xref: /linux/arch/arm64/include/asm/kvm_emulate.h (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/kvm_emulate.h
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_EMULATE_H__
12 #define __ARM64_KVM_EMULATE_H__
13 
14 #include <linux/bitfield.h>
15 #include <linux/kvm_host.h>
16 
17 #include <asm/debug-monitors.h>
18 #include <asm/esr.h>
19 #include <asm/kvm_arm.h>
20 #include <asm/kvm_hyp.h>
21 #include <asm/kvm_nested.h>
22 #include <asm/ptrace.h>
23 #include <asm/cputype.h>
24 #include <asm/virt.h>
25 
26 #define CURRENT_EL_SP_EL0_VECTOR	0x0
27 #define CURRENT_EL_SP_ELx_VECTOR	0x200
28 #define LOWER_EL_AArch64_VECTOR		0x400
29 #define LOWER_EL_AArch32_VECTOR		0x600
30 
31 enum exception_type {
32 	except_type_sync	= 0,
33 	except_type_irq		= 0x80,
34 	except_type_fiq		= 0x100,
35 	except_type_serror	= 0x180,
36 };
37 
38 #define kvm_exception_type_names		\
39 	{ except_type_sync,	"SYNC"   },	\
40 	{ except_type_irq,	"IRQ"    },	\
41 	{ except_type_fiq,	"FIQ"    },	\
42 	{ except_type_serror,	"SERROR" }
43 
44 bool kvm_condition_valid32(const struct kvm_vcpu *vcpu);
45 void kvm_skip_instr32(struct kvm_vcpu *vcpu);
46 
47 void kvm_inject_undefined(struct kvm_vcpu *vcpu);
48 void kvm_inject_vabt(struct kvm_vcpu *vcpu);
49 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr);
50 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr);
51 void kvm_inject_size_fault(struct kvm_vcpu *vcpu);
52 
53 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu);
54 
55 void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu);
56 int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2);
57 int kvm_inject_nested_irq(struct kvm_vcpu *vcpu);
58 
59 static inline void kvm_inject_nested_sve_trap(struct kvm_vcpu *vcpu)
60 {
61 	u64 esr = FIELD_PREP(ESR_ELx_EC_MASK, ESR_ELx_EC_SVE) |
62 		  ESR_ELx_IL;
63 
64 	kvm_inject_nested_sync(vcpu, esr);
65 }
66 
67 #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__)
68 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
69 {
70 	return !(vcpu->arch.hcr_el2 & HCR_RW);
71 }
72 #else
73 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
74 {
75 	return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
76 }
77 #endif
78 
79 static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
80 {
81 	if (!vcpu_has_run_once(vcpu))
82 		vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS;
83 
84 	/*
85 	 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C
86 	 * get set in SCTLR_EL1 such that we can detect when the guest
87 	 * MMU gets turned on and do the necessary cache maintenance
88 	 * then.
89 	 */
90 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
91 		vcpu->arch.hcr_el2 |= HCR_TVM;
92 }
93 
94 static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu)
95 {
96 	return (unsigned long *)&vcpu->arch.hcr_el2;
97 }
98 
99 static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu)
100 {
101 	vcpu->arch.hcr_el2 &= ~HCR_TWE;
102 	if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
103 	    vcpu->kvm->arch.vgic.nassgireq)
104 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
105 	else
106 		vcpu->arch.hcr_el2 |= HCR_TWI;
107 }
108 
109 static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu)
110 {
111 	vcpu->arch.hcr_el2 |= HCR_TWE;
112 	vcpu->arch.hcr_el2 |= HCR_TWI;
113 }
114 
115 static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu)
116 {
117 	return vcpu->arch.vsesr_el2;
118 }
119 
120 static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr)
121 {
122 	vcpu->arch.vsesr_el2 = vsesr;
123 }
124 
125 static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
126 {
127 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pc;
128 }
129 
130 static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu)
131 {
132 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate;
133 }
134 
135 static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu)
136 {
137 	return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT);
138 }
139 
140 static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu)
141 {
142 	if (vcpu_mode_is_32bit(vcpu))
143 		return kvm_condition_valid32(vcpu);
144 
145 	return true;
146 }
147 
148 static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu)
149 {
150 	*vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT;
151 }
152 
153 /*
154  * vcpu_get_reg and vcpu_set_reg should always be passed a register number
155  * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on
156  * AArch32 with banked registers.
