xref: /linux/arch/arm64/include/asm/kvm_host.h (revision 86edf6bdcf0571c07103b8751e9d792a4b808e97)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31 
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33 
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35 
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39 
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41 
42 #define KVM_VCPU_MAX_FEATURES 7
43 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44 
45 #define KVM_REQ_SLEEP \
46 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP	KVM_ARCH_REQ(8)
55 
56 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
57 				     KVM_DIRTY_LOG_INITIALLY_SET)
58 
59 #define KVM_HAVE_MMU_RWLOCK
60 
61 /*
62  * Mode of operation configurable with kvm-arm.mode early param.
63  * See Documentation/admin-guide/kernel-parameters.txt for more information.
64  */
65 enum kvm_mode {
66 	KVM_MODE_DEFAULT,
67 	KVM_MODE_PROTECTED,
68 	KVM_MODE_NV,
69 	KVM_MODE_NONE,
70 };
71 #ifdef CONFIG_KVM
72 enum kvm_mode kvm_get_mode(void);
73 #else
74 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
75 #endif
76 
77 extern unsigned int __ro_after_init kvm_sve_max_vl;
78 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
79 int __init kvm_arm_init_sve(void);
80 
81 u32 __attribute_const__ kvm_target_cpu(void);
82 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
83 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
84 
85 struct kvm_hyp_memcache {
86 	phys_addr_t head;
87 	unsigned long nr_pages;
88 	struct pkvm_mapping *mapping; /* only used from EL1 */
89 };
90 
91 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
92 				     phys_addr_t *p,
93 				     phys_addr_t (*to_pa)(void *virt))
94 {
95 	*p = mc->head;
96 	mc->head = to_pa(p);
97 	mc->nr_pages++;
98 }
99 
100 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
101 				     void *(*to_va)(phys_addr_t phys))
102 {
103 	phys_addr_t *p = to_va(mc->head & PAGE_MASK);
104 
105 	if (!mc->nr_pages)
106 		return NULL;
107 
108 	mc->head = *p;
109 	mc->nr_pages--;
110 
111 	return p;
112 }
113 
114 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
115 				       unsigned long min_pages,
116 				       void *(*alloc_fn)(void *arg),
117 				       phys_addr_t (*to_pa)(void *virt),
118 				       void *arg)
119 {
120 	while (mc->nr_pages < min_pages) {
121 		phys_addr_t *p = alloc_fn(arg);
122 
123 		if (!p)
124 			return -ENOMEM;
125 		push_hyp_memcache(mc, p, to_pa);
126 	}
127 
128 	return 0;
129 }
130 
131 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
132 				       void (*free_fn)(void *virt, void *arg),
133 				       void *(*to_va)(phys_addr_t phys),
134 				       void *arg)
135 {
136 	while (mc->nr_pages)
137 		free_fn(pop_hyp_memcache(mc, to_va), arg);
138 }
139 
140 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
141 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
142 
143 struct kvm_vmid {
144 	atomic64_t id;
145 };
146 
147 struct kvm_s2_mmu {
148 	struct kvm_vmid vmid;
149 
150 	/*
151 	 * stage2 entry level table
152 	 *
153 	 * Two kvm_s2_mmu structures in the same VM can point to the same
154 	 * pgd here.  This happens when running a guest using a
155 	 * translation regime that isn't affected by its own stage-2
156 	 * translation, such as a non-VHE hypervisor running at vEL2, or
157 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
158 	 * canonical stage-2 page tables.
159 	 */
160 	phys_addr_t	pgd_phys;
161 	struct kvm_pgtable *pgt;
162 
163 	/*
164 	 * VTCR value used on the host. For a non-NV guest (or a NV
165 	 * guest that runs in a context where its own S2 doesn't
166 	 * apply), its T0SZ value reflects that of the IPA size.
167 	 *
168 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
169 	 * the guest.
170 	 */
171 	u64	vtcr;
172 
173 	/* The last vcpu id that ran on each physical CPU */
174 	int __percpu *last_vcpu_ran;
175 
176 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
177 	/*
178 	 * Memory cache used to split
179 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
180 	 * is used to allocate stage2 page tables while splitting huge
181 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
182 	 * influences both the capacity of the split page cache, and
183 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
184 	 * too high.
185 	 *
186 	 * Protected by kvm->slots_lock.
187 	 */
188 	struct kvm_mmu_memory_cache split_page_cache;
189 	uint64_t split_page_chunk_size;
190 
191 	struct kvm_arch *arch;
192 
193 	/*
194 	 * For a shadow stage-2 MMU, the virtual vttbr used by the
195 	 * host to parse the guest S2.
196 	 * This either contains:
197 	 * - the virtual VTTBR programmed by the guest hypervisor with
198          *   CnP cleared
199 	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
200 	 *
201 	 * We also cache the full VTCR which gets used for TLB invalidation,
202 	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
203 	 * to be cached in a TLB" to the letter.
204 	 */
205 	u64	tlb_vttbr;
206 	u64	tlb_vtcr;
207 
208 	/*
209 	 * true when this represents a nested context where virtual
210 	 * HCR_EL2.VM == 1
211 	 */
212 	bool	nested_stage2_enabled;
213 
214 	/*
215 	 * true when this MMU needs to be unmapped before being used for a new
216 	 * purpose.
217 	 */
218 	bool	pending_unmap;
219 
220 	/*
221 	 *  0: Nobody is currently using this, check vttbr for validity
222 	 * >0: Somebody is actively using this.
