1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/bitmap.h> 15 #include <linux/types.h> 16 #include <linux/jump_label.h> 17 #include <linux/kvm_types.h> 18 #include <linux/percpu.h> 19 #include <asm/arch_gicv3.h> 20 #include <asm/barrier.h> 21 #include <asm/cpufeature.h> 22 #include <asm/cputype.h> 23 #include <asm/daifflags.h> 24 #include <asm/fpsimd.h> 25 #include <asm/kvm.h> 26 #include <asm/kvm_asm.h> 27 #include <asm/thread_info.h> 28 29 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 30 31 #define KVM_USER_MEM_SLOTS 512 32 #define KVM_HALT_POLL_NS_DEFAULT 500000 33 34 #include <kvm/arm_vgic.h> 35 #include <kvm/arm_arch_timer.h> 36 #include <kvm/arm_pmu.h> 37 38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 39 40 #define KVM_VCPU_MAX_FEATURES 7 41 42 #define KVM_REQ_SLEEP \ 43 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 44 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 45 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 46 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 47 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 48 49 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 50 KVM_DIRTY_LOG_INITIALLY_SET) 51 52 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 53 54 extern unsigned int kvm_sve_max_vl; 55 int kvm_arm_init_sve(void); 56 57 int __attribute_const__ kvm_target_cpu(void); 58 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 59 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 60 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext); 61 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start); 62 63 struct kvm_vmid { 64 /* The VMID generation used for the virt. memory system */ 65 u64 vmid_gen; 66 u32 vmid; 67 }; 68 69 struct kvm_arch { 70 struct kvm_vmid vmid; 71 72 /* stage2 entry level table */ 73 pgd_t *pgd; 74 phys_addr_t pgd_phys; 75 76 /* VTCR_EL2 value for this VM */ 77 u64 vtcr; 78 79 /* The last vcpu id that ran on each physical CPU */ 80 int __percpu *last_vcpu_ran; 81 82 /* The maximum number of vCPUs depends on the used GIC model */ 83 int max_vcpus; 84 85 /* Interrupt controller */ 86 struct vgic_dist vgic; 87 88 /* Mandated version of PSCI */ 89 u32 psci_version; 90 91 /* 92 * If we encounter a data abort without valid instruction syndrome 93 * information, report this to user space. User space can (and 94 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 95 * supported. 96 */ 97 bool return_nisv_io_abort_to_user; 98 }; 99 100 #define KVM_NR_MEM_OBJS 40 101 102 /* 103 * We don't want allocation failures within the mmu code, so we preallocate 104 * enough memory for a single page fault in a cache. 105 */ 106 struct kvm_mmu_memory_cache { 107 int nobjs; 108 void *objects[KVM_NR_MEM_OBJS]; 109 }; 110 111 struct kvm_vcpu_fault_info { 112 u32 esr_el2; /* Hyp Syndrom Register */ 113 u64 far_el2; /* Hyp Fault Address Register */ 114 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 115 u64 disr_el1; /* Deferred [SError] Status Register */ 116 }; 117 118 enum vcpu_sysreg { 119 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 120 MPIDR_EL1, /* MultiProcessor Affinity Register */ 121 CSSELR_EL1, /* Cache Size Selection Register */ 122 SCTLR_EL1, /* System Control Register */ 123 ACTLR_EL1, /* Auxiliary Control Register */ 124 CPACR_EL1, /* Coprocessor Access Control */ 125 ZCR_EL1, /* SVE Control */ 126 TTBR0_EL1, /* Translation Table Base Register 0 */ 127 TTBR1_EL1, /* Translation Table Base Register 1 */ 128 TCR_EL1, /* Translation Control Register */ 129 ESR_EL1, /* Exception Syndrome Register */ 130 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 131 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 132 FAR_EL1, /* Fault Address Register */ 133 MAIR_EL1, /* Memory Attribute Indirection Register */ 134 VBAR_EL1, /* Vector Base Address Register */ 135 CONTEXTIDR_EL1, /* Context ID Register */ 136 TPIDR_EL0, /* Thread ID, User R/W */ 137 TPIDRRO_EL0, /* Thread ID, User R/O */ 138 TPIDR_EL1, /* Thread ID, Privileged */ 139 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 140 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 141 PAR_EL1, /* Physical Address Register */ 142 MDSCR_EL1, /* Monitor Debug System Control Register */ 143 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 144 DISR_EL1, /* Deferred