xref: /linux/arch/arm64/include/asm/kvm_emulate.h (revision c5dbf04160005e07e8ca7232a7faa77ab1547ae0)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/kvm_emulate.h
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_EMULATE_H__
12 #define __ARM64_KVM_EMULATE_H__
13 
14 #include <linux/kvm_host.h>
15 
16 #include <asm/debug-monitors.h>
17 #include <asm/esr.h>
18 #include <asm/kvm_arm.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/ptrace.h>
21 #include <asm/cputype.h>
22 #include <asm/virt.h>
23 
24 #define CURRENT_EL_SP_EL0_VECTOR	0x0
25 #define CURRENT_EL_SP_ELx_VECTOR	0x200
26 #define LOWER_EL_AArch64_VECTOR		0x400
27 #define LOWER_EL_AArch32_VECTOR		0x600
28 
29 enum exception_type {
30 	except_type_sync	= 0,
31 	except_type_irq		= 0x80,
32 	except_type_fiq		= 0x100,
33 	except_type_serror	= 0x180,
34 };
35 
36 #define kvm_exception_type_names		\
37 	{ except_type_sync,	"SYNC"   },	\
38 	{ except_type_irq,	"IRQ"    },	\
39 	{ except_type_fiq,	"FIQ"    },	\
40 	{ except_type_serror,	"SERROR" }
41 
42 bool kvm_condition_valid32(const struct kvm_vcpu *vcpu);
43 void kvm_skip_instr32(struct kvm_vcpu *vcpu);
44 
45 void kvm_inject_undefined(struct kvm_vcpu *vcpu);
46 void kvm_inject_vabt(struct kvm_vcpu *vcpu);
47 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr);
48 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr);
49 void kvm_inject_size_fault(struct kvm_vcpu *vcpu);
50 
51 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu);
52 
53 void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu);
54 int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2);
55 int kvm_inject_nested_irq(struct kvm_vcpu *vcpu);
56 
57 static inline bool vcpu_has_feature(const struct kvm_vcpu *vcpu, int feature)
58 {
59 	return test_bit(feature, vcpu->kvm->arch.vcpu_features);
60 }
61 
62 #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__)
63 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
64 {
65 	return !(vcpu->arch.hcr_el2 & HCR_RW);
66 }
67 #else
68 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
69 {
70 	return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
71 }
72 #endif
73 
74 static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
75 {
76 	vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS;
77 	if (has_vhe() || has_hvhe())
78 		vcpu->arch.hcr_el2 |= HCR_E2H;
79 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
80 		/* route synchronous external abort exceptions to EL2 */
81 		vcpu->arch.hcr_el2 |= HCR_TEA;
82 		/* trap error record accesses */
83 		vcpu->arch.hcr_el2 |= HCR_TERR;
84 	}
85 
86 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) {
87 		vcpu->arch.hcr_el2 |= HCR_FWB;
88 	} else {
89 		/*
90 		 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C
91 		 * get set in SCTLR_EL1 such that we can detect when the guest
92 		 * MMU gets turned on and do the necessary cache maintenance
93 		 * then.