157  */
158 static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu,
159 					 u8 reg_num)
160 {
161 	return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num];
162 }
163 
164 static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
165 				unsigned long val)
166 {
167 	if (reg_num != 31)
168 		vcpu_gp_regs(vcpu)->regs[reg_num] = val;
169 }
170 
171 static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt)
172 {
173 	switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) {
174 	case PSR_MODE_EL2h:
175 	case PSR_MODE_EL2t:
176 		return true;
177 	default:
178 		return false;
179 	}
180 }
181 
182 static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu)
183 {
184 	return vcpu_is_el2_ctxt(&vcpu->arch.ctxt);
185 }
186 
187 static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt)
188 {
189 	return (!cpus_have_final_cap(ARM64_HAS_HCR_NV1) ||
190 		(ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H));
191 }
192 
193 static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu)
194 {
195 	return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt);
196 }
197 
198 static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt)
199 {
200 	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE;
201 }
202 
203 static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu)
204 {
205 	return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt);
206 }
207 
208 static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt)
209 {
210 	/*
211 	 * We are in a hypervisor context if the vcpu mode is EL2 or
212 	 * E2H and TGE bits are set. The latter means we are in the user space
213 	 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost'
214 	 *
215 	 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the
216 	 * rest of the KVM code, and will result in a misbehaving guest.
217 	 */
218 	return vcpu_is_el2_ctxt(ctxt) ||
219 		(__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) ||
220 		__vcpu_el2_tge_is_set(ctxt);
221 }
222 
223 static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu)
224 {
225 	return vcpu_has_nv(vcpu) && __is_hyp_ctxt(&vcpu->arch.ctxt);
226 }
227 
228 /*
229  * The layout of SPSR for an AArch32 state is different when observed from an
230  * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32
231  * view given an AArch64 view.
232  *
233  * In ARM DDI 0487E.a see:
234  *
235  * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426
236  * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256
237  * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280
238  *
239  * Which show the following differences:
240  *
241  * | Bit | AA64 | AA32 | Notes                       |
242  * +-----+------+------+-----------------------------|
243  * | 24  | DIT  | J    | J is RES0 in ARMv8          |
244  * | 21  | SS   | DIT  | SS doesn't exist in AArch32 |
245  *
246  * ... and all other bits are (currently) common.
247  */
248 static inline unsigned long host_spsr_to_spsr32(unsigned long spsr)
249 {
250 	const unsigned long overlap = BIT(24) | BIT(21);
251 	unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT);
252 
253 	spsr &= ~overlap;
254 
255 	spsr |= dit << 21;
256 
257 	return spsr;
258 }
259 
260 static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu)
261 {
262 	u32 mode;
263 
264 	if (vcpu_mode_is_32bit(vcpu)) {
265 		mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK;
266 		return mode > PSR_AA32_MODE_USR;
267 	}
268 
269 	mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK;
270 
271 	return mode != PSR_MODE_EL0t;
272 }
273 
274 static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
275 {
276 	return vcpu->arch.fault.esr_el2;
277 }
278 
279 static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu)
280 {
281 	u64 esr = kvm_vcpu_get_esr(vcpu);
282 
283 	if (esr & ESR_ELx_CV)
284 		return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
285 
286 	return -1;
287 }
288 
