xref: /linux/arch/arm64/include/asm/kvm_host.h (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31 
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33 
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35 
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39 
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41 
42 #define KVM_VCPU_MAX_FEATURES 7
43 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44 
45 #define KVM_REQ_SLEEP \
46 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP	KVM_ARCH_REQ(8)
55 
56 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
57 				     KVM_DIRTY_LOG_INITIALLY_SET)
58 
59 #define KVM_HAVE_MMU_RWLOCK
60 
61 /*
62  * Mode of operation configurable with kvm-arm.mode early param.
63  * See Documentation/admin-guide/kernel-parameters.txt for more information.
64  */
65 enum kvm_mode {
66 	KVM_MODE_DEFAULT,
67 	KVM_MODE_PROTECTED,
68 	KVM_MODE_NV,
69 	KVM_MODE_NONE,
70 };
71 #ifdef CONFIG_KVM
72 enum kvm_mode kvm_get_mode(void);
73 #else
74 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
75 #endif
76 
77 extern unsigned int __ro_after_init kvm_sve_max_vl;
78 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
79 int __init kvm_arm_init_sve(void);
80 
81 u32 __attribute_const__ kvm_target_cpu(void);
82 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
83 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
84 
85 struct kvm_hyp_memcache {
86 	phys_addr_t head;
87 	unsigned long nr_pages;
88 };
89 
90 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
91 				     phys_addr_t *p,
92 				     phys_addr_t (*to_pa)(void *virt))
93 {
94 	*p = mc->head;
95 	mc->head = to_pa(p);
96 	mc->nr_pages++;
97 }
98 
99 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
100 				     void *(*to_va)(phys_addr_t phys))
101 {
102 	phys_addr_t *p = to_va(mc->head);
103 
104 	if (!mc->nr_pages)
105 		return NULL;
106 
107 	mc->head = *p;
108 	mc->nr_pages--;
109 
110 	return p;
111 }
112 
113 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
114 				       unsigned long min_pages,
115 				       void *(*alloc_fn)(void *arg),
116 				       phys_addr_t (*to_pa)(void *virt),
117 				       void *arg)
118 {
119 	while (mc->nr_pages < min_pages) {
120 		phys_addr_t *p = alloc_fn(arg);
121 
122 		if (!p)
123 			return -ENOMEM;
124 		push_hyp_memcache(mc, p, to_pa);
125 	}
126 
127 	return 0;
128 }
129 
130 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
131 				       void (*free_fn)(void *virt, void *arg),
132 				       void *(*to_va)(phys_addr_t phys),
133 				       void *arg)
134 {
135 	while (mc->nr_pages)
136 		free_fn(pop_hyp_memcache(mc, to_va), arg);
137 }
138 
139 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
140 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
141 
142 struct kvm_vmid {
143 	atomic64_t id;
144 };
145 
146 struct kvm_s2_mmu {
147 	struct kvm_vmid vmid;
148 
149 	/*
150 	 * stage2 entry level table
151 	 *
152 	 * Two kvm_s2_mmu structures in the same VM can point to the same
153 	 * pgd here.  This happens when running a guest using a
154 	 * translation regime that isn't affected by its own stage-2
155 	 * translation, such as a non-VHE hypervisor running at vEL2, or
156 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
157 	 * canonical stage-2 page tables.
158 	 */
159 	phys_addr_t	pgd_phys;
160 	struct kvm_pgtable *pgt;
161 
162 	/*
163 	 * VTCR value used on the host. For a non-NV guest (or a NV
164 	 * guest that runs in a context where its own S2 doesn't
165 	 * apply), its T0SZ value reflects that of the IPA size.
166 	 *
167 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
168 	 * the guest.
169 	 */
170 	u64	vtcr;
171 
172 	/* The last vcpu id that ran on each physical CPU */
173 	int __percpu *last_vcpu_ran;
174 
175 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
176 	/*
177 	 * Memory cache used to split
178 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
179 	 * is used to allocate stage2 page tables while splitting huge
180 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
181 	 * influences both the capacity of the split page cache, and
182 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
183 	 * too high.
184 	 *
185 	 * Protected by kvm->slots_lock.
186 	 */
187 	struct kvm_mmu_memory_cache split_page_cache;
188 	uint64_t split_page_chunk_size;
189 
190 	struct kvm_arch *arch;
191 
192 	/*
193 	 * For a shadow stage-2 MMU, the virtual vttbr used by the
194 	 * host to parse the guest S2.
195 	 * This either contains:
196 	 * - the virtual VTTBR programmed by the guest hypervisor with
197          *   CnP cleared
198 	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
199 	 *
200 	 * We also cache the full VTCR which gets used for TLB invalidation,
201 	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
202 	 * to be cached in a TLB" to the letter.
203 	 */
204 	u64	tlb_vttbr;
205 	u64	tlb_vtcr;
206 
207 	/*
208 	 * true when this represents a nested context where virtual
209 	 * HCR_EL2.VM == 1
210 	 */
211 	bool	nested_stage2_enabled;
212 
213 	/*
214 	 * true when this MMU needs to be unmapped before being used for a new
215 	 * purpose.
216 	 */
217 	bool	pending_unmap;
218 
219 	/*
220 	 *  0: Nobody is currently using this, check vttbr for validity
221 	 * >0: Somebody is actively using this.