94 		 */
95 		vcpu->arch.hcr_el2 |= HCR_TVM;
96 	}
97 
98 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
99 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE))
100 		vcpu->arch.hcr_el2 |= HCR_TID4;
101 	else
102 		vcpu->arch.hcr_el2 |= HCR_TID2;
103 
104 	if (vcpu_el1_is_32bit(vcpu))
105 		vcpu->arch.hcr_el2 &= ~HCR_RW;
106 
107 	if (kvm_has_mte(vcpu->kvm))
108 		vcpu->arch.hcr_el2 |= HCR_ATA;
109 }
110 
111 static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu)
112 {
113 	return (unsigned long *)&vcpu->arch.hcr_el2;
114 }
115 
116 static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu)
117 {
118 	vcpu->arch.hcr_el2 &= ~HCR_TWE;
119 	if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
120 	    vcpu->kvm->arch.vgic.nassgireq)
121 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
122 	else
123 		vcpu->arch.hcr_el2 |= HCR_TWI;
124 }
125 
126 static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu)
127 {
128 	vcpu->arch.hcr_el2 |= HCR_TWE;
129 	vcpu->arch.hcr_el2 |= HCR_TWI;
130 }
131 
132 static inline void vcpu_ptrauth_enable(struct kvm_vcpu *vcpu)
133 {
134 	vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
135 }
136 
137 static inline void vcpu_ptrauth_disable(struct kvm_vcpu *vcpu)
138 {
139 	vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
140 }
141 
142 static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu)
143 {
144 	return vcpu->arch.vsesr_el2;
145 }
146 
147 static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr)
148 {
149 	vcpu->arch.vsesr_el2 = vsesr;
150 }
151 
152 static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
153 {
154 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pc;
155 }
156 
157 static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu)
158 {
159 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate;
160 }
161 
162 static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu)
163 {
164 	return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT);
165 }
166 
167 static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu)
168 {
169 	if (vcpu_mode_is_32bit(vcpu))
170 		return kvm_condition_valid32(vcpu);
171 
172 	return true;
173 }
174 
175 static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu)
176 {
177 	*vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT;
178 }
179 
180 /*
181  * vcpu_get_reg and vcpu_set_reg should always be passed a register number
182  * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on
183  * AArch32 with banked registers.
184  */
185 static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu,
186 					 u8 reg_num)
187 {
188 	return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num];
189 }
190 
191 static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
192 				unsigned long val)
193 {
194 	if (reg_num != 31)
195 		vcpu_gp_regs(vcpu)->regs[reg_num] = val;
196 }
197 
198 static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt)
199 {
200 	switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) {
201 	case PSR_MODE_EL2h:
202 	case PSR_MODE_EL2t:
203 		return true;
204 	default:
205 		return false;
206 	}
207 }
208 
209 static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu)
210 {
211 	return vcpu_is_el2_ctxt(&vcpu->arch.ctxt);
212 }
213 
214 static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt)
215 {
216 	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H;
217 }
218 
219 static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu)
220 {
221 	return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt);
222 }
223 
224 static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt)
225 {
226 	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE;
227 }
228 
229 static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu)
230 {
231 	return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt);
232 }
233 
234 static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt)
235 {
236 	/*
237 	 * We are in a hypervisor context if the vcpu mode is EL2 or
238 	 * E2H and TGE bits are set. The latter means we are in the user space
239 	 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost'
240 	 *
241 	 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the
242 	 * rest of the KVM code, and will result in a misbehaving guest.
243 	 */
244 	return vcpu_is_el2_ctxt(ctxt) ||
245 		(__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) ||
246 		__vcpu_el2_tge_is_set(ctxt);
247 }
248 
249 static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu)
250 {
251 	return __is_hyp_ctxt(&vcpu->arch.ctxt);
252 }
253 
254 /*
255  * The layout of SPSR for an AArch32 state is different when observed from an
256  * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32
257  * view given an AArch64 view.
258  *
259  * In ARM DDI 0487E.a see:
260  *
261  * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426
262  * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256
263  * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280
264  *
265  * Which show the following differences:
266  *
267  * | Bit | AA64 | AA32 | Notes                       |
268  * +-----+------+------+-----------------------------|
269  * | 24  | DIT  | J    | J is RES0 in ARMv8          |
270  * | 21  | SS   | DIT  | SS doesn't exist in AArch32 |
271  *
272  * ... and all other bits are (currently) common.
