1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/kvm_emulate.h 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_EMULATE_H__ 12 #define __ARM64_KVM_EMULATE_H__ 13 14 #include <linux/bitfield.h> 15 #include <linux/kvm_host.h> 16 17 #include <asm/debug-monitors.h> 18 #include <asm/esr.h> 19 #include <asm/kvm_arm.h> 20 #include <asm/kvm_hyp.h> 21 #include <asm/kvm_nested.h> 22 #include <asm/ptrace.h> 23 #include <asm/cputype.h> 24 #include <asm/virt.h> 25 26 #define CURRENT_EL_SP_EL0_VECTOR 0x0 27 #define CURRENT_EL_SP_ELx_VECTOR 0x200 28 #define LOWER_EL_AArch64_VECTOR 0x400 29 #define LOWER_EL_AArch32_VECTOR 0x600 30 31 enum exception_type { 32 except_type_sync = 0, 33 except_type_irq = 0x80, 34 except_type_fiq = 0x100, 35 except_type_serror = 0x180, 36 }; 37 38 #define kvm_exception_type_names \ 39 { except_type_sync, "SYNC" }, \ 40 { except_type_irq, "IRQ" }, \ 41 { except_type_fiq, "FIQ" }, \ 42 { except_type_serror, "SERROR" } 43 44 bool kvm_condition_valid32(const struct kvm_vcpu *vcpu); 45 void kvm_skip_instr32(struct kvm_vcpu *vcpu); 46 47 void kvm_inject_undefined(struct kvm_vcpu *vcpu); 48 void kvm_inject_vabt(struct kvm_vcpu *vcpu); 49 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr); 50 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr); 51 void kvm_inject_size_fault(struct kvm_vcpu *vcpu); 52 53 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu); 54 55 void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu); 56 int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2); 57 int kvm_inject_nested_irq(struct kvm_vcpu *vcpu); 58 59 static inline void kvm_inject_nested_sve_trap(struct kvm_vcpu *vcpu) 60 { 61 u64 esr = FIELD_PREP(ESR_ELx_EC_MASK, ESR_ELx_EC_SVE) | 62 ESR_ELx_IL; 63 64 kvm_inject_nested_sync(vcpu, esr); 65 } 66 67 #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__) 68 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) 69 { 70 return !(vcpu->arch.hcr_el2 & HCR_RW); 71 } 72 #else 73 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) 74 { 75 return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT); 76 } 77 #endif 78 79 static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu) 80 { 81 if (!vcpu_has_run_once(vcpu)) 82 vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS; 83 84 /* 85 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C 86 * get set in SCTLR_EL1 such that we can detect when the guest 87 * MMU gets turned on and do the necessary cache maintenance 88 * then. 89 */ 90 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 91 vcpu->arch.hcr_el2 |= HCR_TVM; 92 } 93 94 static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu) 95 { 96 return (unsigned long *)&vcpu->arch.hcr_el2; 97 } 98 99 static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu) 100 { 101 vcpu->arch.hcr_el2 &= ~HCR_TWE; 102 if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 103 vcpu->kvm->arch.vgic.nassgireq) 104 vcpu->arch.hcr_el2 &= ~HCR_TWI; 105 else 106 vcpu->arch.hcr_el2 |= HCR_TWI; 107 } 108 109 static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu) 110 { 111 vcpu->arch.hcr_el2 |= HCR_TWE; 112 vcpu->arch.hcr_el2 |= HCR_TWI; 113 } 114 115 static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu) 116 { 117 return vcpu->arch.vsesr_el2; 118 } 119 120 static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr) 121 { 122 vcpu->arch.vsesr_el2 = vsesr; 123 } 124 125 static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu) 126 { 127 return (unsigned long *)&vcpu_gp_regs(vcpu)->pc; 128 } 129 130 static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu) 131 { 132 return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate; 133 } 134 135 static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu) 136 { 137 return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT); 138 } 139 140 static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu) 141 { 142 if (vcpu_mode_is_32bit(vcpu)) 143 return kvm_condition_valid32(vcpu); 144 145 return true; 146 } 147 148 static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu) 149 { 150 *vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT; 151 } 152 153 /* 154 * vcpu_get_reg and vcpu_set_reg should always be passed a register number 155 * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on 156 * AArch32 with banked registers. 157 */ 158 static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu, 159 u8 reg_num) 160 { 161 return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num]; 162 } 163 164 static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num, 165 unsigned long val) 166 { 167 if (reg_num != 31) 168 vcpu_gp_regs(vcpu)->regs[reg_num] = val; 169 } 170 171 static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt) 172 { 173 switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) { 174 case PSR_MODE_EL2h: 175 case PSR_MODE_EL2t: 176 return true; 177 default: 178 return false; 179 } 180 } 181 182 static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu) 183 { 184 return vcpu_is_el2_ctxt(&vcpu->arch.ctxt); 185 } 186 187 static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu) 188 { 189 return (!cpus_have_final_cap(ARM64_HAS_HCR_NV1) || 190 (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_E2H)); 191 } 192 193 static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu) 194 { 195 return ctxt_sys_reg(&vcpu->arch.ctxt, HCR_EL2) & HCR_TGE; 196 } 197 198 static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu) 199 { 200 bool e2h, tge; 201 u64 hcr; 202 203 if (!vcpu_has_nv(vcpu)) 204 return false; 205 206 hcr = __vcpu_sys_reg(vcpu, HCR_EL2); 207 208 e2h = (hcr & HCR_E2H); 209 tge = (hcr & HCR_TGE); 210 211 /* 212 * We are in a hypervisor context if the vcpu mode is EL2 or 213 * E2H and TGE bits are set. The latter means we are in the user space 214 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost' 215 * 216 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the 217 * rest of the KVM code, and will result in a misbehaving guest. 