xref: /linux/arch/arm64/include/asm/kvm_host.h (revision 5055938452ede673baf13bda4fe84d8fac2bee76)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31 
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33 
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35 
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39 
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41 
42 #define KVM_VCPU_MAX_FEATURES 7
43 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44 
45 #define KVM_REQ_SLEEP \
46 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP	KVM_ARCH_REQ(8)
55 
56 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
57 				     KVM_DIRTY_LOG_INITIALLY_SET)
58 
59 #define KVM_HAVE_MMU_RWLOCK
60 
61 /*
62  * Mode of operation configurable with kvm-arm.mode early param.
63  * See Documentation/admin-guide/kernel-parameters.txt for more information.
64  */
65 enum kvm_mode {
66 	KVM_MODE_DEFAULT,
67 	KVM_MODE_PROTECTED,
68 	KVM_MODE_NV,
69 	KVM_MODE_NONE,
70 };
71 #ifdef CONFIG_KVM
72 enum kvm_mode kvm_get_mode(void);
73 #else
74 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
75 #endif
76 
77 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78 
79 extern unsigned int __ro_after_init kvm_sve_max_vl;
80 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
81 int __init kvm_arm_init_sve(void);
82 
83 u32 __attribute_const__ kvm_target_cpu(void);
84 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
85 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
86 
87 struct kvm_hyp_memcache {
88 	phys_addr_t head;
89 	unsigned long nr_pages;
90 };
91 
92 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
93 				     phys_addr_t *p,
94 				     phys_addr_t (*to_pa)(void *virt))
95 {
96 	*p = mc->head;
97 	mc->head = to_pa(p);
98 	mc->nr_pages++;
99 }
100 
101 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
102 				     void *(*to_va)(phys_addr_t phys))
103 {
104 	phys_addr_t *p = to_va(mc->head);
105 
106 	if (!mc->nr_pages)
107 		return NULL;
108 
109 	mc->head = *p;
110 	mc->nr_pages--;
111 
112 	return p;
113 }
114 
115 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
116 				       unsigned long min_pages,
117 				       void *(*alloc_fn)(void *arg),
118 				       phys_addr_t (*to_pa)(void *virt),
119 				       void *arg)
120 {
121 	while (mc->nr_pages < min_pages) {
122 		phys_addr_t *p = alloc_fn(arg);
123 
124 		if (!p)
125 			return -ENOMEM;
126 		push_hyp_memcache(mc, p, to_pa);
127 	}
128 
129 	return 0;
130 }
131 
132 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
133 				       void (*free_fn)(void *virt, void *arg),
134 				       void *(*to_va)(phys_addr_t phys),
135 				       void *arg)
136 {
137 	while (mc->nr_pages)
138 		free_fn(pop_hyp_memcache(mc, to_va), arg);
139 }
140 
141 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
142 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
143 
144 struct kvm_vmid {
145 	atomic64_t id;
146 };
147 
148 struct kvm_s2_mmu {
149 	struct kvm_vmid vmid;
150 
151 	/*
152 	 * stage2 entry level table
153 	 *
154 	 * Two kvm_s2_mmu structures in the same VM can point to the same
155 	 * pgd here.  This happens when running a guest using a
156 	 * translation regime that isn't affected by its own stage-2
157 	 * translation, such as a non-VHE hypervisor running at vEL2, or
158 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
159 	 * canonical stage-2 page tables.
160 	 */
161 	phys_addr_t	pgd_phys;
162 	struct kvm_pgtable *pgt;
163 
164 	/*
165 	 * VTCR value used on the host. For a non-NV guest (or a NV
166 	 * guest that runs in a context where its own S2 doesn't
167 	 * apply), its T0SZ value reflects that of the IPA size.
168 	 *
169 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
170 	 * the guest.
171 	 */
172 	u64	vtcr;
173 
174 	/* The last vcpu id that ran on each physical CPU */
175 	int __percpu *last_vcpu_ran;
176 
177 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
178 	/*
179 	 * Memory cache used to split
180 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
181 	 * is used to allocate stage2 page tables while splitting huge
182 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
183 	 * influences both the capacity of the split page cache, and
184 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
185 	 * too high.
186 	 *
187 	 * Protected by kvm->slots_lock.
188 	 */
189 	struct kvm_mmu_memory_cache split_page_cache;
190 	uint64_t split_page_chunk_size;
191 
192 	struct kvm_arch *arch;
193 
194 	/*
195 	 * For a shadow stage-2 MMU, the virtual vttbr used by the
196 	 * host to parse the guest S2.
197 	 * This either contains:
198 	 * - the virtual VTTBR programmed by the guest hypervisor with
199          *   CnP cleared
200 	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
201 	 *
202 	 * We also cache the full VTCR which gets used for TLB invalidation,
203 	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
204 	 * to be cached in a TLB" to the letter.
205 	 */
206 	u64	tlb_vttbr;
207 	u64	tlb_vtcr;
208 
209 	/*
210 	 * true when this represents a nested context where virtual
211 	 * HCR_EL2.VM == 1
212 	 */
213 	bool	nested_stage2_enabled;
214 
215 	/*
216 	 * true when this MMU needs to be unmapped before being used for a new
217 	 * purpose.