Interrupt Status Register */ 145 146 /* Performance Monitors Registers */ 147 PMCR_EL0, /* Control Register */ 148 PMSELR_EL0, /* Event Counter Selection Register */ 149 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 150 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 151 PMCCNTR_EL0, /* Cycle Counter Register */ 152 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 153 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 154 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 155 PMCNTENSET_EL0, /* Count Enable Set Register */ 156 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 157 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 158 PMSWINC_EL0, /* Software Increment Register */ 159 PMUSERENR_EL0, /* User Enable Register */ 160 161 /* Pointer Authentication Registers in a strict increasing order. */ 162 APIAKEYLO_EL1, 163 APIAKEYHI_EL1, 164 APIBKEYLO_EL1, 165 APIBKEYHI_EL1, 166 APDAKEYLO_EL1, 167 APDAKEYHI_EL1, 168 APDBKEYLO_EL1, 169 APDBKEYHI_EL1, 170 APGAKEYLO_EL1, 171 APGAKEYHI_EL1, 172 173 /* 32bit specific registers. Keep them at the end of the range */ 174 DACR32_EL2, /* Domain Access Control Register */ 175 IFSR32_EL2, /* Instruction Fault Status Register */ 176 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 177 DBGVCR32_EL2, /* Debug Vector Catch Register */ 178 179 NR_SYS_REGS /* Nothing after this line! */ 180 }; 181 182 /* 32bit mapping */ 183 #define c0_MPIDR (MPIDR_EL1 * 2) /* MultiProcessor ID Register */ 184 #define c0_CSSELR (CSSELR_EL1 * 2)/* Cache Size Selection Register */ 185 #define c1_SCTLR (SCTLR_EL1 * 2) /* System Control Register */ 186 #define c1_ACTLR (ACTLR_EL1 * 2) /* Auxiliary Control Register */ 187 #define c1_CPACR (CPACR_EL1 * 2) /* Coprocessor Access Control */ 188 #define c2_TTBR0 (TTBR0_EL1 * 2) /* Translation Table Base Register 0 */ 189 #define c2_TTBR0_high (c2_TTBR0 + 1) /* TTBR0 top 32 bits */ 190 #define c2_TTBR1 (TTBR1_EL1 * 2) /* Translation Table Base Register 1 */ 191 #define c2_TTBR1_high (c2_TTBR1 + 1) /* TTBR1 top 32 bits */ 192 #define c2_TTBCR (TCR_EL1 * 2) /* Translation Table Base Control R. */ 193 #define c3_DACR (DACR32_EL2 * 2)/* Domain Access Control Register */ 194 #define c5_DFSR (ESR_EL1 * 2) /* Data Fault Status Register */ 195 #define c5_IFSR (IFSR32_EL2 * 2)/* Instruction Fault Status Register */ 196 #define c5_ADFSR (AFSR0_EL1 * 2) /* Auxiliary Data Fault Status R */ 197 #define c5_AIFSR (AFSR1_EL1 * 2) /* Auxiliary Instr Fault Status R */ 198 #define c6_DFAR (FAR_EL1 * 2) /* Data Fault Address Register */ 199 #define c6_IFAR (c6_DFAR + 1) /* Instruction Fault Address Register */ 200 #define c7_PAR (PAR_EL1 * 2) /* Physical Address Register */ 201 #define c7_PAR_high (c7_PAR + 1) /* PAR top 32 bits */ 202 #define c10_PRRR (MAIR_EL1 * 2) /* Primary Region Remap Register */ 203 #define c10_NMRR (c10_PRRR + 1) /* Normal Memory Remap Register */ 204 #define c12_VBAR (VBAR_EL1 * 2) /* Vector Base Address Register */ 205 #define c13_CID (CONTEXTIDR_EL1 * 2) /* Context ID Register */ 206 #define c13_TID_URW (TPIDR_EL0 * 2) /* Thread ID, User R/W */ 207 #define c13_TID_URO (TPIDRRO_EL0 * 2)/* Thread ID, User R/O */ 208 #define c13_TID_PRIV (TPIDR_EL1 * 2) /* Thread ID, Privileged */ 209 #define c10_AMAIR0 (AMAIR_EL1 * 2) /* Aux Memory Attr Indirection Reg */ 210 #define c10_AMAIR1 (c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */ 211 #define c14_CNTKCTL (CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */ 212 213 #define cp14_DBGDSCRext (MDSCR_EL1 * 2) 214 #define cp14_DBGBCR0 (DBGBCR0_EL1 * 2) 215 #define cp14_DBGBVR0 (DBGBVR0_EL1 * 2) 216 #define cp14_DBGBXVR0 (cp14_DBGBVR0 + 1) 217 #define cp14_DBGWCR0 (DBGWCR0_EL1 * 2) 218 #define cp14_DBGWVR0 (DBGWVR0_EL1 * 2) 219 #define cp14_DBGDCCINT (MDCCINT_EL1 * 2) 220 221 #define NR_COPRO_REGS (NR_SYS_REGS * 2) 222 223 struct kvm_cpu_context { 224 struct kvm_regs gp_regs; 225 union { 226 u64 sys_regs[NR_SYS_REGS]; 227 u32 copro[NR_COPRO_REGS]; 228 }; 229 230 struct kvm_vcpu *__hyp_running_vcpu; 231 }; 232 233 struct kvm_pmu_events { 234 u32 events_host; 235 u32 events_guest; 236 }; 237 238 struct kvm_host_data { 239 struct kvm_cpu_context host_ctxt; 240 struct kvm_pmu_events pmu_events; 241 }; 242 243 typedef struct kvm_host_data kvm_host_data_t; 244 245 struct