218 */ 219 return vcpu_is_el2(vcpu) || (e2h && tge) || tge; 220 } 221 222 static inline bool vcpu_is_host_el0(const struct kvm_vcpu *vcpu) 223 { 224 return is_hyp_ctxt(vcpu) && !vcpu_is_el2(vcpu); 225 } 226 227 /* 228 * The layout of SPSR for an AArch32 state is different when observed from an 229 * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32 230 * view given an AArch64 view. 231 * 232 * In ARM DDI 0487E.a see: 233 * 234 * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426 235 * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256 236 * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280 237 * 238 * Which show the following differences: 239 * 240 * | Bit | AA64 | AA32 | Notes | 241 * +-----+------+------+-----------------------------| 242 * | 24 | DIT | J | J is RES0 in ARMv8 | 243 * | 21 | SS | DIT | SS doesn't exist in AArch32 | 244 * 245 * ... and all other bits are (currently) common. 246 */ 247 static inline unsigned long host_spsr_to_spsr32(unsigned long spsr) 248 { 249 const unsigned long overlap = BIT(24) | BIT(21); 250 unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT); 251 252 spsr &= ~overlap; 253 254 spsr |= dit << 21; 255 256 return spsr; 257 } 258 259 static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu) 260 { 261 u32 mode; 262 263 if (vcpu_mode_is_32bit(vcpu)) { 264 mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK; 265 return mode > PSR_AA32_MODE_USR; 266 } 267 268 mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK; 269 270 return mode != PSR_MODE_EL0t; 271 } 272 273 static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu) 274 { 275 return vcpu->arch.fault.esr_el2; 276 } 277 278 static inline bool guest_hyp_wfx_traps_enabled(const struct kvm_vcpu *vcpu) 279 { 280 u64 esr = kvm_vcpu_get_esr(vcpu); 281 bool is_wfe = !!(esr & ESR_ELx_WFx_ISS_WFE); 282 u64 hcr_el2 = __vcpu_sys_reg(vcpu, HCR_EL2); 283 284 if (!vcpu_has_nv(vcpu) || vcpu_is_el2(vcpu)) 285 return false; 286 287 return ((is_wfe && (hcr_el2 & HCR_TWE)) || 288 (!is_wfe && (hcr_el2 & HCR_TWI))); 289 } 290 291 static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu) 292 { 293 u64 esr = kvm_vcpu_get_esr(vcpu); 294 295 if (esr & ESR_ELx_CV) 296 return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT; 297 298 return -1; 299 } 300 301 static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu) 302 { 303 return vcpu->arch.fault.far_el2; 304 } 305 306 static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu) 307 { 308 u64 hpfar = vcpu->arch.fault.hpfar_el2; 309 310 if (unlikely(!(hpfar & HPFAR_EL2_NS))) 311 return INVALID_GPA; 312 313 return FIELD_GET(HPFAR_EL2_FIPA, hpfar) << 12; 314 } 315 316 static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu) 317 { 318 return vcpu->arch.fault.disr_el1; 319 } 320 321 static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu) 322 { 323 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK; 324 } 325 326 static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu) 327 { 328 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV); 329 } 330 331 static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu) 332 { 333 return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC); 334 } 335 336 static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu) 337 { 338 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE); 339 } 340 341 static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu) 342 { 343 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF); 344 } 345 346 static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu) 347 { 348 return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT; 349 } 350 351 static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu) 352 { 353 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW); 354 } 355 356 /* Always check for S1PTW *before* using this. */ 357 static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu) 358 { 359 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR; 360 } 361 362 static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu) 363 { 364 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM); 365 } 366 367 static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu) 368 { 369 return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT); 370 } 371 372 /* This one is not specific to Data Abort */ 373 static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu) 374 { 375 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL); 376 } 377 378 static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu) 