223 	 */
224 	atomic_t refcnt;
225 };
226 
227 struct kvm_arch_memory_slot {
228 };
229 
230 /**
231  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
232  *
233  * @std_bmap: Bitmap of standard secure service calls
234  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
235  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
236  */
237 struct kvm_smccc_features {
238 	unsigned long std_bmap;
239 	unsigned long std_hyp_bmap;
240 	unsigned long vendor_hyp_bmap; /* Function numbers 0-63 */
241 	unsigned long vendor_hyp_bmap_2; /* Function numbers 64-127 */
242 };
243 
244 typedef unsigned int pkvm_handle_t;
245 
246 struct kvm_protected_vm {
247 	pkvm_handle_t handle;
248 	struct kvm_hyp_memcache teardown_mc;
249 	bool enabled;
250 };
251 
252 struct kvm_mpidr_data {
253 	u64			mpidr_mask;
254 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
255 };
256 
257 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
258 {
259 	unsigned long index = 0, mask = data->mpidr_mask;
260 	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
261 
262 	bitmap_gather(&index, &aff, &mask, fls(mask));
263 
264 	return index;
265 }
266 
267 struct kvm_sysreg_masks;
268 
269 enum fgt_group_id {
270 	__NO_FGT_GROUP__,
271 	HFGxTR_GROUP,
272 	HDFGRTR_GROUP,
273 	HDFGWTR_GROUP = HDFGRTR_GROUP,
274 	HFGITR_GROUP,
275 	HAFGRTR_GROUP,
276 
277 	/* Must be last */
278 	__NR_FGT_GROUP_IDS__
279 };
280 
281 struct kvm_arch {
282 	struct kvm_s2_mmu mmu;
283 
284 	/*
285 	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
286 	 * architecture. We track them globally, as we present the
287 	 * same feature-set to all vcpus.
288 	 *
289 	 * Index 0 is currently spare.
290 	 */
291 	u64 fgu[__NR_FGT_GROUP_IDS__];
292 
293 	/*
294 	 * Stage 2 paging state for VMs with nested S2 using a virtual
295 	 * VMID.
296 	 */
297 	struct kvm_s2_mmu *nested_mmus;
298 	size_t nested_mmus_size;
299 	int nested_mmus_next;
300 
301 	/* Interrupt controller */
302 	struct vgic_dist	vgic;
303 
304 	/* Timers */
305 	struct arch_timer_vm_data timer_data;
306 
307 	/* Mandated version of PSCI */
308 	u32 psci_version;
309 
310 	/* Protects VM-scoped configuration data */
311 	struct mutex config_lock;
312 
313 	/*
314 	 * If we encounter a data abort without valid instruction syndrome
315 	 * information, report this to user space.  User space can (and
316 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
317 	 * supported.
318 	 */
319 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
320 	/* Memory Tagging Extension enabled for the guest */
321 #define KVM_ARCH_FLAG_MTE_ENABLED			1
322 	/* At least one vCPU has ran in the VM */
323 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
324 	/* The vCPU feature set for the VM is configured */
325 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
326 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
327 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
328 	/* VM counter offset */
329 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
330 	/* Timer PPIs made immutable */
331 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
332 	/* Initial ID reg values loaded */
333 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
334 	/* Fine-Grained UNDEF initialised */
335 #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
336 	/* SVE exposed to guest */
337 #define KVM_ARCH_FLAG_GUEST_HAS_SVE			9
338 	unsigned long flags;
339 
340 	/* VM-wide vCPU feature set */
341 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
342 
343 	/* MPIDR to vcpu index mapping, optional */
344 	struct kvm_mpidr_data *mpidr_data;
345 
346 	/*
347 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
348 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
349 	 */
350 	unsigned long *pmu_filter;
351 	struct arm_pmu *arm_pmu;
352 
353 	cpumask_var_t supported_cpus;
354 
355 	/* PMCR_EL0.N value for the guest */
356 	u8 pmcr_n;
357 
358 	/* Iterator for idreg debugfs */
359 	u8	idreg_debugfs_iter;
360 
361 	/* Hypercall features firmware registers' descriptor */
362 	struct kvm_smccc_features smccc_feat;
363 	struct maple_tree smccc_filter;
364 
365 	/*
366 	 * Emulated CPU ID registers per VM
367 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
368 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
369 	 *
370 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
371 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
372 	 */
373 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
374 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
375 	u64 id_regs[KVM_ARM_ID_REG_NUM];
376 
377 	u64 ctr_el0;
378 
379 	/* Masks for VNCR-backed and general EL2 sysregs */
380 	struct kvm_sysreg_masks	*sysreg_masks;
381 
382 	/*
383 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
384 	 * the associated pKVM instance in the hypervisor.
385 	 */
386 	struct kvm_protected_vm pkvm;
387 };
388 
389 struct kvm_vcpu_fault_info {
390 	u64 esr_el2;		/* Hyp Syndrom Register */
391 	u64 far_el2;		/* Hyp Fault Address Register */
392 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
393 	u64 disr_el1;		/* Deferred [SError] Status Register */
394 };
395 
396 /*
397  * VNCR() just places the VNCR_capable registers in the enum after
398  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
399  * from the VNCR base. As we don't require the enum to be otherwise ordered,
400  * we need the terrible hack below to ensure that we correctly size the
401  * sys_regs array, no matter what.