289 static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu)
290 {
291 	return vcpu->arch.fault.far_el2;
292 }
293 
294 static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu)
295 {
296 	return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8;
297 }
298 
299 static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu)
300 {
301 	return vcpu->arch.fault.disr_el1;
302 }
303 
304 static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
305 {
306 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK;
307 }
308 
309 static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
310 {
311 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV);
312 }
313 
314 static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu)
315 {
316 	return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC);
317 }
318 
319 static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu)
320 {
321 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE);
322 }
323 
324 static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu)
325 {
326 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF);
327 }
328 
329 static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu)
330 {
331 	return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT;
332 }
333 
334 static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu)
335 {
336 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW);
337 }
338 
339 /* Always check for S1PTW *before* using this. */
340 static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu)
341 {
342 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR;
343 }
344 
345 static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu)
346 {
347 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM);
348 }
349 
350 static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu)
351 {
352 	return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT);
353 }
354 
355 /* This one is not specific to Data Abort */
356 static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu)
357 {
358 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL);
359 }
360 
361 static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu)
362 {
363 	return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
364 }
365 
366 static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
367 {
368 	return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW;
369 }
370 
371 static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu)
372 {
373 	return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu);
374 }
375 
376 static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu)
377 {
378 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC;
379 }
380 
381 static inline
382 bool kvm_vcpu_trap_is_permission_fault(const struct kvm_vcpu *vcpu)
383 {
384 	return esr_fsc_is_permission_fault(kvm_vcpu_get_esr(vcpu));
385 }
386 
387 static inline
388 bool kvm_vcpu_trap_is_translation_fault(const struct kvm_vcpu *vcpu)
389 {
390 	return esr_fsc_is_translation_fault(kvm_vcpu_get_esr(vcpu));
391 }
392 
393 static inline
394 u64 kvm_vcpu_trap_get_perm_fault_granule(const struct kvm_vcpu *vcpu)
395 {
396 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
397 
398 	BUG_ON(!esr_fsc_is_permission_fault(esr));
399 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(esr & ESR_ELx_FSC_LEVEL));
400 }
401 
402 static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
403 {
404 	switch (kvm_vcpu_trap_get_fault(vcpu)) {
405 	case ESR_ELx_FSC_EXTABT:
406 	case ESR_ELx_FSC_SEA_TTW(-1) ... ESR_ELx_FSC_SEA_TTW(3):
407 	case ESR_ELx_FSC_SECC:
408 	case ESR_ELx_FSC_SECC_TTW(-1) ... ESR_ELx_FSC_SECC_TTW(3):
409 		return true;
410 	default:
411 		return false;
412 	}
413 }
414 
415 static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
416 {
417 	u64 esr = kvm_vcpu_get_esr(vcpu);
418 	return ESR_ELx_SYS64_ISS_RT(esr);
419 }
420 
421 static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
422 {
