xref: /linux/arch/arm64/include/asm/kvm_host.h (revision 145ff1ec090dce9beb5a9590b5dc288e7bb2e65d)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/bitmap.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <linux/kvm_types.h>
18 #include <linux/percpu.h>
19 #include <asm/arch_gicv3.h>
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/cputype.h>
23 #include <asm/daifflags.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/thread_info.h>
28 
29 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
30 
31 #define KVM_USER_MEM_SLOTS 512
32 #define KVM_HALT_POLL_NS_DEFAULT 500000
33 
34 #include <kvm/arm_vgic.h>
35 #include <kvm/arm_arch_timer.h>
36 #include <kvm/arm_pmu.h>
37 
38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
39 
40 #define KVM_VCPU_MAX_FEATURES 7
41 
42 #define KVM_REQ_SLEEP \
43 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
48 
49 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
50 				     KVM_DIRTY_LOG_INITIALLY_SET)
51 
52 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
53 
54 extern unsigned int kvm_sve_max_vl;
55 int kvm_arm_init_sve(void);
56 
57 int __attribute_const__ kvm_target_cpu(void);
58 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
59 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
60 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
61 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
62 
63 struct kvm_vmid {
64 	/* The VMID generation used for the virt. memory system */
65 	u64    vmid_gen;
66 	u32    vmid;
67 };
68 
69 struct kvm_arch {
70 	struct kvm_vmid vmid;
71 
72 	/* stage2 entry level table */
73 	pgd_t *pgd;
74 	phys_addr_t pgd_phys;
75 
76 	/* VTCR_EL2 value for this VM */
77 	u64    vtcr;
78 
79 	/* The last vcpu id that ran on each physical CPU */
80 	int __percpu *last_vcpu_ran;
81 
82 	/* The maximum number of vCPUs depends on the used GIC model */
83 	int max_vcpus;
84 
85 	/* Interrupt controller */
86 	struct vgic_dist	vgic;
87 
88 	/* Mandated version of PSCI */
89 	u32 psci_version;
90 
91 	/*
92 	 * If we encounter a data abort without valid instruction syndrome
93 	 * information, report this to user space.  User space can (and
94 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
95 	 * supported.
96 	 */
97 	bool return_nisv_io_abort_to_user;
98 };
99 
100 #define KVM_NR_MEM_OBJS     40
101 
102 /*
103  * We don't want allocation failures within the mmu code, so we preallocate
104  * enough memory for a single page fault in a cache.
105  */
106 struct kvm_mmu_memory_cache {
107 	int nobjs;
108 	void *objects[KVM_NR_MEM_OBJS];
109 };
110 
111 struct kvm_vcpu_fault_info {
112 	u32 esr_el2;		/* Hyp Syndrom Register */
113 	u64 far_el2;		/* Hyp Fault Address Register */
114 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
115 	u64 disr_el1;		/* Deferred [SError] Status Register */
116 };
117 
118 enum vcpu_sysreg {
119 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
120 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
121 	CSSELR_EL1,	/* Cache Size Selection Register */
122 	SCTLR_EL1,	/* System Control Register */
123 	ACTLR_EL1,	/* Auxiliary Control Register */
124 	CPACR_EL1,	/* Coprocessor Access Control */
125 	ZCR_EL1,	/* SVE Control */
126 	TTBR0_EL1,	/* Translation Table Base Register 0 */
127 	TTBR1_EL1,	/* Translation Table Base Register 1 */
128 	TCR_EL1,	/* Translation Control Register */
129 	ESR_EL1,	/* Exception Syndrome Register */
130 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
131 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
132 	FAR_EL1,	/* Fault Address Register */
133 	MAIR_EL1,	/* Memory Attribute Indirection Register */
134 	VBAR_EL1,	/* Vector Base Address Register */
135 	CONTEXTIDR_EL1,	/* Context ID Register */
136 	TPIDR_EL0,	/* Thread ID, User R/W */
137 	TPIDRRO_EL0,	/* Thread ID, User R/O */
138 	TPIDR_EL1,	/* Thread ID, Privileged */
139 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
140 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
141 	PAR_EL1,	/* Physical Address Register */
142 	MDSCR_EL1,	/* Monitor Debug System Control Register */
143 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
144 	DISR_EL1,	/* Deferred Interrupt Status Register */
145 
146 	/* Performance Monitors Registers */
147 	PMCR_EL0,	/* Control Register */
148 	PMSELR_EL0,	/* Event Counter Selection Register */
149 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
150 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
151 	PMCCNTR_EL0,	/* Cycle Counter Register */
152 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
153 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
154 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
155 	PMCNTENSET_EL0,	/* Count Enable Set Register */
156 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
157 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
158 	PMSWINC_EL0,	/* Software Increment Register */
159 	PMUSERENR_EL0,	/* User Enable Register */
160 
161 	/* Pointer Authentication Registers in a strict increasing order. */
162 	APIAKEYLO_EL1,
163 	APIAKEYHI_EL1,
164 	APIBKEYLO_EL1,
165 	APIBKEYHI_EL1,
166 	APDAKEYLO_EL1,
167 	APDAKEYHI_EL1,
168 	APDBKEYLO_EL1,
169 	APDBKEYHI_EL1,
170 	APGAKEYLO_EL1,
171 	APGAKEYHI_EL1,
172 
173 	/* 32bit specific registers. Keep them at the end of the range */