218 	 */
219 	bool	pending_unmap;
220 
221 	/*
222 	 *  0: Nobody is currently using this, check vttbr for validity
223 	 * >0: Somebody is actively using this.
224 	 */
225 	atomic_t refcnt;
226 };
227 
228 struct kvm_arch_memory_slot {
229 };
230 
231 /**
232  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
233  *
234  * @std_bmap: Bitmap of standard secure service calls
235  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
236  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
237  */
238 struct kvm_smccc_features {
239 	unsigned long std_bmap;
240 	unsigned long std_hyp_bmap;
241 	unsigned long vendor_hyp_bmap;
242 };
243 
244 typedef unsigned int pkvm_handle_t;
245 
246 struct kvm_protected_vm {
247 	pkvm_handle_t handle;
248 	struct kvm_hyp_memcache teardown_mc;
249 	bool enabled;
250 };
251 
252 struct kvm_mpidr_data {
253 	u64			mpidr_mask;
254 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
255 };
256 
257 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
258 {
259 	unsigned long index = 0, mask = data->mpidr_mask;
260 	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
261 
262 	bitmap_gather(&index, &aff, &mask, fls(mask));
263 
264 	return index;
265 }
266 
267 struct kvm_sysreg_masks;
268 
269 enum fgt_group_id {
270 	__NO_FGT_GROUP__,
271 	HFGxTR_GROUP,
272 	HDFGRTR_GROUP,
273 	HDFGWTR_GROUP = HDFGRTR_GROUP,
274 	HFGITR_GROUP,
275 	HAFGRTR_GROUP,
276 
277 	/* Must be last */
278 	__NR_FGT_GROUP_IDS__
279 };
280 
281 struct kvm_arch {
282 	struct kvm_s2_mmu mmu;
283 
284 	/*
285 	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
286 	 * architecture. We track them globally, as we present the
287 	 * same feature-set to all vcpus.
288 	 *
289 	 * Index 0 is currently spare.
290 	 */
291 	u64 fgu[__NR_FGT_GROUP_IDS__];
292 
293 	/*
294 	 * Stage 2 paging state for VMs with nested S2 using a virtual
295 	 * VMID.
296 	 */
297 	struct kvm_s2_mmu *nested_mmus;
298 	size_t nested_mmus_size;
299 	int nested_mmus_next;
300 
301 	/* Interrupt controller */
302 	struct vgic_dist	vgic;
303 
304 	/* Timers */
305 	struct arch_timer_vm_data timer_data;
306 
307 	/* Mandated version of PSCI */
308 	u32 psci_version;
309 
310 	/* Protects VM-scoped configuration data */
311 	struct mutex config_lock;
312 
313 	/*
314 	 * If we encounter a data abort without valid instruction syndrome
315 	 * information, report this to user space.  User space can (and
316 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
317 	 * supported.
318 	 */
319 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
320 	/* Memory Tagging Extension enabled for the guest */
321 #define KVM_ARCH_FLAG_MTE_ENABLED			1
322 	/* At least one vCPU has ran in the VM */
323 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
324 	/* The vCPU feature set for the VM is configured */
325 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
326 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
327 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
328 	/* VM counter offset */
329 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
330 	/* Timer PPIs made immutable */
331 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
332 	/* Initial ID reg values loaded */
333 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
334 	/* Fine-Grained UNDEF initialised */
335 #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
336 	unsigned long flags;
337 
338 	/* VM-wide vCPU feature set */
339 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
340 
341 	/* MPIDR to vcpu index mapping, optional */
342 	struct kvm_mpidr_data *mpidr_data;
343 
344 	/*
345 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
346 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
347 	 */
348 	unsigned long *pmu_filter;
349 	struct arm_pmu *arm_pmu;
350 
351 	cpumask_var_t supported_cpus;
352 
353 	/* PMCR_EL0.N value for the guest */
354 	u8 pmcr_n;
355 
356 	/* Iterator for idreg debugfs */
357 	u8	idreg_debugfs_iter;
358 
359 	/* Hypercall features firmware registers' descriptor */
360 	struct kvm_smccc_features smccc_feat;
361 	struct maple_tree smccc_filter;
362 
363 	/*
364 	 * Emulated CPU ID registers per VM
365 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
366 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
367 	 *
368 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
369 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
370 	 */
371 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
372 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
373 	u64 id_regs[KVM_ARM_ID_REG_NUM];
374 
375 	u64 ctr_el0;
376 
377 	/* Masks for VNCR-backed and general EL2 sysregs */
378 	struct kvm_sysreg_masks	*sysreg_masks;
379 
380 	/*
381 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
382 	 * the associated pKVM instance in the hypervisor.
383 	 */
384 	struct kvm_protected_vm pkvm;
385 };
386 
387 struct kvm_vcpu_fault_info {
388 	u64 esr_el2;		/* Hyp Syndrom Register */
389 	u64 far_el2;		/* Hyp Fault Address Register */
390 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
391 	u64 disr_el1;		/* Deferred [SError] Status Register */
392 };
393 
394 /*
395  * VNCR() just places the VNCR_capable registers in the enum after
396  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
397  * from the VNCR base. As we don't require the enum to be otherwise ordered,
398  * we need the terrible hack below to ensure that we correctly size the
399  * sys_regs array, no matter what.