402  *
403  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
404  * treasure trove of bit hacks:
405  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
406  */
407 #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
408 #define VNCR(r)						\
409 	__before_##r,					\
410 	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
411 	__after_##r = __MAX__(__before_##r - 1, r)
412 
413 #define MARKER(m)				\
414 	m, __after_##m = m - 1
415 
416 enum vcpu_sysreg {
417 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
418 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
419 	CLIDR_EL1,	/* Cache Level ID Register */
420 	CSSELR_EL1,	/* Cache Size Selection Register */
421 	TPIDR_EL0,	/* Thread ID, User R/W */
422 	TPIDRRO_EL0,	/* Thread ID, User R/O */
423 	TPIDR_EL1,	/* Thread ID, Privileged */
424 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
425 	PAR_EL1,	/* Physical Address Register */
426 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
427 	OSLSR_EL1,	/* OS Lock Status Register */
428 	DISR_EL1,	/* Deferred Interrupt Status Register */
429 
430 	/* Performance Monitors Registers */
431 	PMCR_EL0,	/* Control Register */
432 	PMSELR_EL0,	/* Event Counter Selection Register */
433 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
434 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
435 	PMCCNTR_EL0,	/* Cycle Counter Register */
436 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
437 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
438 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
439 	PMCNTENSET_EL0,	/* Count Enable Set Register */
440 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
441 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
442 	PMUSERENR_EL0,	/* User Enable Register */
443 
444 	/* Pointer Authentication Registers in a strict increasing order. */
445 	APIAKEYLO_EL1,
446 	APIAKEYHI_EL1,
447 	APIBKEYLO_EL1,
448 	APIBKEYHI_EL1,
449 	APDAKEYLO_EL1,
450 	APDAKEYHI_EL1,
451 	APDBKEYLO_EL1,
452 	APDBKEYHI_EL1,
453 	APGAKEYLO_EL1,
454 	APGAKEYHI_EL1,
455 
456 	/* Memory Tagging Extension registers */
457 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
458 	GCR_EL1,	/* Tag Control Register */
459 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
460 
461 	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
462 
463 	/* FP/SIMD/SVE */
464 	SVCR,
465 	FPMR,
466 
467 	/* 32bit specific registers. */
468 	DACR32_EL2,	/* Domain Access Control Register */
469 	IFSR32_EL2,	/* Instruction Fault Status Register */
470 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
471 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
472 
473 	/* EL2 registers */
474 	SCTLR_EL2,	/* System Control Register (EL2) */
475 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
476 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
477 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
478 	ZCR_EL2,	/* SVE Control Register (EL2) */
479 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
480 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
481 	TCR_EL2,	/* Translation Control Register (EL2) */
482 	PIRE0_EL2,	/* Permission Indirection Register 0 (EL2) */
483 	PIR_EL2,	/* Permission Indirection Register 1 (EL2) */
484 	POR_EL2,	/* Permission Overlay Register 2 (EL2) */
485 	SPSR_EL2,	/* EL2 saved program status register */
486 	ELR_EL2,	/* EL2 exception link register */
487 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
488 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
489 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
490 	FAR_EL2,	/* Fault Address Register (EL2) */
491 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
492 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
493 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
494 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
495 	RVBAR_EL2,	/* Reset Vector Base Address Register */
496 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
497 	SP_EL2,		/* EL2 Stack Pointer */
498 	CNTHP_CTL_EL2,
499 	CNTHP_CVAL_EL2,
500 	CNTHV_CTL_EL2,
501 	CNTHV_CVAL_EL2,
502 
503 	/* Anything from this can be RES0/RES1 sanitised */
504 	MARKER(__SANITISED_REG_START__),
505 	TCR2_EL2,	/* Extended Translation Control Register (EL2) */
506 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
507 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
508 
509 	/* Any VNCR-capable reg goes after this point */
510 	MARKER(__VNCR_START__),
511 
512 	VNCR(SCTLR_EL1),/* System Control Register */
513 	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
514 	VNCR(CPACR_EL1),/* Coprocessor Access Control */
515 	VNCR(ZCR_EL1),	/* SVE Control */
516 	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
517 	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
518 	VNCR(TCR_EL1),	/* Translation Control Register */
519 	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
520 	VNCR(ESR_EL1),	/* Exception Syndrome Register */
521 	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
522 	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
523 	VNCR(FAR_EL1),	/* Fault Address Register */
524 	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
525 	VNCR(VBAR_EL1),	/* Vector Base Address Register */
526 	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
527 	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
528 	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
529 	VNCR(ELR_EL1),
530 	VNCR(SP_EL1),
531 	VNCR(SPSR_EL1),
532 	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
533 	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
534 	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
535 	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
536 	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
537 	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
538 	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
539 	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
540 	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
541 
542 	/* Permission Indirection Extension registers */
543 	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
544 	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
545 
546 	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
547 
548 	VNCR(HFGRTR_EL2),
549 	VNCR(HFGWTR_EL2),
550 	VNCR(HFGITR_EL2),
551 	VNCR(HDFGRTR_EL2),
552 	VNCR(HDFGWTR_EL2),
553 	VNCR(HAFGRTR_EL2),
554 
555 	VNCR(CNTVOFF_EL2),
556 	VNCR(CNTV_CVAL_EL0),
557 	VNCR(CNTV_CTL_EL0),
558 	VNCR(CNTP_CVAL_EL0),
559 	VNCR(CNTP_CTL_EL0),
560 
561 	VNCR(ICH_HCR_EL2),
562 
563 	NR_SYS_REGS	/* Nothing after this line! */
564 };
565 
566 struct kvm_sysreg_masks {
567 	struct {
568 		u64	res0;
569 		u64	res1;
570 	} mask[NR_SYS_REGS - __SANITISED_REG_START__];
571 };
572 
573 struct kvm_cpu_context {
574 	struct user_pt_regs regs;	/* sp = sp_el0 */
575 
576 	u64	spsr_abt;
577 	u64	spsr_und;
578 	u64	spsr_irq;
579 	u64	spsr_fiq;
580 
581 	struct user_fpsimd_state fp_regs;
582 
583 	u64 sys_regs[NR_SYS_REGS];
584 
585 	struct kvm_vcpu *__hyp_running_vcpu;
586 
587 	/* This pointer has to be 4kB aligned. */
588 	u64 *vncr_array;
589 };
590 
591 struct cpu_sve_state {
592 	__u64 zcr_el1;
593 
594 	/*
595 	 * Ordering is important since __sve_save_state/__sve_restore_state
596 	 * relies on it.