174 	DACR32_EL2,	/* Domain Access Control Register */
175 	IFSR32_EL2,	/* Instruction Fault Status Register */
176 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
177 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
178 
179 	NR_SYS_REGS	/* Nothing after this line! */
180 };
181 
182 /* 32bit mapping */
183 #define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
184 #define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
185 #define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
186 #define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
187 #define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
188 #define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
189 #define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
190 #define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
191 #define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
192 #define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
193 #define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
194 #define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
195 #define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
196 #define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
197 #define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
198 #define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
199 #define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
200 #define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
201 #define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
202 #define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
203 #define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
204 #define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
205 #define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
206 #define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
207 #define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
208 #define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
209 #define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
210 #define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
211 #define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
212 
213 #define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
214 #define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
215 #define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
216 #define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
217 #define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
218 #define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
219 #define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
220 
221 #define NR_COPRO_REGS	(NR_SYS_REGS * 2)
222 
223 struct kvm_cpu_context {
224 	struct kvm_regs	gp_regs;
225 	union {
226 		u64 sys_regs[NR_SYS_REGS];
227 		u32 copro[NR_COPRO_REGS];
228 	};
229 
230 	struct kvm_vcpu *__hyp_running_vcpu;
231 };
232 
233 struct kvm_pmu_events {
234 	u32 events_host;
235 	u32 events_guest;
236 };
237 
238 struct kvm_host_data {
239 	struct kvm_cpu_context host_ctxt;
240 	struct kvm_pmu_events pmu_events;
241 };
242 
243 typedef struct kvm_host_data kvm_host_data_t;
244 
245 struct vcpu_reset_state {
246 	unsigned long	pc;
247 	unsigned long	r0;
248 	bool		be;
249 	bool		reset;
250 };
251 
252 struct kvm_vcpu_arch {
253 	struct kvm_cpu_context ctxt;
254 	void *sve_state;
255 	unsigned int sve_max_vl;
256 
257 	/* HYP configuration */
258 	u64 hcr_el2;
259 	u32 mdcr_el2;
260 
261 	/* Exception Information */
262 	struct kvm_vcpu_fault_info fault;
263 
264 	/* State of various workarounds, see kvm_asm.h for bit assignment */
265 	u64 workaround_flags;
266 
267 	/* Miscellaneous vcpu state flags */
268 	u64 flags;
269 
270 	/*
271 	 * We maintain more than a single set of debug registers to support
272 	 * debugging the guest from the host and to maintain separate host and
273 	 * guest state during world switches. vcpu_debug_state are the debug
274 	 * registers of the vcpu as the guest sees them.  host_debug_state are
275 	 * the host registers which are saved and restored during
276 	 * world switches. external_debug_state contains the debug
277 	 * values we want to debug the guest. This is set via the
278 	 * KVM_SET_GUEST_DEBUG ioctl.
279 	 *
280 	 * debug_ptr points to the set of debug registers that should be loaded
281 	 * onto the hardware when running the guest.
282 	 */
283 	struct kvm_guest_debug_arch *debug_ptr;
284 	struct kvm_guest_debug_arch vcpu_debug_state;
285 	struct kvm_guest_debug_arch external_debug_state;
286 
287 	struct thread_info *host_thread_info;	/* hyp VA */
288 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
289 
290 	struct {
291 		/* {Break,watch}point registers */
292 		struct kvm_guest_debug_arch regs;
293 		/* Statistical profiling extension */
294 		u64 pmscr_el1;
295 	} host_debug_state;
296 
297 	/* VGIC state */
298 	struct vgic_cpu vgic_cpu;
299 	struct arch_timer_cpu timer_cpu;
300 	struct kvm_pmu pmu;
301 
302 	/*
303 	 * Anything that is not used directly from assembly code goes
304 	 * here.
305 	 */
306 
307 	/*
308 	 * Guest registers we preserve during guest debugging.
309 	 *
310 	 * These shadow registers are updated by the kvm_handle_sys_reg
311 	 * trap handler if the guest accesses or updates them while we
312 	 * are using guest debug.