400  *
401  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
402  * treasure trove of bit hacks:
403  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
404  */
405 #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
406 #define VNCR(r)						\
407 	__before_##r,					\
408 	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
409 	__after_##r = __MAX__(__before_##r - 1, r)
410 
411 #define MARKER(m)				\
412 	m, __after_##m = m - 1
413 
414 enum vcpu_sysreg {
415 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
416 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
417 	CLIDR_EL1,	/* Cache Level ID Register */
418 	CSSELR_EL1,	/* Cache Size Selection Register */
419 	TPIDR_EL0,	/* Thread ID, User R/W */
420 	TPIDRRO_EL0,	/* Thread ID, User R/O */
421 	TPIDR_EL1,	/* Thread ID, Privileged */
422 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
423 	PAR_EL1,	/* Physical Address Register */
424 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
425 	OSLSR_EL1,	/* OS Lock Status Register */
426 	DISR_EL1,	/* Deferred Interrupt Status Register */
427 
428 	/* Performance Monitors Registers */
429 	PMCR_EL0,	/* Control Register */
430 	PMSELR_EL0,	/* Event Counter Selection Register */
431 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
432 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
433 	PMCCNTR_EL0,	/* Cycle Counter Register */
434 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
435 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
436 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
437 	PMCNTENSET_EL0,	/* Count Enable Set Register */
438 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
439 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
440 	PMUSERENR_EL0,	/* User Enable Register */
441 
442 	/* Pointer Authentication Registers in a strict increasing order. */
443 	APIAKEYLO_EL1,
444 	APIAKEYHI_EL1,
445 	APIBKEYLO_EL1,
446 	APIBKEYHI_EL1,
447 	APDAKEYLO_EL1,
448 	APDAKEYHI_EL1,
449 	APDBKEYLO_EL1,
450 	APDBKEYHI_EL1,
451 	APGAKEYLO_EL1,
452 	APGAKEYHI_EL1,
453 
454 	/* Memory Tagging Extension registers */
455 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
456 	GCR_EL1,	/* Tag Control Register */
457 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
458 
459 	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
460 
461 	/* FP/SIMD/SVE */
462 	SVCR,
463 	FPMR,
464 
465 	/* 32bit specific registers. */
466 	DACR32_EL2,	/* Domain Access Control Register */
467 	IFSR32_EL2,	/* Instruction Fault Status Register */
468 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
469 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
470 
471 	/* EL2 registers */
472 	SCTLR_EL2,	/* System Control Register (EL2) */
473 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
474 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
475 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
476 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
477 	ZCR_EL2,	/* SVE Control Register (EL2) */
478 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
479 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
480 	TCR_EL2,	/* Translation Control Register (EL2) */
481 	SPSR_EL2,	/* EL2 saved program status register */
482 	ELR_EL2,	/* EL2 exception link register */
483 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
484 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
485 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
486 	FAR_EL2,	/* Fault Address Register (EL2) */
487 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
488 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
489 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
490 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
491 	RVBAR_EL2,	/* Reset Vector Base Address Register */
492 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
493 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
494 	SP_EL2,		/* EL2 Stack Pointer */
495 	CNTHP_CTL_EL2,
496 	CNTHP_CVAL_EL2,
497 	CNTHV_CTL_EL2,
498 	CNTHV_CVAL_EL2,
499 
500 	/* Anything from this can be RES0/RES1 sanitised */
501 	MARKER(__SANITISED_REG_START__),
502 	TCR2_EL2,	/* Extended Translation Control Register (EL2) */
503 
504 	/* Any VNCR-capable reg goes after this point */
505 	MARKER(__VNCR_START__),
506 
507 	VNCR(SCTLR_EL1),/* System Control Register */
508 	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
509 	VNCR(CPACR_EL1),/* Coprocessor Access Control */
510 	VNCR(ZCR_EL1),	/* SVE Control */
511 	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
512 	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
513 	VNCR(TCR_EL1),	/* Translation Control Register */
514 	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
515 	VNCR(ESR_EL1),	/* Exception Syndrome Register */
516 	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
517 	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
518 	VNCR(FAR_EL1),	/* Fault Address Register */
519 	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
520 	VNCR(VBAR_EL1),	/* Vector Base Address Register */
521 	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
522 	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
523 	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
524 	VNCR(ELR_EL1),
525 	VNCR(SP_EL1),
526 	VNCR(SPSR_EL1),
527 	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
528 	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
529 	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
530 	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
531 	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
532 	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
533 	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
534 	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
535 	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
536 
537 	/* Permission Indirection Extension registers */
538 	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
539 	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
540 
541 	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
542 
543 	VNCR(HFGRTR_EL2),
544 	VNCR(HFGWTR_EL2),
545 	VNCR(HFGITR_EL2),
546 	VNCR(HDFGRTR_EL2),
547 	VNCR(HDFGWTR_EL2),
548 	VNCR(HAFGRTR_EL2),
549 
550 	VNCR(CNTVOFF_EL2),
551 	VNCR(CNTV_CVAL_EL0),
552 	VNCR(CNTV_CTL_EL0),
553 	VNCR(CNTP_CVAL_EL0),
554 	VNCR(CNTP_CTL_EL0),
555 
556 	VNCR(ICH_HCR_EL2),
557 
558 	NR_SYS_REGS	/* Nothing after this line! */
559 };
560 
561 struct kvm_sysreg_masks {
562 	struct {
563 		u64	res0;
564 		u64	res1;
565 	} mask[NR_SYS_REGS - __SANITISED_REG_START__];
566 };
567 
568 struct kvm_cpu_context {
569 	struct user_pt_regs regs;	/* sp = sp_el0 */
570 
571 	u64	spsr_abt;
572 	u64	spsr_und;
573 	u64	spsr_irq;
574 	u64	spsr_fiq;
575 
576 	struct user_fpsimd_state fp_regs;
577 
578 	u64 sys_regs[NR_SYS_REGS];
579 
580 	struct kvm_vcpu *__hyp_running_vcpu;
581 
582 	/* This pointer has to be 4kB aligned. */
583 	u64 *vncr_array;
584 };
585 
586 struct cpu_sve_state {
587 	__u64 zcr_el1;
588 
589 	/*
590 	 * Ordering is important since __sve_save_state/__sve_restore_state
591 	 * relies on it.