597 	 */
598 	__u32 fpsr;
599 	__u32 fpcr;
600 
601 	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
602 	__u8 sve_regs[];
603 };
604 
605 /*
606  * This structure is instantiated on a per-CPU basis, and contains
607  * data that is:
608  *
609  * - tied to a single physical CPU, and
610  * - either have a lifetime that does not extend past vcpu_put()
611  * - or is an invariant for the lifetime of the system
612  *
613  * Use host_data_ptr(field) as a way to access a pointer to such a
614  * field.
615  */
616 struct kvm_host_data {
617 #define KVM_HOST_DATA_FLAG_HAS_SPE			0
618 #define KVM_HOST_DATA_FLAG_HAS_TRBE			1
619 #define KVM_HOST_DATA_FLAG_TRBE_ENABLED			4
620 #define KVM_HOST_DATA_FLAG_EL1_TRACING_CONFIGURED	5
621 	unsigned long flags;
622 
623 	struct kvm_cpu_context host_ctxt;
624 
625 	/*
626 	 * Hyp VA.
627 	 * sve_state is only used in pKVM and if system_supports_sve().
628 	 */
629 	struct cpu_sve_state *sve_state;
630 
631 	/* Used by pKVM only. */
632 	u64	fpmr;
633 
634 	/* Ownership of the FP regs */
635 	enum {
636 		FP_STATE_FREE,
637 		FP_STATE_HOST_OWNED,
638 		FP_STATE_GUEST_OWNED,
639 	} fp_owner;
640 
641 	/*
642 	 * host_debug_state contains the host registers which are
643 	 * saved and restored during world switches.
644 	 */
645 	struct {
646 		/* {Break,watch}point registers */
647 		struct kvm_guest_debug_arch regs;
648 		/* Statistical profiling extension */
649 		u64 pmscr_el1;
650 		/* Self-hosted trace */
651 		u64 trfcr_el1;
652 		/* Values of trap registers for the host before guest entry. */
653 		u64 mdcr_el2;
654 	} host_debug_state;
655 
656 	/* Guest trace filter value */
657 	u64 trfcr_while_in_guest;
658 
659 	/* Number of programmable event counters (PMCR_EL0.N) for this CPU */
660 	unsigned int nr_event_counters;
661 
662 	/* Number of debug breakpoints/watchpoints for this CPU (minus 1) */
663 	unsigned int debug_brps;
664 	unsigned int debug_wrps;
665 };
666 
667 struct kvm_host_psci_config {
668 	/* PSCI version used by host. */
669 	u32 version;
670 	u32 smccc_version;
671 
672 	/* Function IDs used by host if version is v0.1. */
673 	struct psci_0_1_function_ids function_ids_0_1;
674 
675 	bool psci_0_1_cpu_suspend_implemented;
676 	bool psci_0_1_cpu_on_implemented;
677 	bool psci_0_1_cpu_off_implemented;
678 	bool psci_0_1_migrate_implemented;
679 };
680 
681 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
682 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
683 
684 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
685 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
686 
687 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
688 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
689 
690 struct vcpu_reset_state {
691 	unsigned long	pc;
692 	unsigned long	r0;
693 	bool		be;
694 	bool		reset;
695 };
696 
697 struct kvm_vcpu_arch {
698 	struct kvm_cpu_context ctxt;
699 
700 	/*
701 	 * Guest floating point state
702 	 *
703 	 * The architecture has two main floating point extensions,
704 	 * the original FPSIMD and SVE.  These have overlapping
705 	 * register views, with the FPSIMD V registers occupying the
706 	 * low 128 bits of the SVE Z registers.  When the core
707 	 * floating point code saves the register state of a task it
708 	 * records which view it saved in fp_type.
709 	 */
710 	void *sve_state;
711 	enum fp_type fp_type;
712 	unsigned int sve_max_vl;
713 
714 	/* Stage 2 paging state used by the hardware on next switch */
715 	struct kvm_s2_mmu *hw_mmu;
716 
717 	/* Values of trap registers for the guest. */
718 	u64 hcr_el2;
719 	u64 hcrx_el2;
720 	u64 mdcr_el2;
721 
722 	/* Exception Information */
723 	struct kvm_vcpu_fault_info fault;
724 
725 	/* Configuration flags, set once and for all before the vcpu can run */
726 	u8 cflags;
727 
728 	/* Input flags to the hypervisor code, potentially cleared after use */
729 	u8 iflags;
730 
731 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
732 	u8 sflags;
733 
734 	/*
735 	 * Don't run the guest (internal implementation need).
736 	 *
737 	 * Contrary to the flags above, this is set/cleared outside of
738 	 * a vcpu context, and thus cannot be mixed with the flags
739 	 * themselves (or the flag accesses need to be made atomic).
740 	 */
741 	bool pause;
742 
743 	/*
744 	 * We maintain more than a single set of debug registers to support
745 	 * debugging the guest from the host and to maintain separate host and
746 	 * guest state during world switches. vcpu_debug_state are the debug
747 	 * registers of the vcpu as the guest sees them.