222 	 */
223 	atomic_t refcnt;
224 };
225 
226 struct kvm_arch_memory_slot {
227 };
228 
229 /**
230  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
231  *
232  * @std_bmap: Bitmap of standard secure service calls
233  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
234  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
235  */
236 struct kvm_smccc_features {
237 	unsigned long std_bmap;
238 	unsigned long std_hyp_bmap;
239 	unsigned long vendor_hyp_bmap;
240 };
241 
242 typedef unsigned int pkvm_handle_t;
243 
244 struct kvm_protected_vm {
245 	pkvm_handle_t handle;
246 	struct kvm_hyp_memcache teardown_mc;
247 	bool enabled;
248 };
249 
250 struct kvm_mpidr_data {
251 	u64			mpidr_mask;
252 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
253 };
254 
255 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
256 {
257 	unsigned long index = 0, mask = data->mpidr_mask;
258 	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
259 
260 	bitmap_gather(&index, &aff, &mask, fls(mask));
261 
262 	return index;
263 }
264 
265 struct kvm_sysreg_masks;
266 
267 enum fgt_group_id {
268 	__NO_FGT_GROUP__,
269 	HFGxTR_GROUP,
270 	HDFGRTR_GROUP,
271 	HDFGWTR_GROUP = HDFGRTR_GROUP,
272 	HFGITR_GROUP,
273 	HAFGRTR_GROUP,
274 
275 	/* Must be last */
276 	__NR_FGT_GROUP_IDS__
277 };
278 
279 struct kvm_arch {
280 	struct kvm_s2_mmu mmu;
281 
282 	/*
283 	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
284 	 * architecture. We track them globally, as we present the
285 	 * same feature-set to all vcpus.
286 	 *
287 	 * Index 0 is currently spare.
288 	 */
289 	u64 fgu[__NR_FGT_GROUP_IDS__];
290 
291 	/*
292 	 * Stage 2 paging state for VMs with nested S2 using a virtual
293 	 * VMID.
294 	 */
295 	struct kvm_s2_mmu *nested_mmus;
296 	size_t nested_mmus_size;
297 	int nested_mmus_next;
298 
299 	/* Interrupt controller */
300 	struct vgic_dist	vgic;
301 
302 	/* Timers */
303 	struct arch_timer_vm_data timer_data;
304 
305 	/* Mandated version of PSCI */
306 	u32 psci_version;
307 
308 	/* Protects VM-scoped configuration data */
309 	struct mutex config_lock;
310 
311 	/*
312 	 * If we encounter a data abort without valid instruction syndrome
313 	 * information, report this to user space.  User space can (and
314 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
315 	 * supported.
316 	 */
317 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
318 	/* Memory Tagging Extension enabled for the guest */
319 #define KVM_ARCH_FLAG_MTE_ENABLED			1
320 	/* At least one vCPU has ran in the VM */
321 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
322 	/* The vCPU feature set for the VM is configured */
323 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
324 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
325 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
326 	/* VM counter offset */
327 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
328 	/* Timer PPIs made immutable */
329 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
330 	/* Initial ID reg values loaded */
331 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
332 	/* Fine-Grained UNDEF initialised */
333 #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
334 	unsigned long flags;
335 
336 	/* VM-wide vCPU feature set */
337 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
338 
339 	/* MPIDR to vcpu index mapping, optional */
340 	struct kvm_mpidr_data *mpidr_data;
341 
342 	/*
343 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
344 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
345 	 */
346 	unsigned long *pmu_filter;
347 	struct arm_pmu *arm_pmu;
348 
349 	cpumask_var_t supported_cpus;
350 
351 	/* PMCR_EL0.N value for the guest */
352 	u8 pmcr_n;
353 
354 	/* Iterator for idreg debugfs */
355 	u8	idreg_debugfs_iter;
356 
357 	/* Hypercall features firmware registers' descriptor */
358 	struct kvm_smccc_features smccc_feat;
359 	struct maple_tree smccc_filter;
360 
361 	/*
362 	 * Emulated CPU ID registers per VM
363 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
364 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
365 	 *
366 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
367 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
368 	 */
369 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
370 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
371 	u64 id_regs[KVM_ARM_ID_REG_NUM];
372 
373 	u64 ctr_el0;
374 
375 	/* Masks for VNCR-backed and general EL2 sysregs */
376 	struct kvm_sysreg_masks	*sysreg_masks;
377 
378 	/*
379 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
380 	 * the associated pKVM instance in the hypervisor.
381 	 */
382 	struct kvm_protected_vm pkvm;
383 };
384 
385 struct kvm_vcpu_fault_info {
386 	u64 esr_el2;		/* Hyp Syndrom Register */
387 	u64 far_el2;		/* Hyp Fault Address Register */
388 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
389 	u64 disr_el1;		/* Deferred [SError] Status Register */
390 };
391 
392 /*
393  * VNCR() just places the VNCR_capable registers in the enum after
394  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
395  * from the VNCR base. As we don't require the enum to be otherwise ordered,
396  * we need the terrible hack below to ensure that we correctly size the
397  * sys_regs array, no matter what.
