_set_on_unsupported_cpu(vcpu)				\
594 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
595 
596 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
597 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
598 
599 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
600 
601 /*
602  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
603  * memory backed version of a register, and not the one most recently
604  * accessed by a running VCPU.  For example, for userspace access or
605  * for system registers that are never context switched, but only
606  * emulated.
607  */
608 #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
609 
610 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
611 
612 #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
613 
614 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
615 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
616 
617 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
618 {
619 	/*
620 	 * *** VHE ONLY ***
621 	 *
622 	 * System registers listed in the switch are not saved on every
623 	 * exit from the guest but are only saved on vcpu_put.
624 	 *
625 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
626 	 * should never be listed below, because the guest cannot modify its
627 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
628 	 * thread when emulating cross-VCPU communication.
629 	 */
630 	if (!has_vhe())
631 		return false;
632 
633 	switch (reg) {
634 	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
635 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
636 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
637 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
638 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
639 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
640 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
641 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
642 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
643 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
644 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
645 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
646 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
647 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
648 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
649 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
650 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
651 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
652 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
653 	case PAR_EL1:		*val = read_sysreg_par();		break;
654 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
655 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
656 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
657 	default:		return false;
658 	}
659 
660 	return true;
661 }
662 
663 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
664 {
665 	/*
666 	 * *** VHE ONLY ***
667 	 *
668 	 * System registers listed in the switch are not restored on every
669 	 * entry to the guest but are only restored on vcpu_load.
670 	 *
671 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
672 	 * should never be listed below, because the MPIDR should only be set
673 	 * once, before running the VCPU, and never changed later.
674 	 */
675 	if (!has_vhe())
676 		return false;
677 
678 	switch (reg) {
679 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
680 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
681 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
682 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
683 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
684 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
685 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
686 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
687 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
688 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
689 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
690 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
691 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
692 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
693 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
694 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
695 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
696 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
697 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
698 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
699 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
700 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
701 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
702 	default:		return false;
703 	}
704 
705 	return true;
706 }
707 
708 struct kvm_vm_stat {
709 	struct kvm_vm_stat_generic generic;
710 };
711 
712 struct kvm_vcpu_stat {
713 	struct kvm_vcpu_stat_generic generic;
714 	u64 hvc_exit_stat;
715 	u64 wfe_exit_stat;
716 	u64 wfi_exit_stat;
717 	u64 mmio_exit_user;
718 	u64 mmio_exit_kernel;
719 	u64 signal_exits;
720 	u64 exits;
721 };
722 
723 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
724 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
725 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
726 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
727 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
728 
729 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
730 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
731 
732 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
733 			      struct kvm_vcpu_events *events);
734 
735 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
736 			      struct kvm_vcpu_events *events);
737 
738 #define KVM_ARCH_WANT_MMU_NOTIFIER
739 
740 void kvm_arm_halt_guest(struct kvm *kvm);
741 void kvm_arm_resume_guest(struct kvm *kvm);
742 
743 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
744 
745 #ifndef __KVM_NVHE_HYPERVISOR__
746 #define kvm_call_hyp_nvhe(f, ...)						\
747 	({								\
748 		struct arm_smccc_res res;				\
749 									\
750 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
751 				  ##__VA_ARGS__, &res);			\
752 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
753 									\
754 		res.a1;							\
755 	})
756 
757 /*
758  * The couple of isb() below are there to guarantee the same behaviour
759  * on VHE as on !VHE, where the eret to EL1 acts as a context
760  * synchronization event.