313 	 */
314 	struct {
315 		u32	mdscr_el1;
316 	} guest_debug_preserved;
317 
318 	/* vcpu power-off state */
319 	bool power_off;
320 
321 	/* Don't run the guest (internal implementation need) */
322 	bool pause;
323 
324 	/* Cache some mmu pages needed inside spinlock regions */
325 	struct kvm_mmu_memory_cache mmu_page_cache;
326 
327 	/* Target CPU and feature flags */
328 	int target;
329 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
330 
331 	/* Detect first run of a vcpu */
332 	bool has_run_once;
333 
334 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
335 	u64 vsesr_el2;
336 
337 	/* Additional reset state */
338 	struct vcpu_reset_state	reset_state;
339 
340 	/* True when deferrable sysregs are loaded on the physical CPU,
341 	 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
342 	bool sysregs_loaded_on_cpu;
343 
344 	/* Guest PV state */
345 	struct {
346 		u64 steal;
347 		u64 last_steal;
348 		gpa_t base;
349 	} steal;
350 };
351 
352 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
353 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
354 				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))
355 
356 #define vcpu_sve_state_size(vcpu) ({					\
357 	size_t __size_ret;						\
358 	unsigned int __vcpu_vq;						\
359 									\
360 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
361 		__size_ret = 0;						\
362 	} else {							\
363 		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
364 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
365 	}								\
366 									\
367 	__size_ret;							\
368 })
369 
370 /* vcpu_arch flags field values: */
371 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
372 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
373 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
374 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
375 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
376 #define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
377 #define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
378 #define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
379 
380 #define vcpu_has_sve(vcpu) (system_supports_sve() && \
381 			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
382 
383 #ifdef CONFIG_ARM64_PTR_AUTH
384 #define vcpu_has_ptrauth(vcpu)						\
385 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
386 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
387 	 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
388 #else
389 #define vcpu_has_ptrauth(vcpu)		false
390 #endif
391 
392 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.gp_regs)
393 
394 /*
395  * Only use __vcpu_sys_reg if you know you want the memory backed version of a
396  * register, and not the one most recently accessed by a running VCPU.  For
397  * example, for userspace access or for system registers that are never context
398  * switched, but only emulated.
399  */
400 #define __vcpu_sys_reg(v,r)	((v)->arch.ctxt.sys_regs[(r)])
401 
402 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
403 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
404 
405 /*
406  * CP14 and CP15 live in the same array, as they are backed by the
407  * same system registers.
408  */
409 #define CPx_BIAS		IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)
410 
411 #define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
412 #define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
413 
414 struct kvm_vm_stat {
415 	ulong remote_tlb_flush;
416 };
417 
418 struct kvm_vcpu_stat {
419 	u64 halt_successful_poll;
420 	u64 halt_attempted_poll;
421 	u64 halt_poll_success_ns;
422 	u64 halt_poll_fail_ns;
423 	u64 halt_poll_invalid;
424 	u64 halt_wakeup;
425 	u64 hvc_exit_stat;
426 	u64 wfe_exit_stat;
427 	u64 wfi_exit_stat;
428 	u64 mmio_exit_user;
429 	u64 mmio_exit_kernel;
430 	u64 exits;
431 };
432 
433 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
434 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
435 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
436 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
437 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
438 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
439 			      struct kvm_vcpu_events *events);
440 
441 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
442 			      struct kvm_vcpu_events *events);
443 
444 #define KVM_ARCH_WANT_MMU_NOTIFIER
445 int kvm_unmap_hva_range(struct kvm *kvm,
446 			unsigned long start, unsigned long end);
447 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
448 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
449 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
450 
451 void kvm_arm_halt_guest(struct kvm *kvm);
452 void kvm_arm_resume_guest(struct kvm *kvm);
453 
454 u64 __kvm_call_hyp(void *hypfn, ...);
455 
456 /*
457  * The couple of isb() below are there to guarantee the same behaviour
458  * on VHE as on !VHE, where the eret to EL1 acts as a context
459  * synchronization event.