398  *
399  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
400  * treasure trove of bit hacks:
401  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
402  */
403 #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
404 #define VNCR(r)						\
405 	__before_##r,					\
406 	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
407 	__after_##r = __MAX__(__before_##r - 1, r)
408 
409 #define MARKER(m)				\
410 	m, __after_##m = m - 1
411 
412 enum vcpu_sysreg {
413 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
414 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
415 	CLIDR_EL1,	/* Cache Level ID Register */
416 	CSSELR_EL1,	/* Cache Size Selection Register */
417 	TPIDR_EL0,	/* Thread ID, User R/W */
418 	TPIDRRO_EL0,	/* Thread ID, User R/O */
419 	TPIDR_EL1,	/* Thread ID, Privileged */
420 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
421 	PAR_EL1,	/* Physical Address Register */
422 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
423 	OSLSR_EL1,	/* OS Lock Status Register */
424 	DISR_EL1,	/* Deferred Interrupt Status Register */
425 
426 	/* Performance Monitors Registers */
427 	PMCR_EL0,	/* Control Register */
428 	PMSELR_EL0,	/* Event Counter Selection Register */
429 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
430 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
431 	PMCCNTR_EL0,	/* Cycle Counter Register */
432 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
433 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
434 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
435 	PMCNTENSET_EL0,	/* Count Enable Set Register */
436 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
437 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
438 	PMUSERENR_EL0,	/* User Enable Register */
439 
440 	/* Pointer Authentication Registers in a strict increasing order. */
441 	APIAKEYLO_EL1,
442 	APIAKEYHI_EL1,
443 	APIBKEYLO_EL1,
444 	APIBKEYHI_EL1,
445 	APDAKEYLO_EL1,
446 	APDAKEYHI_EL1,
447 	APDBKEYLO_EL1,
448 	APDBKEYHI_EL1,
449 	APGAKEYLO_EL1,
450 	APGAKEYHI_EL1,
451 
452 	/* Memory Tagging Extension registers */
453 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
454 	GCR_EL1,	/* Tag Control Register */
455 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
456 
457 	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
458 
459 	/* FP/SIMD/SVE */
460 	SVCR,
461 	FPMR,
462 
463 	/* 32bit specific registers. */
464 	DACR32_EL2,	/* Domain Access Control Register */
465 	IFSR32_EL2,	/* Instruction Fault Status Register */
466 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
467 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
468 
469 	/* EL2 registers */
470 	SCTLR_EL2,	/* System Control Register (EL2) */
471 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
472 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
473 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
474 	ZCR_EL2,	/* SVE Control Register (EL2) */
475 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
476 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
477 	TCR_EL2,	/* Translation Control Register (EL2) */
478 	PIRE0_EL2,	/* Permission Indirection Register 0 (EL2) */
479 	PIR_EL2,	/* Permission Indirection Register 1 (EL2) */
480 	POR_EL2,	/* Permission Overlay Register 2 (EL2) */
481 	SPSR_EL2,	/* EL2 saved program status register */
482 	ELR_EL2,	/* EL2 exception link register */
483 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
484 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
485 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
486 	FAR_EL2,	/* Fault Address Register (EL2) */
487 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
488 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
489 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
490 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
491 	RVBAR_EL2,	/* Reset Vector Base Address Register */
492 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
493 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
494 	SP_EL2,		/* EL2 Stack Pointer */
495 	CNTHP_CTL_EL2,
496 	CNTHP_CVAL_EL2,
497 	CNTHV_CTL_EL2,
498 	CNTHV_CVAL_EL2,
499 
500 	/* Anything from this can be RES0/RES1 sanitised */
501 	MARKER(__SANITISED_REG_START__),
502 	TCR2_EL2,	/* Extended Translation Control Register (EL2) */
503 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
504 
505 	/* Any VNCR-capable reg goes after this point */
506 	MARKER(__VNCR_START__),
507 
508 	VNCR(SCTLR_EL1),/* System Control Register */
509 	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
510 	VNCR(CPACR_EL1),/* Coprocessor Access Control */
511 	VNCR(ZCR_EL1),	/* SVE Control */
512 	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
513 	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
514 	VNCR(TCR_EL1),	/* Translation Control Register */
515 	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
516 	VNCR(ESR_EL1),	/* Exception Syndrome Register */
517 	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
518 	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
519 	VNCR(FAR_EL1),	/* Fault Address Register */
520 	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
521 	VNCR(VBAR_EL1),	/* Vector Base Address Register */
522 	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
523 	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
524 	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
525 	VNCR(ELR_EL1),
526 	VNCR(SP_EL1),
527 	VNCR(SPSR_EL1),
528 	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
529 	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
530 	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
531 	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
532 	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
533 	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
534 	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
535 	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
536 	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
537 
538 	/* Permission Indirection Extension registers */
539 	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
540 	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
541 
542 	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
543 
544 	VNCR(HFGRTR_EL2),
545 	VNCR(HFGWTR_EL2),
546 	VNCR(HFGITR_EL2),
547 	VNCR(HDFGRTR_EL2),
548 	VNCR(HDFGWTR_EL2),
549 	VNCR(HAFGRTR_EL2),
550 
551 	VNCR(CNTVOFF_EL2),
552 	VNCR(CNTV_CVAL_EL0),
553 	VNCR(CNTV_CTL_EL0),
554 	VNCR(CNTP_CVAL_EL0),
555 	VNCR(CNTP_CTL_EL0),
556 
557 	VNCR(ICH_HCR_EL2),
558 
559 	NR_SYS_REGS	/* Nothing after this line! */
560 };
561 
562 struct kvm_sysreg_masks {
563 	struct {
564 		u64	res0;
565 		u64	res1;
566 	} mask[NR_SYS_REGS - __SANITISED_REG_START__];
567 };
568 
569 struct kvm_cpu_context {
570 	struct user_pt_regs regs;	/* sp = sp_el0 */
571 
572 	u64	spsr_abt;
573 	u64	spsr_und;
574 	u64	spsr_irq;
575 	u64	spsr_fiq;
576 
577 	struct user_fpsimd_state fp_regs;
578 
579 	u64 sys_regs[NR_SYS_REGS];
580 
581 	struct kvm_vcpu *__hyp_running_vcpu;
582 
583 	/* This pointer has to be 4kB aligned. */
584 	u64 *vncr_array;
585 };
586 
587 struct cpu_sve_state {
588 	__u64 zcr_el1;
589 
590 	/*
591 	 * Ordering is important since __sve_save_state/__sve_restore_state
592 	 * relies on it.