423 	if (kvm_vcpu_abt_iss1tw(vcpu)) {
424 		/*
425 		 * Only a permission fault on a S1PTW should be
426 		 * considered as a write. Otherwise, page tables baked
427 		 * in a read-only memslot will result in an exception
428 		 * being delivered in the guest.
429 		 *
430 		 * The drawback is that we end-up faulting twice if the
431 		 * guest is using any of HW AF/DB: a translation fault
432 		 * to map the page containing the PT (read only at
433 		 * first), then a permission fault to allow the flags
434 		 * to be set.
435 		 */
436 		return kvm_vcpu_trap_is_permission_fault(vcpu);
437 	}
438 
439 	if (kvm_vcpu_trap_is_iabt(vcpu))
440 		return false;
441 
442 	return kvm_vcpu_dabt_iswrite(vcpu);
443 }
444 
445 static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
446 {
447 	return __vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;
448 }
449 
450 static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)
451 {
452 	if (vcpu_mode_is_32bit(vcpu)) {
453 		*vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT;
454 	} else {
455 		u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
456 		sctlr |= SCTLR_ELx_EE;
457 		vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1);
458 	}
459 }
460 
461 static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu)
462 {
463 	if (vcpu_mode_is_32bit(vcpu))
464 		return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT);
465 
466 	if (vcpu_mode_priv(vcpu))
467 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE);
468 	else
469 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E);
470 }
471 
472 static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu,
473 						    unsigned long data,
474 						    unsigned int len)
475 {
476 	if (kvm_vcpu_is_be(vcpu)) {
477 		switch (len) {
478 		case 1:
479 			return data & 0xff;
480 		case 2:
481 			return be16_to_cpu(data & 0xffff);
482 		case 4:
483 			return be32_to_cpu(data & 0xffffffff);
484 		default:
485 			return be64_to_cpu(data);
486 		}
487 	} else {
488 		switch (len) {
489 		case 1:
490 			return data & 0xff;
491 		case 2:
492 			return le16_to_cpu(data & 0xffff);
493 		case 4:
494 			return le32_to_cpu(data & 0xffffffff);
495 		default:
496 			return le64_to_cpu(data);
497 		}
498 	}
499 
500 	return data;		/* Leave LE untouched */
501 }
502 
503 static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu,
504 						    unsigned long data,
505 						    unsigned int len)
506 {
507 	if (kvm_vcpu_is_be(vcpu)) {
508 		switch (len) {
509 		case 1:
510 			return data & 0xff;
511 		case 2:
512 			return cpu_to_be16(data & 0xffff);
513 		case 4:
514 			return cpu_to_be32(data & 0xffffffff);
515 		default:
516 			return cpu_to_be64(data);
517 		}
518 	} else {
519 		switch (len) {
520 		case 1:
521 			return data & 0xff;
522 		case 2:
523 			return cpu_to_le16(data & 0xffff);
524 		case 4:
525 			return cpu_to_le32(data & 0xffffffff);
526 		default:
527 			return cpu_to_le64(data);
528 		}
529 	}
530 
531 	return data;		/* Leave LE untouched */
532 }
533 
534 static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu)
535 {
536 	WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION));
537 	vcpu_set_flag(vcpu, INCREMENT_PC);
538 }
539 
540 #define kvm_pend_exception(v, e)					\
541 	do {								\
542 		WARN_ON(vcpu_get_flag((v), INCREMENT_PC));		\
543 		vcpu_set_flag((v), PENDING_EXCEPTION);			\
544 		vcpu_set_flag((v), e);					\
545 	} while (0)
546 
547 #define __build_check_all_or_none(r, bits)				\
548 	BUILD_BUG_ON(((r) & (bits)) && ((r) & (bits)) != (bits))
549 
550 #define __cpacr_to_cptr_clr(clr, set)					\
551 	({								\
552 		u64 cptr = 0;						\
553 									\
554 		if ((set) & CPACR_ELx_FPEN)				\
555 			cptr |= CPTR_EL2_TFP;				\
556 		if ((set) & CPACR_ELx_ZEN)				\
557 			cptr |= CPTR_EL2_TZ;				\
558 		if ((set) & CPACR_ELx_SMEN)				\
559 			cptr |= CPTR_EL2_TSM;				\
560 		if ((clr) & CPACR_ELx_TTA)				\
561 			cptr |= CPTR_EL2_TTA;				\