460  */
461 #define kvm_call_hyp(f, ...)						\
462 	do {								\
463 		if (has_vhe()) {					\
464 			f(__VA_ARGS__);					\
465 			isb();						\
466 		} else {						\
467 			__kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \
468 		}							\
469 	} while(0)
470 
471 #define kvm_call_hyp_ret(f, ...)					\
472 	({								\
473 		typeof(f(__VA_ARGS__)) ret;				\
474 									\
475 		if (has_vhe()) {					\
476 			ret = f(__VA_ARGS__);				\
477 			isb();						\
478 		} else {						\
479 			ret = __kvm_call_hyp(kvm_ksym_ref(f),		\
480 					     ##__VA_ARGS__);		\
481 		}							\
482 									\
483 		ret;							\
484 	})
485 
486 void force_vm_exit(const cpumask_t *mask);
487 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
488 
489 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
490 		int exception_index);
491 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
492 		       int exception_index);
493 
494 /* MMIO helpers */
495 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
496 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
497 
498 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run);
499 int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
500 		 phys_addr_t fault_ipa);
501 
502 int kvm_perf_init(void);
503 int kvm_perf_teardown(void);
504 
505 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
506 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
507 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
508 
509 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
510 			    struct kvm_device_attr *attr);
511 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
512 			    struct kvm_device_attr *attr);
513 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
514 			    struct kvm_device_attr *attr);
515 
516 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
517 {
518 	vcpu_arch->steal.base = GPA_INVALID;
519 }
520 
521 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
522 {
523 	return (vcpu_arch->steal.base != GPA_INVALID);
524 }
525 
526 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
527 
528 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
529 
530 DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
531 
532 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
533 {
534 	/* The host's MPIDR is immutable, so let's set it up at boot time */
535 	cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr();
536 }
537 
538 static inline bool kvm_arch_requires_vhe(void)
539 {
540 	/*
541 	 * The Arm architecture specifies that implementation of SVE
542 	 * requires VHE also to be implemented.  The KVM code for arm64
543 	 * relies on this when SVE is present:
544 	 */
545 	if (system_supports_sve())
546 		return true;
547 
548 	return false;
549 }
550 
551 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
552 
553 static inline void kvm_arch_hardware_unsetup(void) {}
554 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
555 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
556 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
557 
558 void kvm_arm_init_debug(void);
559 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
560 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
561 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
562 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
563 			       struct kvm_device_attr *attr);
564 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
565 			       struct kvm_device_attr *attr);
566 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
567 			       struct kvm_device_attr *attr);
568 
569 /* Guest/host FPSIMD coordination helpers */
570 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
571 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
572 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
573 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
574 
575 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
576 {
577 	return (!has_vhe() && attr->exclude_host);
578 }
579 
580 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
581 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
582 {
583 	return kvm_arch_vcpu_run_map_fp(vcpu);
584 }
585 
586 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
587 void kvm_clr_pmu_events(u32 clr);
588 
589 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
590 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
591 #else
592 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
593 static inline void kvm_clr_pmu_events(u32 clr) {}
594 #endif
595 
596 #define KVM_BP_HARDEN_UNKNOWN		-1
597 #define KVM_BP_HARDEN_WA_NEEDED		0
598 #define KVM_BP_HARDEN_NOT_REQUIRED	1
599 
600 static inline int kvm_arm_harden_branch_predictor(void)
601 {
602 	switch (get_spectre_v2_workaround_state()) {
603 	case ARM64_BP_HARDEN_WA_NEEDED:
604 		return KVM_BP_HARDEN_WA_NEEDED;
605 	case ARM64_BP_HARDEN_NOT_REQUIRED:
606 		return KVM_BP_HARDEN_NOT_REQUIRED;
607 	case ARM64_BP_HARDEN_UNKNOWN:
608 	default:
609 		return KVM_BP_HARDEN_UNKNOWN;
610 	}
611 }
612 
613 #define KVM_SSBD_UNKNOWN		-1
614 #define KVM_SSBD_FORCE_DISABLE		0
615 #define KVM_SSBD_KERNEL		1
616 #define KVM_SSBD_FORCE_ENABLE		2
617 #define KVM_SSBD_MITIGATED		3
618 
619 static inline int kvm_arm_have_ssbd(void)
620 {
621 	switch (arm64_get_ssbd_state()) {
622 	case ARM64_SSBD_FORCE_DISABLE:
623 		return KVM_SSBD_FORCE_DISABLE;
624 	case ARM64_SSBD_KERNEL:
625 		return KVM_SSBD_KERNEL;
626 	case ARM64_SSBD_FORCE_ENABLE:
627 		return KVM_SSBD_FORCE_ENABLE;
628 	case ARM64_SSBD_MITIGATED:
629 		return KVM_SSBD_MITIGATED;
630 	case ARM64_SSBD_UNKNOWN:
631 	default:
632 		return KVM_SSBD_UNKNOWN;
633 	}
634 }
635 
636 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
637 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
638 
639 int kvm_set_ipa_limit(void);
640 
641 #define __KVM_HAVE_ARCH_VM_ALLOC
642 struct kvm *kvm_arch_alloc_vm(void);
643 void kvm_arch_free_vm(struct kvm *kvm);
644 
645 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
646 
647 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
648 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
649 
650 #define kvm_arm_vcpu_sve_finalized(vcpu) \
651 	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
652 
653 #endif /* __ARM64_KVM_HOST_H__ */
654