593 	 */
594 	__u32 fpsr;
595 	__u32 fpcr;
596 
597 	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
598 	__u8 sve_regs[];
599 };
600 
601 /*
602  * This structure is instantiated on a per-CPU basis, and contains
603  * data that is:
604  *
605  * - tied to a single physical CPU, and
606  * - either have a lifetime that does not extend past vcpu_put()
607  * - or is an invariant for the lifetime of the system
608  *
609  * Use host_data_ptr(field) as a way to access a pointer to such a
610  * field.
611  */
612 struct kvm_host_data {
613 	struct kvm_cpu_context host_ctxt;
614 
615 	/*
616 	 * All pointers in this union are hyp VA.
617 	 * sve_state is only used in pKVM and if system_supports_sve().
618 	 */
619 	union {
620 		struct user_fpsimd_state *fpsimd_state;
621 		struct cpu_sve_state *sve_state;
622 	};
623 
624 	union {
625 		/* HYP VA pointer to the host storage for FPMR */
626 		u64	*fpmr_ptr;
627 		/*
628 		 * Used by pKVM only, as it needs to provide storage
629 		 * for the host
630 		 */
631 		u64	fpmr;
632 	};
633 
634 	/* Ownership of the FP regs */
635 	enum {
636 		FP_STATE_FREE,
637 		FP_STATE_HOST_OWNED,
638 		FP_STATE_GUEST_OWNED,
639 	} fp_owner;
640 
641 	/*
642 	 * host_debug_state contains the host registers which are
643 	 * saved and restored during world switches.
644 	 */
645 	 struct {
646 		/* {Break,watch}point registers */
647 		struct kvm_guest_debug_arch regs;
648 		/* Statistical profiling extension */
649 		u64 pmscr_el1;
650 		/* Self-hosted trace */
651 		u64 trfcr_el1;
652 		/* Values of trap registers for the host before guest entry. */
653 		u64 mdcr_el2;
654 	} host_debug_state;
655 };
656 
657 struct kvm_host_psci_config {
658 	/* PSCI version used by host. */
659 	u32 version;
660 	u32 smccc_version;
661 
662 	/* Function IDs used by host if version is v0.1. */
663 	struct psci_0_1_function_ids function_ids_0_1;
664 
665 	bool psci_0_1_cpu_suspend_implemented;
666 	bool psci_0_1_cpu_on_implemented;
667 	bool psci_0_1_cpu_off_implemented;
668 	bool psci_0_1_migrate_implemented;
669 };
670 
671 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
672 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
673 
674 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
675 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
676 
677 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
678 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
679 
680 struct vcpu_reset_state {
681 	unsigned long	pc;
682 	unsigned long	r0;
683 	bool		be;
684 	bool		reset;
685 };
686 
687 struct kvm_vcpu_arch {
688 	struct kvm_cpu_context ctxt;
689 
690 	/*
691 	 * Guest floating point state
692 	 *
693 	 * The architecture has two main floating point extensions,
694 	 * the original FPSIMD and SVE.  These have overlapping
695 	 * register views, with the FPSIMD V registers occupying the
696 	 * low 128 bits of the SVE Z registers.  When the core
697 	 * floating point code saves the register state of a task it
698 	 * records which view it saved in fp_type.
699 	 */
700 	void *sve_state;
701 	enum fp_type fp_type;
702 	unsigned int sve_max_vl;
703 
704 	/* Stage 2 paging state used by the hardware on next switch */
705 	struct kvm_s2_mmu *hw_mmu;
706 
707 	/* Values of trap registers for the guest. */
708 	u64 hcr_el2;
709 	u64 hcrx_el2;
710 	u64 mdcr_el2;
711 	u64 cptr_el2;
712 
713 	/* Exception Information */
714 	struct kvm_vcpu_fault_info fault;
715 
716 	/* Configuration flags, set once and for all before the vcpu can run */
717 	u8 cflags;
718 
719 	/* Input flags to the hypervisor code, potentially cleared after use */
720 	u8 iflags;
721 
722 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
723 	u8 sflags;
724 
725 	/*
726 	 * Don't run the guest (internal implementation need).
727 	 *
728 	 * Contrary to the flags above, this is set/cleared outside of
729 	 * a vcpu context, and thus cannot be mixed with the flags
730 	 * themselves (or the flag accesses need to be made atomic).
731 	 */
732 	bool pause;
733 
734 	/*
735 	 * We maintain more than a single set of debug registers to support
736 	 * debugging the guest from the host and to maintain separate host and
737 	 * guest state during world switches. vcpu_debug_state are the debug
738 	 * registers of the vcpu as the guest sees them.