761  */
762 #define kvm_call_hyp(f, ...)						\
763 	do {								\
764 		if (has_vhe()) {					\
765 			f(__VA_ARGS__);					\
766 			isb();						\
767 		} else {						\
768 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
769 		}							\
770 	} while(0)
771 
772 #define kvm_call_hyp_ret(f, ...)					\
773 	({								\
774 		typeof(f(__VA_ARGS__)) ret;				\
775 									\
776 		if (has_vhe()) {					\
777 			ret = f(__VA_ARGS__);				\
778 			isb();						\
779 		} else {						\
780 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
781 		}							\
782 									\
783 		ret;							\
784 	})
785 #else /* __KVM_NVHE_HYPERVISOR__ */
786 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
787 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
788 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
789 #endif /* __KVM_NVHE_HYPERVISOR__ */
790 
791 void force_vm_exit(const cpumask_t *mask);
792 
793 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
794 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
795 
796 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
797 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
798 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
799 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
800 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
801 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
802 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
803 
804 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
805 
806 int kvm_sys_reg_table_init(void);
807 
808 /* MMIO helpers */
809 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
810 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
811 
812 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
813 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
814 
815 /*
816  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
817  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
818  * loaded is considered to be "in guest".
819  */
820 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
821 {
822 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
823 }
824 
825 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
826 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
827 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
828 
829 bool kvm_arm_pvtime_supported(void);
830 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
831 			    struct kvm_device_attr *attr);
832 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
833 			    struct kvm_device_attr *attr);
834 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
835 			    struct kvm_device_attr *attr);
836 
837 extern unsigned int kvm_arm_vmid_bits;
838 int kvm_arm_vmid_alloc_init(void);
839 void kvm_arm_vmid_alloc_free(void);
840 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
841 void kvm_arm_vmid_clear_active(void);
842 
843 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
844 {
845 	vcpu_arch->steal.base = GPA_INVALID;
846 }
847 
848 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
849 {
850 	return (vcpu_arch->steal.base != GPA_INVALID);
851 }
852 
853 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
854 
855 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
856 
857 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
858 
859 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
860 {
861 	/* The host's MPIDR is immutable, so let's set it up at boot time */
862 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
863 }
864 
865 static inline bool kvm_system_needs_idmapped_vectors(void)
866 {
867 	return cpus_have_const_cap(ARM64_SPECTRE_V3A);
868 }
869 
870 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
871 
872 static inline void kvm_arch_hardware_unsetup(void) {}
873 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
874 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
875 
876 void kvm_arm_init_debug(void);
877 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
878 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
879 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
880 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
881 
882 #define kvm_vcpu_os_lock_enabled(vcpu)		\
883 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
884 
885 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
886 			       struct kvm_device_attr *attr);
887 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
888 			       struct kvm_device_attr *attr);
889 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
890 			       struct kvm_device_attr *attr);
891 
892 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
893 				struct kvm_arm_copy_mte_tags *copy_tags);
894 
895 /* Guest/host FPSIMD coordination helpers */
896 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
897 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
898 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
899 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
900 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
901 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
902 
903 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
904 {
905 	return (!has_vhe() && attr->exclude_host);
906 }
907 
908 /* Flags for host debug state */
909 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
910 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
911 
912 #ifdef CONFIG_KVM
913 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
914 void kvm_clr_pmu_events(u32 clr);
915 #else
916 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
917 static inline void kvm_clr_pmu_events(u32 clr) {}
918 #endif
919 
920 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
921 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
922 
923 int kvm_set_ipa_limit(void);
924 
925 #define __KVM_HAVE_ARCH_VM_ALLOC
926 struct kvm *kvm_arch_alloc_vm(void);
927 
928 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
929 
930 static inline bool kvm_vm_is_protected(struct kvm *kvm)
931 {
932 	return false;
933 }
934 
935 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
936 
937 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
938 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
939 
940 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
941 
942 #define kvm_has_mte(kvm)					\
943 	(system_supports_mte() &&				\
944 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
945 
946 #define kvm_supports_32bit_el0()				\
947 	(system_supports_32bit_el0() &&				\
948 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
949 
950 int kvm_trng_call(struct kvm_vcpu *vcpu);
951 #ifdef CONFIG_KVM
952 extern phys_addr_t hyp_mem_base;
953 extern phys_addr_t hyp_mem_size;
954 void __init kvm_hyp_reserve(void);
955 #else
956 static inline void kvm_hyp_reserve(void) { }
957 #endif
958 
959 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
960 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
961 
962 #endif /* __ARM64_KVM_HOST_H__ */
963