748 	 *
749 	 * external_debug_state contains the debug values we want to debug the
750 	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
751 	 */
752 	struct kvm_guest_debug_arch vcpu_debug_state;
753 	struct kvm_guest_debug_arch external_debug_state;
754 	u64 external_mdscr_el1;
755 
756 	enum {
757 		VCPU_DEBUG_FREE,
758 		VCPU_DEBUG_HOST_OWNED,
759 		VCPU_DEBUG_GUEST_OWNED,
760 	} debug_owner;
761 
762 	/* VGIC state */
763 	struct vgic_cpu vgic_cpu;
764 	struct arch_timer_cpu timer_cpu;
765 	struct kvm_pmu pmu;
766 
767 	/* vcpu power state */
768 	struct kvm_mp_state mp_state;
769 	spinlock_t mp_state_lock;
770 
771 	/* Cache some mmu pages needed inside spinlock regions */
772 	struct kvm_mmu_memory_cache mmu_page_cache;
773 
774 	/* Pages to top-up the pKVM/EL2 guest pool */
775 	struct kvm_hyp_memcache pkvm_memcache;
776 
777 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
778 	u64 vsesr_el2;
779 
780 	/* Additional reset state */
781 	struct vcpu_reset_state	reset_state;
782 
783 	/* Guest PV state */
784 	struct {
785 		u64 last_steal;
786 		gpa_t base;
787 	} steal;
788 
789 	/* Per-vcpu CCSIDR override or NULL */
790 	u32 *ccsidr;
791 };
792 
793 /*
794  * Each 'flag' is composed of a comma-separated triplet:
795  *
796  * - the flag-set it belongs to in the vcpu->arch structure
797  * - the value for that flag
798  * - the mask for that flag
799  *
800  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
801  * unpack_vcpu_flag() extract the flag value from the triplet for
802  * direct use outside of the flag accessors.
803  */
804 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
805 
806 #define __unpack_flag(_set, _f, _m)	_f
807 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
808 
809 #define __build_check_flag(v, flagset, f, m)			\
810 	do {							\
811 		typeof(v->arch.flagset) *_fset;			\
812 								\
813 		/* Check that the flags fit in the mask */	\
814 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
815 		/* Check that the flags fit in the type */	\
816 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
817 	} while (0)
818 
819 #define __vcpu_get_flag(v, flagset, f, m)			\
820 	({							\
821 		__build_check_flag(v, flagset, f, m);		\
822 								\
823 		READ_ONCE(v->arch.flagset) & (m);		\
824 	})
825 
826 /*
827  * Note that the set/clear accessors must be preempt-safe in order to
828  * avoid nesting them with load/put which also manipulate flags...
829  */
830 #ifdef __KVM_NVHE_HYPERVISOR__
831 /* the nVHE hypervisor is always non-preemptible */
832 #define __vcpu_flags_preempt_disable()
833 #define __vcpu_flags_preempt_enable()
834 #else
835 #define __vcpu_flags_preempt_disable()	preempt_disable()
836 #define __vcpu_flags_preempt_enable()	preempt_enable()
837 #endif
838 
839 #define __vcpu_set_flag(v, flagset, f, m)			\
840 	do {							\
841 		typeof(v->arch.flagset) *fset;			\
842 								\
843 		__build_check_flag(v, flagset, f, m);		\
844 								\
845 		fset = &v->arch.flagset;			\
846 		__vcpu_flags_preempt_disable();			\
847 		if (HWEIGHT(m) > 1)				\
848 			*fset &= ~(m);				\
849 		*fset |= (f);					\
850 		__vcpu_flags_preempt_enable();			\
851 	} while (0)
852 
853 #define __vcpu_clear_flag(v, flagset, f, m)			\
854 	do {							\
855 		typeof(v->arch.flagset) *fset;			\
856 								\
857 		__build_check_flag(v, flagset, f, m);		\
858 								\
859 		fset = &v->arch.flagset;			\
860 		__vcpu_flags_preempt_disable();			\
861 		*fset &= ~(m);					\
862 		__vcpu_flags_preempt_enable();			\
863 	} while (0)
864 
865 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
866 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
867 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
868 
869 /* KVM_ARM_VCPU_INIT completed */
870 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(0))
871 /* SVE config completed */
872 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
873 
874 /* Exception pending */
875 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
876 /*
877  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
878  * be set together with an exception...
879  */
880 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
881 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
882 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
883 
884 /* Helpers to encode exceptions with minimum fuss */
885 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
886 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
887 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
888 
889 /*
890  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
891  * values:
892  *
893  * For AArch32 EL1:
894  */
895 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
896 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
897 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
898 /* For AArch64: */
899 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
900 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
901 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
902 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
903 /* For AArch64 with NV: */
904 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
905 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
906 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
907 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
908 
909 /* Physical CPU not in supported_cpus */
910 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(0))
911 /* WFIT instruction trapped */
912 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(1))
913 /* vcpu system registers loaded on physical CPU */
914 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(2))
915 /* Software step state is Active-pending for external debug */
916 #define HOST_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(3))
917 /* Software step state is Active pending for guest debug */
918 #define GUEST_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(4))
919 /* PMUSERENR for the guest EL0 is on physical CPU */
920 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(5))
921 /* WFI instruction trapped */
922 #define IN_WFI			__vcpu_single_flag(sflags, BIT(6))
923 
924 
925 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
926 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
927 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
928 
929 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
930 
931 #define vcpu_sve_zcr_elx(vcpu)						\
932 	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
933 
934 #define vcpu_sve_state_size(vcpu) ({					\
935 	size_t __size_ret;						\
936 	unsigned int __vcpu_vq;						\
937 									\
938 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
939 		__size_ret = 0;						\
940 	} else {							\
941 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
942 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
943 	}								\
944 									\
945 	__size_ret;							\
946 })
947 
948 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
949 				 KVM_GUESTDBG_USE_SW_BP | \
950 				 KVM_GUESTDBG_USE_HW | \
951 				 KVM_GUESTDBG_SINGLESTEP)
952 
953 #define kvm_has_sve(kvm)	(system_supports_sve() &&		\
954 				 test_bit(KVM_ARCH_FLAG_GUEST_HAS_SVE, &(kvm)->arch.flags))
955 
956 #ifdef __KVM_NVHE_HYPERVISOR__
957 #define vcpu_has_sve(vcpu)	kvm_has_sve(kern_hyp_va((vcpu)->kvm))
958 #else
959 #define vcpu_has_sve(vcpu)	kvm_has_sve((vcpu)->kvm)
960 #endif
961 
962 #ifdef CONFIG_ARM64_PTR_AUTH
963 #define vcpu_has_ptrauth(vcpu)						\
964 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
965 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
966 	 (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) ||       \
967 	  vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
968 #else
969 #define vcpu_has_ptrauth(vcpu)		false
970 #endif
971 
972 #define vcpu_on_unsupported_cpu(vcpu)					\
973 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
974 
975 #define vcpu_set_on_unsupported_cpu(vcpu)				\
976 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
977 
978 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
979 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
980 
981 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
982 
983 /*
984  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
985  * memory backed version of a register, and not the one most recently
986  * accessed by a running VCPU.  For example, for userspace access or
987  * for system registers that are never context switched, but only
988  * emulated.