592 	 */
593 	__u32 fpsr;
594 	__u32 fpcr;
595 
596 	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
597 	__u8 sve_regs[];
598 };
599 
600 /*
601  * This structure is instantiated on a per-CPU basis, and contains
602  * data that is:
603  *
604  * - tied to a single physical CPU, and
605  * - either have a lifetime that does not extend past vcpu_put()
606  * - or is an invariant for the lifetime of the system
607  *
608  * Use host_data_ptr(field) as a way to access a pointer to such a
609  * field.
610  */
611 struct kvm_host_data {
612 	struct kvm_cpu_context host_ctxt;
613 
614 	/*
615 	 * All pointers in this union are hyp VA.
616 	 * sve_state is only used in pKVM and if system_supports_sve().
617 	 */
618 	union {
619 		struct user_fpsimd_state *fpsimd_state;
620 		struct cpu_sve_state *sve_state;
621 	};
622 
623 	union {
624 		/* HYP VA pointer to the host storage for FPMR */
625 		u64	*fpmr_ptr;
626 		/*
627 		 * Used by pKVM only, as it needs to provide storage
628 		 * for the host
629 		 */
630 		u64	fpmr;
631 	};
632 
633 	/* Ownership of the FP regs */
634 	enum {
635 		FP_STATE_FREE,
636 		FP_STATE_HOST_OWNED,
637 		FP_STATE_GUEST_OWNED,
638 	} fp_owner;
639 
640 	/*
641 	 * host_debug_state contains the host registers which are
642 	 * saved and restored during world switches.
643 	 */
644 	 struct {
645 		/* {Break,watch}point registers */
646 		struct kvm_guest_debug_arch regs;
647 		/* Statistical profiling extension */
648 		u64 pmscr_el1;
649 		/* Self-hosted trace */
650 		u64 trfcr_el1;
651 		/* Values of trap registers for the host before guest entry. */
652 		u64 mdcr_el2;
653 	} host_debug_state;
654 };
655 
656 struct kvm_host_psci_config {
657 	/* PSCI version used by host. */
658 	u32 version;
659 	u32 smccc_version;
660 
661 	/* Function IDs used by host if version is v0.1. */
662 	struct psci_0_1_function_ids function_ids_0_1;
663 
664 	bool psci_0_1_cpu_suspend_implemented;
665 	bool psci_0_1_cpu_on_implemented;
666 	bool psci_0_1_cpu_off_implemented;
667 	bool psci_0_1_migrate_implemented;
668 };
669 
670 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
671 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
672 
673 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
674 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
675 
676 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
677 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
678 
679 struct vcpu_reset_state {
680 	unsigned long	pc;
681 	unsigned long	r0;
682 	bool		be;
683 	bool		reset;
684 };
685 
686 struct kvm_vcpu_arch {
687 	struct kvm_cpu_context ctxt;
688 
689 	/*
690 	 * Guest floating point state
691 	 *
692 	 * The architecture has two main floating point extensions,
693 	 * the original FPSIMD and SVE.  These have overlapping
694 	 * register views, with the FPSIMD V registers occupying the
695 	 * low 128 bits of the SVE Z registers.  When the core
696 	 * floating point code saves the register state of a task it
697 	 * records which view it saved in fp_type.
698 	 */
699 	void *sve_state;
700 	enum fp_type fp_type;
701 	unsigned int sve_max_vl;
702 
703 	/* Stage 2 paging state used by the hardware on next switch */
704 	struct kvm_s2_mmu *hw_mmu;
705 
706 	/* Values of trap registers for the guest. */
707 	u64 hcr_el2;
708 	u64 hcrx_el2;
709 	u64 mdcr_el2;
710 	u64 cptr_el2;
711 
712 	/* Exception Information */
713 	struct kvm_vcpu_fault_info fault;
714 
715 	/* Configuration flags, set once and for all before the vcpu can run */
716 	u8 cflags;
717 
718 	/* Input flags to the hypervisor code, potentially cleared after use */
719 	u8 iflags;
720 
721 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
722 	u8 sflags;
723 
724 	/*
725 	 * Don't run the guest (internal implementation need).
726 	 *
727 	 * Contrary to the flags above, this is set/cleared outside of
728 	 * a vcpu context, and thus cannot be mixed with the flags
729 	 * themselves (or the flag accesses need to be made atomic).