vcpu_reset_state { 246 unsigned long pc; 247 unsigned long r0; 248 bool be; 249 bool reset; 250 }; 251 252 struct kvm_vcpu_arch { 253 struct kvm_cpu_context ctxt; 254 void *sve_state; 255 unsigned int sve_max_vl; 256 257 /* HYP configuration */ 258 u64 hcr_el2; 259 u32 mdcr_el2; 260 261 /* Exception Information */ 262 struct kvm_vcpu_fault_info fault; 263 264 /* State of various workarounds, see kvm_asm.h for bit assignment */ 265 u64 workaround_flags; 266 267 /* Miscellaneous vcpu state flags */ 268 u64 flags; 269 270 /* 271 * We maintain more than a single set of debug registers to support 272 * debugging the guest from the host and to maintain separate host and 273 * guest state during world switches. vcpu_debug_state are the debug 274 * registers of the vcpu as the guest sees them. host_debug_state are 275 * the host registers which are saved and restored during 276 * world switches. external_debug_state contains the debug 277 * values we want to debug the guest. This is set via the 278 * KVM_SET_GUEST_DEBUG ioctl. 279 * 280 * debug_ptr points to the set of debug registers that should be loaded 281 * onto the hardware when running the guest. 282 */ 283 struct kvm_guest_debug_arch *debug_ptr; 284 struct kvm_guest_debug_arch vcpu_debug_state; 285 struct kvm_guest_debug_arch external_debug_state; 286 287 struct thread_info *host_thread_info; /* hyp VA */ 288 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 289 290 struct { 291 /* {Break,watch}point registers */ 292 struct kvm_guest_debug_arch regs; 293 /* Statistical profiling extension */ 294 u64 pmscr_el1; 295 } host_debug_state; 296 297 /* VGIC state */ 298 struct vgic_cpu vgic_cpu; 299 struct arch_timer_cpu timer_cpu; 300 struct kvm_pmu pmu; 301 302 /* 303 * Anything that is not used directly from assembly code goes 304 * here. 305 */ 306 307 /* 308 * Guest registers we preserve during guest debugging. 309 * 310 * These shadow registers are updated by the kvm_handle_sys_reg 311 * trap handler if the guest accesses or updates them while we 312 * are using guest debug. 313 */ 314 struct { 315 u32 mdscr_el1; 316 } guest_debug_preserved; 317 318 /* vcpu power-off state */ 319 bool power_off; 320 321 /* Don't run the guest (internal implementation need) */ 322 bool pause; 323 324 /* Cache some mmu pages needed inside spinlock regions */ 325 struct kvm_mmu_memory_cache mmu_page_cache; 326 327 /* Target CPU and feature flags */ 328 int target; 329 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 330 331 /* Detect first run of a vcpu */ 332 bool has_run_once; 333 334 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 335 u64 vsesr_el2; 336 337 /* Additional reset state */ 338 struct vcpu_reset_state reset_state; 339 340 /* True when deferrable sysregs are loaded on the physical CPU, 341 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */ 342 bool sysregs_loaded_on_cpu; 343 344 /* Guest PV state */ 345 struct { 346 u64 steal; 347 u64 last_steal; 348 gpa_t base; 349 } steal; 350 }; 351 352 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 353 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \ 354 sve_ffr_offset((vcpu)->arch.sve_max_vl))) 355 356 #define vcpu_sve_state_size(vcpu) ({ \ 357 size_t __size_ret; \ 358 unsigned int __vcpu_vq; \ 359 \ 360 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 361 __size_ret = 0; \ 362 } else { \ 363 __vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl); \ 364 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 365 } \ 366 \ 367 __size_ret; \ 368 }) 369 370 /* vcpu_arch flags field values: */ 371 #define KVM_ARM64_DEBUG_DIRTY (1 << 0) 372 #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */ 373 #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */ 374 #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */ 375 #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */ 376 #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */ 377 #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */ 378 #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */ 379 380 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 381 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE)) 382 383 #ifdef CONFIG_ARM64_PTR_AUTH 384 #define vcpu_has_ptrauth(vcpu) \ 385 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 386 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 387 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH) 388 #else 389 #define vcpu_has_ptrauth(vcpu) false 390 #endif 391 392 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs) 393 394 /* 395 * Only use __vcpu_sys_reg if you know you want the memory backed version of a 396 * register, and not the one most recently accessed by a running VCPU. For 397 * example, for userspace access or for system registers that are never context 398 * switched, but only emulated. 