739 	 *
740 	 * external_debug_state contains the debug values we want to debug the
741 	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
742 	 *
743 	 * debug_ptr points to the set of debug registers that should be loaded
744 	 * onto the hardware when running the guest.
745 	 */
746 	struct kvm_guest_debug_arch *debug_ptr;
747 	struct kvm_guest_debug_arch vcpu_debug_state;
748 	struct kvm_guest_debug_arch external_debug_state;
749 
750 	/* VGIC state */
751 	struct vgic_cpu vgic_cpu;
752 	struct arch_timer_cpu timer_cpu;
753 	struct kvm_pmu pmu;
754 
755 	/*
756 	 * Guest registers we preserve during guest debugging.
757 	 *
758 	 * These shadow registers are updated by the kvm_handle_sys_reg
759 	 * trap handler if the guest accesses or updates them while we
760 	 * are using guest debug.
761 	 */
762 	struct {
763 		u32	mdscr_el1;
764 		bool	pstate_ss;
765 	} guest_debug_preserved;
766 
767 	/* vcpu power state */
768 	struct kvm_mp_state mp_state;
769 	spinlock_t mp_state_lock;
770 
771 	/* Cache some mmu pages needed inside spinlock regions */
772 	struct kvm_mmu_memory_cache mmu_page_cache;
773 
774 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
775 	u64 vsesr_el2;
776 
777 	/* Additional reset state */
778 	struct vcpu_reset_state	reset_state;
779 
780 	/* Guest PV state */
781 	struct {
782 		u64 last_steal;
783 		gpa_t base;
784 	} steal;
785 
786 	/* Per-vcpu CCSIDR override or NULL */
787 	u32 *ccsidr;
788 };
789 
790 /*
791  * Each 'flag' is composed of a comma-separated triplet:
792  *
793  * - the flag-set it belongs to in the vcpu->arch structure
794  * - the value for that flag
795  * - the mask for that flag
796  *
797  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
798  * unpack_vcpu_flag() extract the flag value from the triplet for
799  * direct use outside of the flag accessors.
800  */
801 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
802 
803 #define __unpack_flag(_set, _f, _m)	_f
804 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
805 
806 #define __build_check_flag(v, flagset, f, m)			\
807 	do {							\
808 		typeof(v->arch.flagset) *_fset;			\
809 								\
810 		/* Check that the flags fit in the mask */	\
811 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
812 		/* Check that the flags fit in the type */	\
813 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
814 	} while (0)
815 
816 #define __vcpu_get_flag(v, flagset, f, m)			\
817 	({							\
818 		__build_check_flag(v, flagset, f, m);		\
819 								\
820 		READ_ONCE(v->arch.flagset) & (m);		\
821 	})
822 
823 /*
824  * Note that the set/clear accessors must be preempt-safe in order to
825  * avoid nesting them with load/put which also manipulate flags...
826  */
827 #ifdef __KVM_NVHE_HYPERVISOR__
828 /* the nVHE hypervisor is always non-preemptible */
829 #define __vcpu_flags_preempt_disable()
830 #define __vcpu_flags_preempt_enable()
831 #else
832 #define __vcpu_flags_preempt_disable()	preempt_disable()
833 #define __vcpu_flags_preempt_enable()	preempt_enable()
834 #endif
835 
836 #define __vcpu_set_flag(v, flagset, f, m)			\
837 	do {							\
838 		typeof(v->arch.flagset) *fset;			\
839 								\
840 		__build_check_flag(v, flagset, f, m);		\
841 								\
842 		fset = &v->arch.flagset;			\
843 		__vcpu_flags_preempt_disable();			\
844 		if (HWEIGHT(m) > 1)				\
845 			*fset &= ~(m);				\
846 		*fset |= (f);					\
847 		__vcpu_flags_preempt_enable();			\
848 	} while (0)
849 
850 #define __vcpu_clear_flag(v, flagset, f, m)			\
851 	do {							\
852 		typeof(v->arch.flagset) *fset;			\
853 								\
854 		__build_check_flag(v, flagset, f, m);		\
855 								\
856 		fset = &v->arch.flagset;			\
857 		__vcpu_flags_preempt_disable();			\
858 		*fset &= ~(m);					\
859 		__vcpu_flags_preempt_enable();			\
860 	} while (0)
861 
862 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
863 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
864 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
865 
866 /* SVE exposed to guest */
867 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
868 /* SVE config completed */
869 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
870 /* PTRAUTH exposed to guest */
871 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
872 /* KVM_ARM_VCPU_INIT completed */
873 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
874 
875 /* Exception pending */
876 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
877 /*
878  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
879  * be set together with an exception...