730 	 */
731 	bool pause;
732 
733 	/*
734 	 * We maintain more than a single set of debug registers to support
735 	 * debugging the guest from the host and to maintain separate host and
736 	 * guest state during world switches. vcpu_debug_state are the debug
737 	 * registers of the vcpu as the guest sees them.
738 	 *
739 	 * external_debug_state contains the debug values we want to debug the
740 	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
741 	 *
742 	 * debug_ptr points to the set of debug registers that should be loaded
743 	 * onto the hardware when running the guest.
744 	 */
745 	struct kvm_guest_debug_arch *debug_ptr;
746 	struct kvm_guest_debug_arch vcpu_debug_state;
747 	struct kvm_guest_debug_arch external_debug_state;
748 
749 	/* VGIC state */
750 	struct vgic_cpu vgic_cpu;
751 	struct arch_timer_cpu timer_cpu;
752 	struct kvm_pmu pmu;
753 
754 	/*
755 	 * Guest registers we preserve during guest debugging.
756 	 *
757 	 * These shadow registers are updated by the kvm_handle_sys_reg
758 	 * trap handler if the guest accesses or updates them while we
759 	 * are using guest debug.
760 	 */
761 	struct {
762 		u32	mdscr_el1;
763 		bool	pstate_ss;
764 	} guest_debug_preserved;
765 
766 	/* vcpu power state */
767 	struct kvm_mp_state mp_state;
768 	spinlock_t mp_state_lock;
769 
770 	/* Cache some mmu pages needed inside spinlock regions */
771 	struct kvm_mmu_memory_cache mmu_page_cache;
772 
773 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
774 	u64 vsesr_el2;
775 
776 	/* Additional reset state */
777 	struct vcpu_reset_state	reset_state;
778 
779 	/* Guest PV state */
780 	struct {
781 		u64 last_steal;
782 		gpa_t base;
783 	} steal;
784 
785 	/* Per-vcpu CCSIDR override or NULL */
786 	u32 *ccsidr;
787 };
788 
789 /*
790  * Each 'flag' is composed of a comma-separated triplet:
791  *
792  * - the flag-set it belongs to in the vcpu->arch structure
793  * - the value for that flag
794  * - the mask for that flag
795  *
796  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
797  * unpack_vcpu_flag() extract the flag value from the triplet for
798  * direct use outside of the flag accessors.
799  */
800 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
801 
802 #define __unpack_flag(_set, _f, _m)	_f
803 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
804 
805 #define __build_check_flag(v, flagset, f, m)			\
806 	do {							\
807 		typeof(v->arch.flagset) *_fset;			\
808 								\
809 		/* Check that the flags fit in the mask */	\
810 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
811 		/* Check that the flags fit in the type */	\
812 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
813 	} while (0)
814 
815 #define __vcpu_get_flag(v, flagset, f, m)			\
816 	({							\
817 		__build_check_flag(v, flagset, f, m);		\
818 								\
819 		READ_ONCE(v->arch.flagset) & (m);		\
820 	})
821 
822 /*
823  * Note that the set/clear accessors must be preempt-safe in order to
824  * avoid nesting them with load/put which also manipulate flags...
825  */
826 #ifdef __KVM_NVHE_HYPERVISOR__
827 /* the nVHE hypervisor is always non-preemptible */
828 #define __vcpu_flags_preempt_disable()
829 #define __vcpu_flags_preempt_enable()
830 #else
831 #define __vcpu_flags_preempt_disable()	preempt_disable()
832 #define __vcpu_flags_preempt_enable()	preempt_enable()
833 #endif
834 
835 #define __vcpu_set_flag(v, flagset, f, m)			\
836 	do {							\
837 		typeof(v->arch.flagset) *fset;			\
838 								\
839 		__build_check_flag(v, flagset, f, m);		\
840 								\
841 		fset = &v->arch.flagset;			\
842 		__vcpu_flags_preempt_disable();			\
843 		if (HWEIGHT(m) > 1)				\
844 			*fset &= ~(m);				\
845 		*fset |= (f);					\
846 		__vcpu_flags_preempt_enable();			\
847 	} while (0)
848 
849 #define __vcpu_clear_flag(v, flagset, f, m)			\
850 	do {							\
851 		typeof(v->arch.flagset) *fset;			\
852 								\
853 		__build_check_flag(v, flagset, f, m);		\
854 								\
855 		fset = &v->arch.flagset;			\
856 		__vcpu_flags_preempt_disable();			\
857 		*fset &= ~(m);					\
858 		__vcpu_flags_preempt_enable();			\
859 	} while (0)
860 
861 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
862 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
863 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
864 
865 /* SVE exposed to guest */
866 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
867 /* SVE config completed */
868 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
869 /* PTRAUTH exposed to guest */
870 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
871 /* KVM_ARM_VCPU_INIT completed */
872 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
873 
874 /* Exception pending */
875 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
876 /*
877  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
878  * be set together with an exception...