273  */
274 static inline unsigned long host_spsr_to_spsr32(unsigned long spsr)
275 {
276 	const unsigned long overlap = BIT(24) | BIT(21);
277 	unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT);
278 
279 	spsr &= ~overlap;
280 
281 	spsr |= dit << 21;
282 
283 	return spsr;
284 }
285 
286 static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu)
287 {
288 	u32 mode;
289 
290 	if (vcpu_mode_is_32bit(vcpu)) {
291 		mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK;
292 		return mode > PSR_AA32_MODE_USR;
293 	}
294 
295 	mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK;
296 
297 	return mode != PSR_MODE_EL0t;
298 }
299 
300 static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
301 {
302 	return vcpu->arch.fault.esr_el2;
303 }
304 
305 static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu)
306 {
307 	u64 esr = kvm_vcpu_get_esr(vcpu);
308 
309 	if (esr & ESR_ELx_CV)
310 		return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
311 
312 	return -1;
313 }
314 
315 static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu)
316 {
317 	return vcpu->arch.fault.far_el2;
318 }
319 
320 static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu)
321 {
322 	return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8;
323 }
324 
325 static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu)
326 {
327 	return vcpu->arch.fault.disr_el1;
328 }
329 
330 static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
331 {
332 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK;
333 }
334 
335 static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
336 {
337 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV);
338 }
339 
340 static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu)
341 {
342 	return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC);
343 }
344 
345 static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu)
346 {
347 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE);
348 }
349 
350 static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu)
351 {
352 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF);
353 }
354 
355 static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu)
356 {
357 	return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT;
358 }
359 
360 static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu)
361 {
362 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW);
363 }
364 
365 /* Always check for S1PTW *before* using this. */
366 static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu)
367 {
368 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR;
369 }
370 
371 static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu)
372 {
373 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM);
374 }
375 
376 static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu)
377 {
378 	return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT);
379 }
380 
381 /* This one is not specific to Data Abort */
382 static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu)
383 {
384 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL);
385 }
386 
387 static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu)
388 {
389 	return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
390 }
391 
392 static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
393 {
394 	return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW;
395 }
396 
397 static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu)
398 {
399 	return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu);
400 }
401 
402 static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu)
403 {
404 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC;
405 }
406 
407 static __always_inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
408 {
409 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC_TYPE;
410 }
411 
412 static __always_inline u8 kvm_vcpu_trap_get_fault_level(const struct kvm_vcpu *vcpu)
413 {
414 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC_LEVEL;
415 }
416 
417 static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
418 {
419 	switch (kvm_vcpu_trap_get_fault(vcpu)) {
420 	case ESR_ELx_FSC_EXTABT:
421 	case ESR_ELx_FSC_SEA_TTW0:
422 	case ESR_ELx_FSC_SEA_TTW1:
423 	case ESR_ELx_FSC_SEA_TTW2:
424 	case ESR_ELx_FSC_SEA_TTW3:
425 	case ESR_ELx_FSC_SECC:
426 	case ESR_ELx_FSC_SECC_TTW0:
427 	case ESR_ELx_FSC_SECC_TTW1:
428 	case ESR_ELx_FSC_SECC_TTW2:
429 	case ESR_ELx_FSC_SECC_TTW3:
430 		return true;
431 	default:
432 		return false;
433 	}
434 }
435 
436 static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
437 {
438 	u64 esr = kvm_vcpu_get_esr(vcpu);
439 	return ESR_ELx_SYS64_ISS_RT(esr);
440 }
441 
442 static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
443 {
444 	if (kvm_vcpu_abt_iss1tw(vcpu)) {
445 		/*
446 		 * Only a permission fault on a S1PTW should be
447 		 * considered as a write. Otherwise, page tables baked
448 		 * in a read-only memslot will result in an exception
449 		 * being delivered in the guest.
450 		 *
451 		 * The drawback is that we end-up faulting twice if the
452 		 * guest is using any of HW AF/DB: a translation fault
453 		 * to map the page containing the PT (read only at
454 		 * first), then a permission fault to allow the flags
455 		 * to be set.