880  */
881 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
882 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
883 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
884 
885 /* Helpers to encode exceptions with minimum fuss */
886 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
887 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
888 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
889 
890 /*
891  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
892  * values:
893  *
894  * For AArch32 EL1:
895  */
896 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
897 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
898 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
899 /* For AArch64: */
900 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
901 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
902 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
903 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
904 /* For AArch64 with NV: */
905 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
906 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
907 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
908 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
909 /* Guest debug is live */
910 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
911 /* Save SPE context if active  */
912 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
913 /* Save TRBE context if active  */
914 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
915 
916 /* SVE enabled for host EL0 */
917 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
918 /* SME enabled for EL0 */
919 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
920 /* Physical CPU not in supported_cpus */
921 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
922 /* WFIT instruction trapped */
923 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
924 /* vcpu system registers loaded on physical CPU */
925 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
926 /* Software step state is Active-pending */
927 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
928 /* PMUSERENR for the guest EL0 is on physical CPU */
929 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
930 /* WFI instruction trapped */
931 #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
932 
933 
934 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
935 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
936 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
937 
938 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
939 
940 #define vcpu_sve_zcr_elx(vcpu)						\
941 	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
942 
943 #define vcpu_sve_state_size(vcpu) ({					\
944 	size_t __size_ret;						\
945 	unsigned int __vcpu_vq;						\
946 									\
947 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
948 		__size_ret = 0;						\
949 	} else {							\
950 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
951 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
952 	}								\
953 									\
954 	__size_ret;							\
955 })
956 
957 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
958 				 KVM_GUESTDBG_USE_SW_BP | \
959 				 KVM_GUESTDBG_USE_HW | \
960 				 KVM_GUESTDBG_SINGLESTEP)
961 
962 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
963 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
964 
965 #ifdef CONFIG_ARM64_PTR_AUTH
966 #define vcpu_has_ptrauth(vcpu)						\
967 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
968 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
969 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
970 #else
971 #define vcpu_has_ptrauth(vcpu)		false
972 #endif
973 
974 #define vcpu_on_unsupported_cpu(vcpu)					\
975 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
976 
977 #define vcpu_set_on_unsupported_cpu(vcpu)				\
978 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
979 
980 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
981 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
982 
983 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
984 
985 /*
986  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
987  * memory backed version of a register, and not the one most recently
988  * accessed by a running VCPU.  For example, for userspace access or
989  * for system registers that are never context switched, but only
990  * emulated.
991  *
992  * Don't bother with VNCR-based accesses in the nVHE code, it has no
993  * business dealing with NV.
994  */
995 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
996 {
997 #if !defined (__KVM_NVHE_HYPERVISOR__)
998 	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
999 		     r >= __VNCR_START__ && ctxt->vncr_array))
1000 		return &ctxt->vncr_array[r - __VNCR_START__];
1001 #endif
1002 	return (u64 *)&ctxt->sys_regs[r];
1003 }
1004 
1005 #define __ctxt_sys_reg(c,r)						\
1006 	({								\
1007 		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
1008 			     (r) >= NR_SYS_REGS);			\
1009 		___ctxt_sys_reg(c, r);					\
1010 	})
1011 
1012 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1013 
1014 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1015 #define __vcpu_sys_reg(v,r)						\
1016 	(*({								\
1017 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1018 		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
1019 		if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__)	\
1020 			*__r = kvm_vcpu_apply_reg_masks((v), (r), *__r);\
1021 		__r;							\
1022 	}))
1023 
1024 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1025 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1026 
1027 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1028 {
1029 	/*
1030 	 * *** VHE ONLY ***
1031 	 *
1032 	 * System registers listed in the switch are not saved on every
1033 	 * exit from the guest but are only saved on vcpu_put.
1034 	 *
1035 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1036 	 * should never be listed below, because the guest cannot modify its
1037 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1038 	 * thread when emulating cross-VCPU communication.
1039 	 */
1040 	if (!has_vhe())
1041 		return false;
1042 
1043 	switch (reg) {
1044 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
1045 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
1046 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
1047 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
1048 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
1049 	case TCR2_EL1:		*val = read_sysreg_s(SYS_TCR2_EL12);	break;
1050 	case PIR_EL1:		*val = read_sysreg_s(SYS_PIR_EL12);	break;
1051 	case PIRE0_EL1:		*val = read_sysreg_s(SYS_PIRE0_EL12);	break;
1052 	case POR_EL1:		*val = read_sysreg_s(SYS_POR_EL12);	break;
1053 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
1054 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
1055 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
1056 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
1057 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
1058 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
1059 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1060 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
1061 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
1062 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
1063 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
1064 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
1065 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
1066 	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
1067 	case PAR_EL1:		*val = read_sysreg_par();		break;
1068 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
1069 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
1070 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
1071 	case ZCR_EL1:		*val = read_sysreg_s(SYS_ZCR_EL12);	break;
1072 	default:		return false;
1073 	}
1074 
1075 	return true;
1076 }
1077 
1078 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1079 {
1080 	/*
1081 	 * *** VHE ONLY ***
1082 	 *
1083 	 * System registers listed in the switch are not restored on every
1084 	 * entry to the guest but are only restored on vcpu_load.
1085 	 *
1086 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1087 	 * should never be listed below, because the MPIDR should only be set
1088 	 * once, before running the VCPU, and never changed later.