562 		if ((clr) & CPTR_EL2_TAM)				\
563 			cptr |= CPTR_EL2_TAM;				\
564 		if ((clr) & CPTR_EL2_TCPAC)				\
565 			cptr |= CPTR_EL2_TCPAC;				\
566 									\
567 		cptr;							\
568 	})
569 
570 #define __cpacr_to_cptr_set(clr, set)					\
571 	({								\
572 		u64 cptr = 0;						\
573 									\
574 		if ((clr) & CPACR_ELx_FPEN)				\
575 			cptr |= CPTR_EL2_TFP;				\
576 		if ((clr) & CPACR_ELx_ZEN)				\
577 			cptr |= CPTR_EL2_TZ;				\
578 		if ((clr) & CPACR_ELx_SMEN)				\
579 			cptr |= CPTR_EL2_TSM;				\
580 		if ((set) & CPACR_ELx_TTA)				\
581 			cptr |= CPTR_EL2_TTA;				\
582 		if ((set) & CPTR_EL2_TAM)				\
583 			cptr |= CPTR_EL2_TAM;				\
584 		if ((set) & CPTR_EL2_TCPAC)				\
585 			cptr |= CPTR_EL2_TCPAC;				\
586 									\
587 		cptr;							\
588 	})
589 
590 #define cpacr_clear_set(clr, set)					\
591 	do {								\
592 		BUILD_BUG_ON((set) & CPTR_VHE_EL2_RES0);		\
593 		BUILD_BUG_ON((clr) & CPACR_ELx_E0POE);			\
594 		__build_check_all_or_none((clr), CPACR_ELx_FPEN);	\
595 		__build_check_all_or_none((set), CPACR_ELx_FPEN);	\
596 		__build_check_all_or_none((clr), CPACR_ELx_ZEN);	\
597 		__build_check_all_or_none((set), CPACR_ELx_ZEN);	\
598 		__build_check_all_or_none((clr), CPACR_ELx_SMEN);	\
599 		__build_check_all_or_none((set), CPACR_ELx_SMEN);	\
600 									\
601 		if (has_vhe() || has_hvhe())				\
602 			sysreg_clear_set(cpacr_el1, clr, set);		\
603 		else							\
604 			sysreg_clear_set(cptr_el2,			\
605 					 __cpacr_to_cptr_clr(clr, set),	\
606 					 __cpacr_to_cptr_set(clr, set));\
607 	} while (0)
608 
609 static __always_inline void kvm_write_cptr_el2(u64 val)
610 {
611 	if (has_vhe() || has_hvhe())
612 		write_sysreg(val, cpacr_el1);
613 	else
614 		write_sysreg(val, cptr_el2);
615 }
616 
617 static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu)
618 {
619 	u64 val;
620 
621 	if (has_vhe()) {
622 		val = (CPACR_ELx_FPEN | CPACR_EL1_ZEN_EL1EN);
623 		if (cpus_have_final_cap(ARM64_SME))
624 			val |= CPACR_EL1_SMEN_EL1EN;
625 	} else if (has_hvhe()) {
626 		val = CPACR_ELx_FPEN;
627 
628 		if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs())
629 			val |= CPACR_ELx_ZEN;
630 		if (cpus_have_final_cap(ARM64_SME))
631 			val |= CPACR_ELx_SMEN;
632 	} else {
633 		val = CPTR_NVHE_EL2_RES1;
634 
635 		if (vcpu_has_sve(vcpu) && guest_owns_fp_regs())
636 			val |= CPTR_EL2_TZ;
637 		if (cpus_have_final_cap(ARM64_SME))
638 			val &= ~CPTR_EL2_TSM;
639 	}
640 
641 	return val;
642 }
643 
644 static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu)
645 {
646 	u64 val = kvm_get_reset_cptr_el2(vcpu);
647 
648 	kvm_write_cptr_el2(val);
649 }
650 
651 /*
652  * Returns a 'sanitised' view of CPTR_EL2, translating from nVHE to the VHE
653  * format if E2H isn't set.
654  */
655 static inline u64 vcpu_sanitised_cptr_el2(const struct kvm_vcpu *vcpu)
656 {
657 	u64 cptr = __vcpu_sys_reg(vcpu, CPTR_EL2);
658 
659 	if (!vcpu_el2_e2h_is_set(vcpu))
660 		cptr = translate_cptr_el2_to_cpacr_el1(cptr);
661 
662 	return cptr;
663 }
664 
665 static inline bool ____cptr_xen_trap_enabled(const struct kvm_vcpu *vcpu,
666 					     unsigned int xen)
667 {
668 	switch (xen) {
669 	case 0b00:
670 	case 0b10:
671 		return true;
672 	case 0b01:
673 		return vcpu_el2_tge_is_set(vcpu) && !vcpu_is_el2(vcpu);
674 	case 0b11:
675 	default:
676 		return false;
677 	}
678 }
679 
680 #define __guest_hyp_cptr_xen_trap_enabled(vcpu, xen)				\
681 	(!vcpu_has_nv(vcpu) ? false :						\
682 	 ____cptr_xen_trap_enabled(vcpu,					\
683 				   SYS_FIELD_GET(CPACR_ELx, xen,		\
684 						 vcpu_sanitised_cptr_el2(vcpu))))
685 
686 static inline bool guest_hyp_fpsimd_traps_enabled(const struct kvm_vcpu *vcpu)
687 {
688 	return __guest_hyp_cptr_xen_trap_enabled(vcpu, FPEN);
689 }
690 
691 static inline bool guest_hyp_sve_traps_enabled(const struct kvm_vcpu *vcpu)
692 {
693 	return __guest_hyp_cptr_xen_trap_enabled(vcpu, ZEN);
694 }
695 
696 #endif /* __ARM64_KVM_EMULATE_H__ */
697