879  */
880 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
881 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
882 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
883 
884 /* Helpers to encode exceptions with minimum fuss */
885 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
886 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
887 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
888 
889 /*
890  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
891  * values:
892  *
893  * For AArch32 EL1:
894  */
895 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
896 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
897 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
898 /* For AArch64: */
899 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
900 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
901 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
902 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
903 /* For AArch64 with NV: */
904 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
905 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
906 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
907 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
908 /* Guest debug is live */
909 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
910 /* Save SPE context if active  */
911 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
912 /* Save TRBE context if active  */
913 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
914 
915 /* SVE enabled for host EL0 */
916 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
917 /* SME enabled for EL0 */
918 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
919 /* Physical CPU not in supported_cpus */
920 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
921 /* WFIT instruction trapped */
922 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
923 /* vcpu system registers loaded on physical CPU */
924 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
925 /* Software step state is Active-pending */
926 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
927 /* PMUSERENR for the guest EL0 is on physical CPU */
928 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
929 /* WFI instruction trapped */
930 #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
931 
932 
933 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
934 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
935 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
936 
937 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
938 
939 #define vcpu_sve_zcr_elx(vcpu)						\
940 	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
941 
942 #define vcpu_sve_state_size(vcpu) ({					\
943 	size_t __size_ret;						\
944 	unsigned int __vcpu_vq;						\
945 									\
946 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
947 		__size_ret = 0;						\
948 	} else {							\
949 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
950 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
951 	}								\
952 									\
953 	__size_ret;							\
954 })
955 
956 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
957 				 KVM_GUESTDBG_USE_SW_BP | \
958 				 KVM_GUESTDBG_USE_HW | \
959 				 KVM_GUESTDBG_SINGLESTEP)
960 
961 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
962 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
963 
964 #ifdef CONFIG_ARM64_PTR_AUTH
965 #define vcpu_has_ptrauth(vcpu)						\
966 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
967 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
968 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
969 #else
970 #define vcpu_has_ptrauth(vcpu)		false
971 #endif
972 
973 #define vcpu_on_unsupported_cpu(vcpu)					\
974 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
975 
976 #define vcpu_set_on_unsupported_cpu(vcpu)				\
977 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
978 
979 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
980 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
981 
982 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
983 
984 /*
985  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
986  * memory backed version of a register, and not the one most recently
987  * accessed by a running VCPU.  For example, for userspace access or
988  * for system registers that are never context switched, but only
989  * emulated.
990  *
991  * Don't bother with VNCR-based accesses in the nVHE code, it has no
992  * business dealing with NV.
993  */
994 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
995 {
996 #if !defined (__KVM_NVHE_HYPERVISOR__)
997 	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
998 		     r >= __VNCR_START__ && ctxt->vncr_array))
999 		return &ctxt->vncr_array[r - __VNCR_START__];
1000 #endif
1001 	return (u64 *)&ctxt->sys_regs[r];
1002 }
1003 
1004 #define __ctxt_sys_reg(c,r)						\
1005 	({								\
1006 		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
1007 			     (r) >= NR_SYS_REGS);			\
1008 		___ctxt_sys_reg(c, r);					\
1009 	})
1010 
1011 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1012 
1013 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1014 #define __vcpu_sys_reg(v,r)						\
1015 	(*({								\
1016 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1017 		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
1018 		if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__)	\
1019 			*__r = kvm_vcpu_apply_reg_masks((v), (r), *__r);\
1020 		__r;							\
1021 	}))
1022 
1023 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1024 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1025 
1026 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1027 {
1028 	/*
1029 	 * *** VHE ONLY ***
1030 	 *
1031 	 * System registers listed in the switch are not saved on every
1032 	 * exit from the guest but are only saved on vcpu_put.
1033 	 *
1034 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1035 	 * should never be listed below, because the guest cannot modify its
1036 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1037 	 * thread when emulating cross-VCPU communication.
1038 	 */
1039 	if (!has_vhe())
1040 		return false;
1041 
1042 	switch (reg) {
1043 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
1044 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
1045 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
1046 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
1047 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
1048 	case TCR2_EL1:		*val = read_sysreg_s(SYS_TCR2_EL12);	break;
1049 	case PIR_EL1:		*val = read_sysreg_s(SYS_PIR_EL12);	break;
1050 	case PIRE0_EL1:		*val = read_sysreg_s(SYS_PIRE0_EL12);	break;
1051 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
1052 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
1053 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
1054 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
1055 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
1056 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
1057 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1058 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
1059 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
1060 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
1061 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
1062 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
1063 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
1064 	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
1065 	case PAR_EL1:		*val = read_sysreg_par();		break;
1066 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
1067 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
1068 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
1069 	case ZCR_EL1:		*val = read_sysreg_s(SYS_ZCR_EL12);	break;
1070 	default:		return false;
1071 	}
1072 
1073 	return true;
1074 }
1075 
1076 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1077 {
1078 	/*
1079 	 * *** VHE ONLY ***
1080 	 *
1081 	 * System registers listed in the switch are not restored on every
1082 	 * entry to the guest but are only restored on vcpu_load.
1083 	 *
1084 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1085 	 * should never be listed below, because the MPIDR should only be set
1086 	 * once, before running the VCPU, and never changed later.