989  *
990  * Don't bother with VNCR-based accesses in the nVHE code, it has no
991  * business dealing with NV.
992  */
993 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
994 {
995 #if !defined (__KVM_NVHE_HYPERVISOR__)
996 	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
997 		     r >= __VNCR_START__ && ctxt->vncr_array))
998 		return &ctxt->vncr_array[r - __VNCR_START__];
999 #endif
1000 	return (u64 *)&ctxt->sys_regs[r];
1001 }
1002 
1003 #define __ctxt_sys_reg(c,r)						\
1004 	({								\
1005 		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
1006 			     (r) >= NR_SYS_REGS);			\
1007 		___ctxt_sys_reg(c, r);					\
1008 	})
1009 
1010 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1011 
1012 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1013 #define __vcpu_sys_reg(v,r)						\
1014 	(*({								\
1015 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1016 		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
1017 		if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__)	\
1018 			*__r = kvm_vcpu_apply_reg_masks((v), (r), *__r);\
1019 		__r;							\
1020 	}))
1021 
1022 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1023 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1024 
1025 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1026 {
1027 	/*
1028 	 * *** VHE ONLY ***
1029 	 *
1030 	 * System registers listed in the switch are not saved on every
1031 	 * exit from the guest but are only saved on vcpu_put.
1032 	 *
1033 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1034 	 * should never be listed below, because the guest cannot modify its
1035 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1036 	 * thread when emulating cross-VCPU communication.
1037 	 */
1038 	if (!has_vhe())
1039 		return false;
1040 
1041 	switch (reg) {
1042 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
1043 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
1044 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
1045 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
1046 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
1047 	case TCR2_EL1:		*val = read_sysreg_s(SYS_TCR2_EL12);	break;
1048 	case PIR_EL1:		*val = read_sysreg_s(SYS_PIR_EL12);	break;
1049 	case PIRE0_EL1:		*val = read_sysreg_s(SYS_PIRE0_EL12);	break;
1050 	case POR_EL1:		*val = read_sysreg_s(SYS_POR_EL12);	break;
1051 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
1052 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
1053 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
1054 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
1055 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
1056 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
1057 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1058 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
1059 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
1060 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
1061 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
1062 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
1063 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
1064 	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
1065 	case PAR_EL1:		*val = read_sysreg_par();		break;
1066 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
1067 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
1068 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
1069 	case ZCR_EL1:		*val = read_sysreg_s(SYS_ZCR_EL12);	break;
1070 	default:		return false;
1071 	}
1072 
1073 	return true;
1074 }
1075 
1076 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1077 {
1078 	/*
1079 	 * *** VHE ONLY ***
1080 	 *
1081 	 * System registers listed in the switch are not restored on every
1082 	 * entry to the guest but are only restored on vcpu_load.
1083 	 *
1084 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1085 	 * should never be listed below, because the MPIDR should only be set
1086 	 * once, before running the VCPU, and never changed later.
1087 	 */
1088 	if (!has_vhe())
1089 		return false;
1090 
1091 	switch (reg) {
1092 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
1093 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
1094 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
1095 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
1096 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
1097 	case TCR2_EL1:		write_sysreg_s(val, SYS_TCR2_EL12);	break;
1098 	case PIR_EL1:		write_sysreg_s(val, SYS_PIR_EL12);	break;
1099 	case PIRE0_EL1:		write_sysreg_s(val, SYS_PIRE0_EL12);	break;
1100 	case POR_EL1:		write_sysreg_s(val, SYS_POR_EL12);	break;
1101 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
1102 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
1103 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
1104 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
1105 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
1106 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
1107 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1108 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
1109 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1110 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1111 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1112 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1113 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1114 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1115 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1116 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1117 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1118 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1119 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
1120 	default:		return false;
1121 	}
1122 
1123 	return true;
1124 }
1125 
1126 struct kvm_vm_stat {
1127 	struct kvm_vm_stat_generic generic;
1128 };
1129 
1130 struct kvm_vcpu_stat {
1131 	struct kvm_vcpu_stat_generic generic;
1132 	u64 hvc_exit_stat;
1133 	u64 wfe_exit_stat;
1134 	u64 wfi_exit_stat;
1135 	u64 mmio_exit_user;
1136 	u64 mmio_exit_kernel;
1137 	u64 signal_exits;
1138 	u64 exits;
1139 };
1140 
1141 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1142 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1143 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1144 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1145 
1146 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1147 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1148 
1149 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1150 			      struct kvm_vcpu_events *events);
1151 
1152 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1153 			      struct kvm_vcpu_events *events);
1154 
1155 void kvm_arm_halt_guest(struct kvm *kvm);
1156 void kvm_arm_resume_guest(struct kvm *kvm);
1157 
1158 #define vcpu_has_run_once(vcpu)	(!!READ_ONCE((vcpu)->pid))
1159 
1160 #ifndef __KVM_NVHE_HYPERVISOR__
1161 #define kvm_call_hyp_nvhe(f, ...)						\
1162 	({								\
1163 		struct arm_smccc_res res;				\
1164 									\
1165 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1166 				  ##__VA_ARGS__, &res);			\
1167 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1168 									\
1169 		res.a1;							\
1170 	})
1171 
1172 /*
1173  * The couple of isb() below are there to guarantee the same behaviour
1174  * on VHE as on !VHE, where the eret to EL1 acts as a context
1175  * synchronization event.