456 		 */
457 		switch (kvm_vcpu_trap_get_fault_type(vcpu)) {
458 		case ESR_ELx_FSC_PERM:
459 			return true;
460 		default:
461 			return false;
462 		}
463 	}
464 
465 	if (kvm_vcpu_trap_is_iabt(vcpu))
466 		return false;
467 
468 	return kvm_vcpu_dabt_iswrite(vcpu);
469 }
470 
471 static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
472 {
473 	return __vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;
474 }
475 
476 static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)
477 {
478 	if (vcpu_mode_is_32bit(vcpu)) {
479 		*vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT;
480 	} else {
481 		u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
482 		sctlr |= SCTLR_ELx_EE;
483 		vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1);
484 	}
485 }
486 
487 static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu)
488 {
489 	if (vcpu_mode_is_32bit(vcpu))
490 		return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT);
491 
492 	if (vcpu_mode_priv(vcpu))
493 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE);
494 	else
495 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E);
496 }
497 
498 static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu,
499 						    unsigned long data,
500 						    unsigned int len)
501 {
502 	if (kvm_vcpu_is_be(vcpu)) {
503 		switch (len) {
504 		case 1:
505 			return data & 0xff;
506 		case 2:
507 			return be16_to_cpu(data & 0xffff);
508 		case 4:
509 			return be32_to_cpu(data & 0xffffffff);
510 		default:
511 			return be64_to_cpu(data);
512 		}
513 	} else {
514 		switch (len) {
515 		case 1:
516 			return data & 0xff;
517 		case 2:
518 			return le16_to_cpu(data & 0xffff);
519 		case 4:
520 			return le32_to_cpu(data & 0xffffffff);
521 		default:
522 			return le64_to_cpu(data);
523 		}
524 	}
525 
526 	return data;		/* Leave LE untouched */
527 }
528 
529 static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu,
530 						    unsigned long data,
531 						    unsigned int len)
532 {
533 	if (kvm_vcpu_is_be(vcpu)) {
534 		switch (len) {
535 		case 1:
536 			return data & 0xff;
537 		case 2:
538 			return cpu_to_be16(data & 0xffff);
539 		case 4:
540 			return cpu_to_be32(data & 0xffffffff);
541 		default:
542 			return cpu_to_be64(data);
543 		}
544 	} else {
545 		switch (len) {
546 		case 1:
547 			return data & 0xff;
548 		case 2:
549 			return cpu_to_le16(data & 0xffff);
550 		case 4:
551 			return cpu_to_le32(data & 0xffffffff);
552 		default:
553 			return cpu_to_le64(data);
554 		}
555 	}
556 
557 	return data;		/* Leave LE untouched */
558 }
559 
560 static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu)
561 {
562 	WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION));
563 	vcpu_set_flag(vcpu, INCREMENT_PC);
564 }
565 
566 #define kvm_pend_exception(v, e)					\
567 	do {								\
568 		WARN_ON(vcpu_get_flag((v), INCREMENT_PC));		\
569 		vcpu_set_flag((v), PENDING_EXCEPTION);			\
570 		vcpu_set_flag((v), e);					\
571 	} while (0)
572 
573 static __always_inline void kvm_write_cptr_el2(u64 val)
574 {
575 	if (has_vhe() || has_hvhe())
576 		write_sysreg(val, cpacr_el1);
577 	else
578 		write_sysreg(val, cptr_el2);
579 }
580 
581 static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu)
582 {
583 	u64 val;
584 
585 	if (has_vhe()) {
586 		val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
587 		       CPACR_EL1_ZEN_EL1EN);
588 		if (cpus_have_final_cap(ARM64_SME))
589 			val |= CPACR_EL1_SMEN_EL1EN;
590 	} else if (has_hvhe()) {
591 		val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN);
592 
593 		if (!vcpu_has_sve(vcpu) ||
594 		    (vcpu->arch.fp_state != FP_STATE_GUEST_OWNED))
595 			val |= CPACR_EL1_ZEN_EL1EN | CPACR_EL1_ZEN_EL0EN;
596 		if (cpus_have_final_cap(ARM64_SME))
597 			val |= CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN;
598 	} else {
599 		val = CPTR_NVHE_EL2_RES1;
600 
601 		if (vcpu_has_sve(vcpu) &&
602 		    (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED))
603 			val |= CPTR_EL2_TZ;
604 		if (cpus_have_final_cap(ARM64_SME))
605 			val &= ~CPTR_EL2_TSM;
606 	}
607 
608 	return val;
609 }
610 
611 static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu)
612 {
613 	u64 val = kvm_get_reset_cptr_el2(vcpu);
614 
615 	kvm_write_cptr_el2(val);
616 }
617 #endif /* __ARM64_KVM_EMULATE_H__ */
618