1087 	 */
1088 	if (!has_vhe())
1089 		return false;
1090 
1091 	switch (reg) {
1092 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
1093 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
1094 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
1095 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
1096 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
1097 	case TCR2_EL1:		write_sysreg_s(val, SYS_TCR2_EL12);	break;
1098 	case PIR_EL1:		write_sysreg_s(val, SYS_PIR_EL12);	break;
1099 	case PIRE0_EL1:		write_sysreg_s(val, SYS_PIRE0_EL12);	break;
1100 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
1101 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
1102 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
1103 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
1104 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
1105 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
1106 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1107 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
1108 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1109 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1110 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1111 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1112 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1113 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1114 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1115 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1116 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1117 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1118 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
1119 	default:		return false;
1120 	}
1121 
1122 	return true;
1123 }
1124 
1125 struct kvm_vm_stat {
1126 	struct kvm_vm_stat_generic generic;
1127 };
1128 
1129 struct kvm_vcpu_stat {
1130 	struct kvm_vcpu_stat_generic generic;
1131 	u64 hvc_exit_stat;
1132 	u64 wfe_exit_stat;
1133 	u64 wfi_exit_stat;
1134 	u64 mmio_exit_user;
1135 	u64 mmio_exit_kernel;
1136 	u64 signal_exits;
1137 	u64 exits;
1138 };
1139 
1140 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1141 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1142 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1143 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1144 
1145 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1146 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1147 
1148 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1149 			      struct kvm_vcpu_events *events);
1150 
1151 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1152 			      struct kvm_vcpu_events *events);
1153 
1154 void kvm_arm_halt_guest(struct kvm *kvm);
1155 void kvm_arm_resume_guest(struct kvm *kvm);
1156 
1157 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
1158 
1159 #ifndef __KVM_NVHE_HYPERVISOR__
1160 #define kvm_call_hyp_nvhe(f, ...)						\
1161 	({								\
1162 		struct arm_smccc_res res;				\
1163 									\
1164 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1165 				  ##__VA_ARGS__, &res);			\
1166 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1167 									\
1168 		res.a1;							\
1169 	})
1170 
1171 /*
1172  * The couple of isb() below are there to guarantee the same behaviour
1173  * on VHE as on !VHE, where the eret to EL1 acts as a context
1174  * synchronization event.
1175  */
1176 #define kvm_call_hyp(f, ...)						\
1177 	do {								\
1178 		if (has_vhe()) {					\
1179 			f(__VA_ARGS__);					\
1180 			isb();						\
1181 		} else {						\
1182 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1183 		}							\
1184 	} while(0)
1185 
1186 #define kvm_call_hyp_ret(f, ...)					\
1187 	({								\
1188 		typeof(f(__VA_ARGS__)) ret;				\
1189 									\
1190 		if (has_vhe()) {					\
1191 			ret = f(__VA_ARGS__);				\
1192 			isb();						\
1193 		} else {						\
1194 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1195 		}							\
1196 									\
1197 		ret;							\
1198 	})
1199 #else /* __KVM_NVHE_HYPERVISOR__ */
1200 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1201 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1202 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1203 #endif /* __KVM_NVHE_HYPERVISOR__ */
1204 
1205 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1206 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1207 
1208 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1209 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1210 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1211 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1212 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1213 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1214 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1215 
1216 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1217 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1218 
1219 int __init kvm_sys_reg_table_init(void);
1220 struct sys_reg_desc;
1221 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1222 				  unsigned int idx);
1223 int __init populate_nv_trap_config(void);
1224 
1225 bool lock_all_vcpus(struct kvm *kvm);
1226 void unlock_all_vcpus(struct kvm *kvm);
1227 
1228 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1229 
1230 /* MMIO helpers */
1231 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1232 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1233 
1234 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1235 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1236 
1237 /*
1238  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1239  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1240  * loaded is considered to be "in guest".
1241  */
1242 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1243 {
1244 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1245 }
1246 
1247 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1248 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1249 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1250 
1251 bool kvm_arm_pvtime_supported(void);
1252 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1253 			    struct kvm_device_attr *attr);
1254 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1255 			    struct kvm_device_attr *attr);
1256 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1257 			    struct kvm_device_attr *attr);
1258 
1259 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1260 int __init kvm_arm_vmid_alloc_init(void);
1261 void __init kvm_arm_vmid_alloc_free(void);
1262 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1263 void kvm_arm_vmid_clear_active(void);
1264 
1265 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1266 {
1267 	vcpu_arch->steal.base = INVALID_GPA;
1268 }
1269 
1270 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1271 {
1272 	return (vcpu_arch->steal.base != INVALID_GPA);
1273 }
1274 
1275 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1276 
1277 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1278 
1279 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1280 
1281 /*
1282  * How we access per-CPU host data depends on the where we access it from,
1283  * and the mode we're in:
1284  *
1285  * - VHE and nVHE hypervisor bits use their locally defined instance
1286  *
1287  * - the rest of the kernel use either the VHE or nVHE one, depending on
1288  *   the mode we're running in.
1289  *
1290  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1291  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1292  *   In this case, the EL1 code uses the *VHE* data as its private state
1293  *   (which makes sense in a way as there shouldn't be any shared state
1294  *   between the host and the hypervisor).
1295  *
1296  * Yes, this is all totally trivial. Shoot me now.