1089 	 */
1090 	if (!has_vhe())
1091 		return false;
1092 
1093 	switch (reg) {
1094 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
1095 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
1096 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
1097 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
1098 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
1099 	case TCR2_EL1:		write_sysreg_s(val, SYS_TCR2_EL12);	break;
1100 	case PIR_EL1:		write_sysreg_s(val, SYS_PIR_EL12);	break;
1101 	case PIRE0_EL1:		write_sysreg_s(val, SYS_PIRE0_EL12);	break;
1102 	case POR_EL1:		write_sysreg_s(val, SYS_POR_EL12);	break;
1103 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
1104 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
1105 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
1106 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
1107 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
1108 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
1109 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1110 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
1111 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1112 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1113 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1114 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1115 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1116 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1117 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1118 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1119 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1120 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1121 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
1122 	default:		return false;
1123 	}
1124 
1125 	return true;
1126 }
1127 
1128 struct kvm_vm_stat {
1129 	struct kvm_vm_stat_generic generic;
1130 };
1131 
1132 struct kvm_vcpu_stat {
1133 	struct kvm_vcpu_stat_generic generic;
1134 	u64 hvc_exit_stat;
1135 	u64 wfe_exit_stat;
1136 	u64 wfi_exit_stat;
1137 	u64 mmio_exit_user;
1138 	u64 mmio_exit_kernel;
1139 	u64 signal_exits;
1140 	u64 exits;
1141 };
1142 
1143 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1144 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1145 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1146 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1147 
1148 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1149 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1150 
1151 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1152 			      struct kvm_vcpu_events *events);
1153 
1154 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1155 			      struct kvm_vcpu_events *events);
1156 
1157 void kvm_arm_halt_guest(struct kvm *kvm);
1158 void kvm_arm_resume_guest(struct kvm *kvm);
1159 
1160 #define vcpu_has_run_once(vcpu)	(!!READ_ONCE((vcpu)->pid))
1161 
1162 #ifndef __KVM_NVHE_HYPERVISOR__
1163 #define kvm_call_hyp_nvhe(f, ...)						\
1164 	({								\
1165 		struct arm_smccc_res res;				\
1166 									\
1167 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1168 				  ##__VA_ARGS__, &res);			\
1169 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1170 									\
1171 		res.a1;							\
1172 	})
1173 
1174 /*
1175  * The couple of isb() below are there to guarantee the same behaviour
1176  * on VHE as on !VHE, where the eret to EL1 acts as a context
1177  * synchronization event.
1178  */
1179 #define kvm_call_hyp(f, ...)						\
1180 	do {								\
1181 		if (has_vhe()) {					\
1182 			f(__VA_ARGS__);					\
1183 			isb();						\
1184 		} else {						\
1185 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1186 		}							\
1187 	} while(0)
1188 
1189 #define kvm_call_hyp_ret(f, ...)					\
1190 	({								\
1191 		typeof(f(__VA_ARGS__)) ret;				\
1192 									\
1193 		if (has_vhe()) {					\
1194 			ret = f(__VA_ARGS__);				\
1195 			isb();						\
1196 		} else {						\
1197 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1198 		}							\
1199 									\
1200 		ret;							\
1201 	})
1202 #else /* __KVM_NVHE_HYPERVISOR__ */
1203 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1204 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1205 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1206 #endif /* __KVM_NVHE_HYPERVISOR__ */
1207 
1208 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1209 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1210 
1211 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1212 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1213 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1214 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1215 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1216 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1217 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1218 
1219 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1220 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1221 
1222 int __init kvm_sys_reg_table_init(void);
1223 struct sys_reg_desc;
1224 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1225 				  unsigned int idx);
1226 int __init populate_nv_trap_config(void);
1227 
1228 bool lock_all_vcpus(struct kvm *kvm);
1229 void unlock_all_vcpus(struct kvm *kvm);
1230 
1231 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1232 
1233 /* MMIO helpers */
1234 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1235 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1236 
1237 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1238 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1239 
1240 /*
1241  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1242  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1243  * loaded is considered to be "in guest".
1244  */
1245 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1246 {
1247 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1248 }
1249 
1250 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1251 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1252 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1253 
1254 bool kvm_arm_pvtime_supported(void);
1255 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1256 			    struct kvm_device_attr *attr);
1257 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1258 			    struct kvm_device_attr *attr);
1259 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1260 			    struct kvm_device_attr *attr);
1261 
1262 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1263 int __init kvm_arm_vmid_alloc_init(void);
1264 void __init kvm_arm_vmid_alloc_free(void);
1265 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1266 void kvm_arm_vmid_clear_active(void);
1267 
1268 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1269 {
1270 	vcpu_arch->steal.base = INVALID_GPA;
1271 }
1272 
1273 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1274 {
1275 	return (vcpu_arch->steal.base != INVALID_GPA);
1276 }
1277 
1278 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1279 
1280 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1281 
1282 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1283 
1284 /*
1285  * How we access per-CPU host data depends on the where we access it from,
1286  * and the mode we're in:
1287  *
1288  * - VHE and nVHE hypervisor bits use their locally defined instance
1289  *
1290  * - the rest of the kernel use either the VHE or nVHE one, depending on
1291  *   the mode we're running in.
1292  *
1293  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1294  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1295  *   In this case, the EL1 code uses the *VHE* data as its private state
1296  *   (which makes sense in a way as there shouldn't be any shared state
1297  *   between the host and the hypervisor).
1298  *
1299  * Yes, this is all totally trivial. Shoot me now.