1176  */
1177 #define kvm_call_hyp(f, ...)						\
1178 	do {								\
1179 		if (has_vhe()) {					\
1180 			f(__VA_ARGS__);					\
1181 			isb();						\
1182 		} else {						\
1183 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1184 		}							\
1185 	} while(0)
1186 
1187 #define kvm_call_hyp_ret(f, ...)					\
1188 	({								\
1189 		typeof(f(__VA_ARGS__)) ret;				\
1190 									\
1191 		if (has_vhe()) {					\
1192 			ret = f(__VA_ARGS__);				\
1193 			isb();						\
1194 		} else {						\
1195 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1196 		}							\
1197 									\
1198 		ret;							\
1199 	})
1200 #else /* __KVM_NVHE_HYPERVISOR__ */
1201 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1202 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1203 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1204 #endif /* __KVM_NVHE_HYPERVISOR__ */
1205 
1206 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1207 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1208 
1209 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1210 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1211 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1212 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1213 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1214 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1215 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1216 
1217 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1218 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1219 
1220 int __init kvm_sys_reg_table_init(void);
1221 struct sys_reg_desc;
1222 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1223 				  unsigned int idx);
1224 int __init populate_nv_trap_config(void);
1225 
1226 bool lock_all_vcpus(struct kvm *kvm);
1227 void unlock_all_vcpus(struct kvm *kvm);
1228 
1229 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1230 
1231 /* MMIO helpers */
1232 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1233 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1234 
1235 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1236 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1237 
1238 /*
1239  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1240  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1241  * loaded is considered to be "in guest".
1242  */
1243 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1244 {
1245 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1246 }
1247 
1248 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1249 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1250 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1251 
1252 bool kvm_arm_pvtime_supported(void);
1253 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1254 			    struct kvm_device_attr *attr);
1255 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1256 			    struct kvm_device_attr *attr);
1257 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1258 			    struct kvm_device_attr *attr);
1259 
1260 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1261 int __init kvm_arm_vmid_alloc_init(void);
1262 void __init kvm_arm_vmid_alloc_free(void);
1263 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1264 void kvm_arm_vmid_clear_active(void);
1265 
1266 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1267 {
1268 	vcpu_arch->steal.base = INVALID_GPA;
1269 }
1270 
1271 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1272 {
1273 	return (vcpu_arch->steal.base != INVALID_GPA);
1274 }
1275 
1276 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1277 
1278 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1279 
1280 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1281 
1282 /*
1283  * How we access per-CPU host data depends on the where we access it from,
1284  * and the mode we're in:
1285  *
1286  * - VHE and nVHE hypervisor bits use their locally defined instance
1287  *
1288  * - the rest of the kernel use either the VHE or nVHE one, depending on
1289  *   the mode we're running in.
1290  *
1291  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1292  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1293  *   In this case, the EL1 code uses the *VHE* data as its private state
1294  *   (which makes sense in a way as there shouldn't be any shared state
1295  *   between the host and the hypervisor).
1296  *
1297  * Yes, this is all totally trivial. Shoot me now.