399 */ 400 #define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)]) 401 402 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 403 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 404 405 /* 406 * CP14 and CP15 live in the same array, as they are backed by the 407 * same system registers. 408 */ 409 #define CPx_BIAS IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) 410 411 #define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r) ^ CPx_BIAS]) 412 #define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r) ^ CPx_BIAS]) 413 414 struct kvm_vm_stat { 415 ulong remote_tlb_flush; 416 }; 417 418 struct kvm_vcpu_stat { 419 u64 halt_successful_poll; 420 u64 halt_attempted_poll; 421 u64 halt_poll_success_ns; 422 u64 halt_poll_fail_ns; 423 u64 halt_poll_invalid; 424 u64 halt_wakeup; 425 u64 hvc_exit_stat; 426 u64 wfe_exit_stat; 427 u64 wfi_exit_stat; 428 u64 mmio_exit_user; 429 u64 mmio_exit_kernel; 430 u64 exits; 431 }; 432 433 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); 434 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 435 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 436 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 437 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 438 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 439 struct kvm_vcpu_events *events); 440 441 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 442 struct kvm_vcpu_events *events); 443 444 #define KVM_ARCH_WANT_MMU_NOTIFIER 445 int kvm_unmap_hva_range(struct kvm *kvm, 446 unsigned long start, unsigned long end); 447 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); 448 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); 449 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); 450 451 void kvm_arm_halt_guest(struct kvm *kvm); 452 void kvm_arm_resume_guest(struct kvm *kvm); 453 454 u64 __kvm_call_hyp(void *hypfn, ...); 455 456 /* 457 * The couple of isb() below are there to guarantee the same behaviour 458 * on VHE as on !VHE, where the eret to EL1 acts as a context 459 * synchronization event. 460 */ 461 #define kvm_call_hyp(f, ...) \ 462 do { \ 463 if (has_vhe()) { \ 464 f(__VA_ARGS__); \ 465 isb(); \ 466 } else { \ 467 __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \ 468 } \ 469 } while(0) 470 471 #define kvm_call_hyp_ret(f, ...) \ 472 ({ \ 473 typeof(f(__VA_ARGS__)) ret; \ 474 \ 475 if (has_vhe()) { \ 476 ret = f(__VA_ARGS__); \ 477 isb(); \ 478 } else { \ 479 ret = __kvm_call_hyp(kvm_ksym_ref(f), \ 480 ##__VA_ARGS__); \ 481 } \ 482 \ 483 ret; \ 484 }) 485 486 void force_vm_exit(const cpumask_t *mask); 487 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot); 488 489 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, 490 int exception_index); 491 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run, 492 int exception_index); 493 494 /* MMIO helpers */ 495 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 496 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 497 498 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run); 499 int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run, 500 phys_addr_t fault_ipa); 501 502 int kvm_perf_init(void); 503 int kvm_perf_teardown(void); 504 505 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 506 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 507 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 508 509 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 510 struct kvm_device_attr *attr); 511 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 512 struct kvm_device_attr *attr); 513 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 514 struct kvm_device_attr *attr); 515 516 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 517 { 518 vcpu_arch->steal.base = GPA_INVALID; 519 } 520 521 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 522 { 523 return (vcpu_arch->steal.base != GPA_INVALID); 524 } 525 526 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 527 528 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 529 530 DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data); 531 532 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 533 { 534 /* The host's MPIDR is immutable, so let's set it up at boot time */ 535 cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr(); 536 } 537 538 static inline bool kvm_arch_requires_vhe(void) 539 { 540 /* 541 * The Arm architecture specifies that implementation of SVE 542 * requires VHE also to be implemented. The KVM code for arm64 543 * relies on this when SVE is present: 544 */ 545 if (system_supports_sve()) 546 return true; 547 548 return false; 549 } 550 551 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); 552 553 static inline void kvm_arch_hardware_unsetup(void) {} 554 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 555 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 556 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} 557 558 void kvm_arm_init_debug(void); 559 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 560 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 561 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 562 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 563 struct kvm_device_attr *attr); 564 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 565 struct kvm_device_attr *attr); 566 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 567 struct kvm_device_attr *attr); 568 569 /* Guest/host FPSIMD coordination helpers */ 570 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 571 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 572 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 573 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 574 575 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 576 { 577 return (!has_vhe() && attr->exclude_host); 578 } 579 580 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */ 581 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 582 { 583 return kvm_arch_vcpu_run_map_fp(vcpu); 584 } 585 586 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 587 void kvm_clr_pmu_events(u32 clr); 588 589 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu); 590 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu); 591 #else 592 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 593 static inline void kvm_clr_pmu_events(u32 clr) {} 594 #endif 595 596 #define KVM_BP_HARDEN_UNKNOWN -1 597 #define KVM_BP_HARDEN_WA_NEEDED 0 598 #define KVM_BP_HARDEN_NOT_REQUIRED 1 599 600 static inline int kvm_arm_harden_branch_predictor(void) 601 { 602 switch (get_spectre_v2_workaround_state()) { 603 case ARM64_BP_HARDEN_WA_NEEDED: 604 return KVM_BP_HARDEN_WA_NEEDED; 605 case ARM64_BP_HARDEN_NOT_REQUIRED: 606 return KVM_BP_HARDEN_NOT_REQUIRED; 607 case ARM64_BP_HARDEN_UNKNOWN: 608 default: 609 return KVM_BP_HARDEN_UNKNOWN; 610 } 611 } 612 613 #define KVM_SSBD_UNKNOWN -1 614 #define KVM_SSBD_FORCE_DISABLE 0 615 #define KVM_SSBD_KERNEL 1 616 #define KVM_SSBD_FORCE_ENABLE 2 617 #define KVM_SSBD_MITIGATED 3 618 619 static inline int kvm_arm_have_ssbd(void) 620 { 621 switch (arm64_get_ssbd_state()) { 622 case ARM64_SSBD_FORCE_DISABLE: 623 return KVM_SSBD_FORCE_DISABLE; 624 case ARM64_SSBD_KERNEL: 625 return KVM_SSBD_KERNEL; 626 case ARM64_SSBD_FORCE_ENABLE: 627 return KVM_SSBD_FORCE_ENABLE; 628 case ARM64_SSBD_MITIGATED: 629 return KVM_SSBD_MITIGATED; 630 case ARM64_SSBD_UNKNOWN: 631 default: 632 return KVM_SSBD_UNKNOWN; 633 } 634 } 635 636 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu); 637 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu); 638 639 int kvm_set_ipa_limit(void); 640 641 #define __KVM_HAVE_ARCH_VM_ALLOC 642 struct kvm *kvm_arch_alloc_vm(void); 643 void kvm_arch_free_vm(struct kvm *kvm); 644 645 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type); 646 647 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 648 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 649 650 #define kvm_arm_vcpu_sve_finalized(vcpu) \ 651 ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED) 652 653 #endif /* __ARM64_KVM_HOST_H__ */ 654