1300  */
1301 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1302 #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1303 #else
1304 #define host_data_ptr(f)						\
1305 	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1306 	 &this_cpu_ptr(&kvm_host_data)->f :				\
1307 	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1308 #endif
1309 
1310 /* Check whether the FP regs are owned by the guest */
1311 static inline bool guest_owns_fp_regs(void)
1312 {
1313 	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1314 }
1315 
1316 /* Check whether the FP regs are owned by the host */
1317 static inline bool host_owns_fp_regs(void)
1318 {
1319 	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1320 }
1321 
1322 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1323 {
1324 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1325 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1326 }
1327 
1328 static inline bool kvm_system_needs_idmapped_vectors(void)
1329 {
1330 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1331 }
1332 
1333 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1334 
1335 void kvm_arm_init_debug(void);
1336 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1337 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1338 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1339 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1340 
1341 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1342 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1343 
1344 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1345 			       struct kvm_device_attr *attr);
1346 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1347 			       struct kvm_device_attr *attr);
1348 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1349 			       struct kvm_device_attr *attr);
1350 
1351 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1352 			       struct kvm_arm_copy_mte_tags *copy_tags);
1353 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1354 				    struct kvm_arm_counter_offset *offset);
1355 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1356 					struct reg_mask_range *range);
1357 
1358 /* Guest/host FPSIMD coordination helpers */
1359 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1360 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1361 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1362 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1363 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1364 
1365 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1366 {
1367 	return (!has_vhe() && attr->exclude_host);
1368 }
1369 
1370 /* Flags for host debug state */
1371 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1372 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1373 
1374 #ifdef CONFIG_KVM
1375 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1376 void kvm_clr_pmu_events(u64 clr);
1377 bool kvm_set_pmuserenr(u64 val);
1378 #else
1379 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
1380 static inline void kvm_clr_pmu_events(u64 clr) {}
1381 static inline bool kvm_set_pmuserenr(u64 val)
1382 {
1383 	return false;
1384 }
1385 #endif
1386 
1387 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1388 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1389 
1390 int __init kvm_set_ipa_limit(void);
1391 u32 kvm_get_pa_bits(struct kvm *kvm);
1392 
1393 #define __KVM_HAVE_ARCH_VM_ALLOC
1394 struct kvm *kvm_arch_alloc_vm(void);
1395 
1396 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1397 
1398 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1399 
1400 #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1401 
1402 #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1403 
1404 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1405 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1406 
1407 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1408 
1409 #define kvm_has_mte(kvm)					\
1410 	(system_supports_mte() &&				\
1411 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1412 
1413 #define kvm_supports_32bit_el0()				\
1414 	(system_supports_32bit_el0() &&				\
1415 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1416 
1417 #define kvm_vm_has_ran_once(kvm)					\
1418 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1419 
1420 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1421 {
1422 	return test_bit(feature, ka->vcpu_features);
1423 }
1424 
1425 #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1426 
1427 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1428 
1429 int kvm_trng_call(struct kvm_vcpu *vcpu);
1430 #ifdef CONFIG_KVM
1431 extern phys_addr_t hyp_mem_base;
1432 extern phys_addr_t hyp_mem_size;
1433 void __init kvm_hyp_reserve(void);
1434 #else
1435 static inline void kvm_hyp_reserve(void) { }
1436 #endif
1437 
1438 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1439 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1440 
1441 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1442 {
1443 	switch (reg) {
1444 	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1445 		return &ka->id_regs[IDREG_IDX(reg)];
1446 	case SYS_CTR_EL0:
1447 		return &ka->ctr_el0;
1448 	default:
1449 		WARN_ON_ONCE(1);
1450 		return NULL;
1451 	}
1452 }
1453 
1454 #define kvm_read_vm_id_reg(kvm, reg)					\
1455 	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1456 
1457 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1458 
1459 #define __expand_field_sign_unsigned(id, fld, val)			\
1460 	((u64)SYS_FIELD_VALUE(id, fld, val))
1461 
1462 #define __expand_field_sign_signed(id, fld, val)			\
1463 	({								\
1464 		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1465 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1466 	})
1467 
1468 #define get_idreg_field_unsigned(kvm, id, fld)				\
1469 	({								\
1470 		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1471 		FIELD_GET(id##_##fld##_MASK, __val);			\
1472 	})
1473 
1474 #define get_idreg_field_signed(kvm, id, fld)				\
1475 	({								\
1476 		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1477 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1478 	})
1479 
1480 #define get_idreg_field_enum(kvm, id, fld)				\
1481 	get_idreg_field_unsigned(kvm, id, fld)
1482 
1483 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1484 	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1485 
1486 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1487 	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1488 
1489 #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1490 	(id##_##fld##_SIGNED ?						\
1491 	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1492 	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1493 
1494 #define kvm_has_feat(kvm, id, fld, limit)				\
1495 	kvm_cmp_feat(kvm, id, fld, >=, limit)
1496 
1497 #define kvm_has_feat_enum(kvm, id, fld, val)				\
1498 	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1499 
1500 #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1501 	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1502 	kvm_cmp_feat(kvm, id, fld, <=, max))
1503 
1504 /* Check for a given level of PAuth support */
1505 #define kvm_has_pauth(k, l)						\
1506 	({								\
1507 		bool pa, pi, pa3;					\
1508 									\
1509 		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1510 		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1511 		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1512 		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1513 		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1514 		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1515 									\
1516 		(pa + pi + pa3) == 1;					\
1517 	})
1518 
1519 #define kvm_has_fpmr(k)					\
1520 	(system_supports_fpmr() &&			\
1521 	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1522 
1523 #define kvm_has_tcr2(k)				\
1524 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, TCRX, IMP))
1525 
1526 #define kvm_has_s1pie(k)				\
1527 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1PIE, IMP))
1528 
1529 #define kvm_has_s1poe(k)				\
1530 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1POE, IMP))
1531 
1532 #endif /* __ARM64_KVM_HOST_H__ */
1533