1298  */
1299 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1300 #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1301 #else
1302 #define host_data_ptr(f)						\
1303 	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1304 	 &this_cpu_ptr(&kvm_host_data)->f :				\
1305 	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1306 #endif
1307 
1308 #define host_data_test_flag(flag)					\
1309 	(test_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags)))
1310 #define host_data_set_flag(flag)					\
1311 	set_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1312 #define host_data_clear_flag(flag)					\
1313 	clear_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1314 
1315 /* Check whether the FP regs are owned by the guest */
1316 static inline bool guest_owns_fp_regs(void)
1317 {
1318 	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1319 }
1320 
1321 /* Check whether the FP regs are owned by the host */
1322 static inline bool host_owns_fp_regs(void)
1323 {
1324 	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1325 }
1326 
1327 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1328 {
1329 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1330 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1331 }
1332 
1333 static inline bool kvm_system_needs_idmapped_vectors(void)
1334 {
1335 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1336 }
1337 
1338 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1339 
1340 void kvm_init_host_debug_data(void);
1341 void kvm_vcpu_load_debug(struct kvm_vcpu *vcpu);
1342 void kvm_vcpu_put_debug(struct kvm_vcpu *vcpu);
1343 void kvm_debug_set_guest_ownership(struct kvm_vcpu *vcpu);
1344 void kvm_debug_handle_oslar(struct kvm_vcpu *vcpu, u64 val);
1345 
1346 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1347 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1348 
1349 #define kvm_debug_regs_in_use(vcpu)		\
1350 	((vcpu)->arch.debug_owner != VCPU_DEBUG_FREE)
1351 #define kvm_host_owns_debug_regs(vcpu)		\
1352 	((vcpu)->arch.debug_owner == VCPU_DEBUG_HOST_OWNED)
1353 #define kvm_guest_owns_debug_regs(vcpu)		\
1354 	((vcpu)->arch.debug_owner == VCPU_DEBUG_GUEST_OWNED)
1355 
1356 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1357 			       struct kvm_device_attr *attr);
1358 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1359 			       struct kvm_device_attr *attr);
1360 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1361 			       struct kvm_device_attr *attr);
1362 
1363 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1364 			       struct kvm_arm_copy_mte_tags *copy_tags);
1365 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1366 				    struct kvm_arm_counter_offset *offset);
1367 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1368 					struct reg_mask_range *range);
1369 
1370 /* Guest/host FPSIMD coordination helpers */
1371 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1372 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1373 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1374 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1375 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1376 
1377 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1378 {
1379 	return (!has_vhe() && attr->exclude_host);
1380 }
1381 
1382 #ifdef CONFIG_KVM
1383 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1384 void kvm_clr_pmu_events(u64 clr);
1385 bool kvm_set_pmuserenr(u64 val);
1386 void kvm_enable_trbe(void);
1387 void kvm_disable_trbe(void);
1388 void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest);
1389 #else
1390 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
1391 static inline void kvm_clr_pmu_events(u64 clr) {}
1392 static inline bool kvm_set_pmuserenr(u64 val)
1393 {
1394 	return false;
1395 }
1396 static inline void kvm_enable_trbe(void) {}
1397 static inline void kvm_disable_trbe(void) {}
1398 static inline void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest) {}
1399 #endif
1400 
1401 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1402 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1403 
1404 int __init kvm_set_ipa_limit(void);
1405 u32 kvm_get_pa_bits(struct kvm *kvm);
1406 
1407 #define __KVM_HAVE_ARCH_VM_ALLOC
1408 struct kvm *kvm_arch_alloc_vm(void);
1409 
1410 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1411 
1412 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1413 
1414 #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1415 
1416 #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1417 
1418 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1419 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1420 
1421 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1422 
1423 #define kvm_has_mte(kvm)					\
1424 	(system_supports_mte() &&				\
1425 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1426 
1427 #define kvm_supports_32bit_el0()				\
1428 	(system_supports_32bit_el0() &&				\
1429 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1430 
1431 #define kvm_vm_has_ran_once(kvm)					\
1432 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1433 
1434 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1435 {
1436 	return test_bit(feature, ka->vcpu_features);
1437 }
1438 
1439 #define kvm_vcpu_has_feature(k, f)	__vcpu_has_feature(&(k)->arch, (f))
1440 #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1441 
1442 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1443 
1444 int kvm_trng_call(struct kvm_vcpu *vcpu);
1445 #ifdef CONFIG_KVM
1446 extern phys_addr_t hyp_mem_base;
1447 extern phys_addr_t hyp_mem_size;
1448 void __init kvm_hyp_reserve(void);
1449 #else
1450 static inline void kvm_hyp_reserve(void) { }
1451 #endif
1452 
1453 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1454 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1455 
1456 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1457 {
1458 	switch (reg) {
1459 	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1460 		return &ka->id_regs[IDREG_IDX(reg)];
1461 	case SYS_CTR_EL0:
1462 		return &ka->ctr_el0;
1463 	default:
1464 		WARN_ON_ONCE(1);
1465 		return NULL;
1466 	}
1467 }
1468 
1469 #define kvm_read_vm_id_reg(kvm, reg)					\
1470 	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1471 
1472 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1473 
1474 #define __expand_field_sign_unsigned(id, fld, val)			\
1475 	((u64)SYS_FIELD_VALUE(id, fld, val))
1476 
1477 #define __expand_field_sign_signed(id, fld, val)			\
1478 	({								\
1479 		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1480 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1481 	})
1482 
1483 #define get_idreg_field_unsigned(kvm, id, fld)				\
1484 	({								\
1485 		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1486 		FIELD_GET(id##_##fld##_MASK, __val);			\
1487 	})
1488 
1489 #define get_idreg_field_signed(kvm, id, fld)				\
1490 	({								\
1491 		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1492 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1493 	})
1494 
1495 #define get_idreg_field_enum(kvm, id, fld)				\
1496 	get_idreg_field_unsigned(kvm, id, fld)
1497 
1498 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1499 	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1500 
1501 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1502 	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1503 
1504 #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1505 	(id##_##fld##_SIGNED ?						\
1506 	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1507 	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1508 
1509 #define kvm_has_feat(kvm, id, fld, limit)				\
1510 	kvm_cmp_feat(kvm, id, fld, >=, limit)
1511 
1512 #define kvm_has_feat_enum(kvm, id, fld, val)				\
1513 	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1514 
1515 #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1516 	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1517 	kvm_cmp_feat(kvm, id, fld, <=, max))
1518 
1519 /* Check for a given level of PAuth support */
1520 #define kvm_has_pauth(k, l)						\
1521 	({								\
1522 		bool pa, pi, pa3;					\
1523 									\
1524 		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1525 		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1526 		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1527 		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1528 		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1529 		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1530 									\
1531 		(pa + pi + pa3) == 1;					\
1532 	})
1533 
1534 #define kvm_has_fpmr(k)					\
1535 	(system_supports_fpmr() &&			\
1536 	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1537 
1538 #define kvm_has_tcr2(k)				\
1539 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, TCRX, IMP))
1540 
1541 #define kvm_has_s1pie(k)				\
1542 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1PIE, IMP))
1543 
1544 #define kvm_has_s1poe(k)				\
1545 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1POE, IMP))
1546 
1547 #endif /* __ARM64_KVM_HOST_H__ */
1548