1297  */
1298 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1299 #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1300 #else
1301 #define host_data_ptr(f)						\
1302 	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1303 	 &this_cpu_ptr(&kvm_host_data)->f :				\
1304 	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1305 #endif
1306 
1307 /* Check whether the FP regs are owned by the guest */
1308 static inline bool guest_owns_fp_regs(void)
1309 {
1310 	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1311 }
1312 
1313 /* Check whether the FP regs are owned by the host */
1314 static inline bool host_owns_fp_regs(void)
1315 {
1316 	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1317 }
1318 
1319 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1320 {
1321 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1322 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1323 }
1324 
1325 static inline bool kvm_system_needs_idmapped_vectors(void)
1326 {
1327 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1328 }
1329 
1330 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1331 
1332 void kvm_arm_init_debug(void);
1333 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1334 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1335 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1336 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1337 
1338 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1339 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1340 
1341 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1342 			       struct kvm_device_attr *attr);
1343 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1344 			       struct kvm_device_attr *attr);
1345 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1346 			       struct kvm_device_attr *attr);
1347 
1348 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1349 			       struct kvm_arm_copy_mte_tags *copy_tags);
1350 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1351 				    struct kvm_arm_counter_offset *offset);
1352 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1353 					struct reg_mask_range *range);
1354 
1355 /* Guest/host FPSIMD coordination helpers */
1356 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1357 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1358 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1359 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1360 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1361 
1362 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1363 {
1364 	return (!has_vhe() && attr->exclude_host);
1365 }
1366 
1367 /* Flags for host debug state */
1368 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1369 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1370 
1371 #ifdef CONFIG_KVM
1372 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1373 void kvm_clr_pmu_events(u64 clr);
1374 bool kvm_set_pmuserenr(u64 val);
1375 #else
1376 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
1377 static inline void kvm_clr_pmu_events(u64 clr) {}
1378 static inline bool kvm_set_pmuserenr(u64 val)
1379 {
1380 	return false;
1381 }
1382 #endif
1383 
1384 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1385 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1386 
1387 int __init kvm_set_ipa_limit(void);
1388 u32 kvm_get_pa_bits(struct kvm *kvm);
1389 
1390 #define __KVM_HAVE_ARCH_VM_ALLOC
1391 struct kvm *kvm_arch_alloc_vm(void);
1392 
1393 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1394 
1395 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1396 
1397 #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1398 
1399 #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1400 
1401 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1402 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1403 
1404 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1405 
1406 #define kvm_has_mte(kvm)					\
1407 	(system_supports_mte() &&				\
1408 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1409 
1410 #define kvm_supports_32bit_el0()				\
1411 	(system_supports_32bit_el0() &&				\
1412 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1413 
1414 #define kvm_vm_has_ran_once(kvm)					\
1415 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1416 
1417 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1418 {
1419 	return test_bit(feature, ka->vcpu_features);
1420 }
1421 
1422 #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1423 
1424 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1425 
1426 int kvm_trng_call(struct kvm_vcpu *vcpu);
1427 #ifdef CONFIG_KVM
1428 extern phys_addr_t hyp_mem_base;
1429 extern phys_addr_t hyp_mem_size;
1430 void __init kvm_hyp_reserve(void);
1431 #else
1432 static inline void kvm_hyp_reserve(void) { }
1433 #endif
1434 
1435 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1436 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1437 
1438 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1439 {
1440 	switch (reg) {
1441 	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1442 		return &ka->id_regs[IDREG_IDX(reg)];
1443 	case SYS_CTR_EL0:
1444 		return &ka->ctr_el0;
1445 	default:
1446 		WARN_ON_ONCE(1);
1447 		return NULL;
1448 	}
1449 }
1450 
1451 #define kvm_read_vm_id_reg(kvm, reg)					\
1452 	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1453 
1454 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1455 
1456 #define __expand_field_sign_unsigned(id, fld, val)			\
1457 	((u64)SYS_FIELD_VALUE(id, fld, val))
1458 
1459 #define __expand_field_sign_signed(id, fld, val)			\
1460 	({								\
1461 		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1462 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1463 	})
1464 
1465 #define get_idreg_field_unsigned(kvm, id, fld)				\
1466 	({								\
1467 		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1468 		FIELD_GET(id##_##fld##_MASK, __val);			\
1469 	})
1470 
1471 #define get_idreg_field_signed(kvm, id, fld)				\
1472 	({								\
1473 		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1474 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1475 	})
1476 
1477 #define get_idreg_field_enum(kvm, id, fld)				\
1478 	get_idreg_field_unsigned(kvm, id, fld)
1479 
1480 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1481 	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1482 
1483 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1484 	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1485 
1486 #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1487 	(id##_##fld##_SIGNED ?						\
1488 	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1489 	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1490 
1491 #define kvm_has_feat(kvm, id, fld, limit)				\
1492 	kvm_cmp_feat(kvm, id, fld, >=, limit)
1493 
1494 #define kvm_has_feat_enum(kvm, id, fld, val)				\
1495 	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1496 
1497 #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1498 	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1499 	kvm_cmp_feat(kvm, id, fld, <=, max))
1500 
1501 /* Check for a given level of PAuth support */
1502 #define kvm_has_pauth(k, l)						\
1503 	({								\
1504 		bool pa, pi, pa3;					\
1505 									\
1506 		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1507 		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1508 		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1509 		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1510 		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1511 		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1512 									\
1513 		(pa + pi + pa3) == 1;					\
1514 	})
1515 
1516 #define kvm_has_fpmr(k)					\
1517 	(system_supports_fpmr() &&			\
1518 	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1519 
1520 #endif /* __ARM64_KVM_HOST_H__ */
1521