379 { 380 return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu)); 381 } 382 383 static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu) 384 { 385 return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW; 386 } 387 388 static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu) 389 { 390 return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu); 391 } 392 393 static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu) 394 { 395 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC; 396 } 397 398 static inline 399 bool kvm_vcpu_trap_is_permission_fault(const struct kvm_vcpu *vcpu) 400 { 401 return esr_fsc_is_permission_fault(kvm_vcpu_get_esr(vcpu)); 402 } 403 404 static inline 405 bool kvm_vcpu_trap_is_translation_fault(const struct kvm_vcpu *vcpu) 406 { 407 return esr_fsc_is_translation_fault(kvm_vcpu_get_esr(vcpu)); 408 } 409 410 static inline 411 u64 kvm_vcpu_trap_get_perm_fault_granule(const struct kvm_vcpu *vcpu) 412 { 413 unsigned long esr = kvm_vcpu_get_esr(vcpu); 414 415 BUG_ON(!esr_fsc_is_permission_fault(esr)); 416 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(esr & ESR_ELx_FSC_LEVEL)); 417 } 418 419 static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu) 420 { 421 switch (kvm_vcpu_trap_get_fault(vcpu)) { 422 case ESR_ELx_FSC_EXTABT: 423 case ESR_ELx_FSC_SEA_TTW(-1) ... ESR_ELx_FSC_SEA_TTW(3): 424 case ESR_ELx_FSC_SECC: 425 case ESR_ELx_FSC_SECC_TTW(-1) ... ESR_ELx_FSC_SECC_TTW(3): 426 return true; 427 default: 428 return false; 429 } 430 } 431 432 static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu) 433 { 434 u64 esr = kvm_vcpu_get_esr(vcpu); 435 return ESR_ELx_SYS64_ISS_RT(esr); 436 } 437 438 static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu) 439 { 440 if (kvm_vcpu_abt_iss1tw(vcpu)) { 441 /* 442 * Only a permission fault on a S1PTW should be 443 * considered as a write. Otherwise, page tables baked 444 * in a read-only memslot will result in an exception 445 * being delivered in the guest. 446 * 447 * The drawback is that we end-up faulting twice if the 448 * guest is using any of HW AF/DB: a translation fault 449 * to map the page containing the PT (read only at 450 * first), then a permission fault to allow the flags 451 * to be set. 452 */ 453 return kvm_vcpu_trap_is_permission_fault(vcpu); 454 } 455 456 if (kvm_vcpu_trap_is_iabt(vcpu)) 457 return false; 458 459 return kvm_vcpu_dabt_iswrite(vcpu); 460 } 461 462 static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu) 463 { 464 return __vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK; 465 } 466 467 static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu) 468 { 469 if (vcpu_mode_is_32bit(vcpu)) { 470 *vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT; 471 } else { 472 u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1); 473 sctlr |= SCTLR_ELx_EE; 474 vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1); 475 } 476 } 477 478 static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu) 479 { 480 if (vcpu_mode_is_32bit(vcpu)) 481 return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT); 482 483 if (vcpu_mode_priv(vcpu)) 484 return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE); 485 else 486 return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E); 487 } 488 489 static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu, 490 unsigned long data, 491 unsigned int len) 492 { 493 if (kvm_vcpu_is_be(vcpu)) { 494 switch (len) { 495 case 1: 496 return data & 0xff; 497 case 2: 498 return be16_to_cpu(data & 0xffff); 499 case 4: 500 return be32_to_cpu(data & 0xffffffff); 501 default: 502 return be64_to_cpu(data); 503 } 504 } else { 505 switch (len) { 506 case 1: 507 return data & 0xff; 508 case 2: 509 return le16_to_cpu(data & 0xffff); 510 case 4: 511 return le32_to_cpu(data & 0xffffffff); 512 default: 513 return le64_to_cpu(data); 514 } 515 } 516 517 return data; /* Leave LE untouched */ 518 } 519 520 static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu, 521 unsigned long data, 522 unsigned int len) 523 { 524 if (kvm_vcpu_is_be(vcpu)) { 525 switch (len) { 526 case 1: 527 return data & 0xff; 528 case 2: 529 return cpu_to_be16(data & 0xffff); 530 case 4: 531 return cpu_to_be32(data & 0xffffffff); 532 default: 533 return cpu_to_be64(data); 534 } 535 } else { 536 switch (len) { 537 case 1: 538 return data & 0xff; 539 case 2: 540 return cpu_to_le16(data & 0xffff); 541 case 4: 542 return cpu_to_le32(data & 0xffffffff); 543 default: 544 return cpu_to_le64(data); 545 } 546 } 547 548 return data; /* Leave LE untouched */ 549 } 550 551 static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu) 552 { 553 WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION)); 554 vcpu_set_flag(vcpu, INCREMENT_PC); 555 } 556 557 #define kvm_pend_exception(v, e) \ 558 do { \ 559 WARN_ON(vcpu_get_flag((v), INCREMENT_PC)); \ 560 vcpu_set_flag((v), PENDING_EXCEPTION); \ 561 vcpu_set_flag((v), e); \ 562 } while (0) 563 564 #define __build_check_all_or_none(r, bits) \ 565 BUILD_BUG_ON(((r) & (bits)) && ((r) & (bits)) != (bits)) 566 567 #define __cpacr_to_cptr_clr(clr, set) \ 568 ({ \ 569 u64 cptr = 0; \ 570 \ 571 if ((set) & CPACR_EL1_FPEN) \ 572 cptr |= CPTR_EL2_TFP; \ 573 if ((set) & CPACR_EL1_ZEN) \ 574 cptr |= CPTR_EL2_TZ; \ 575 if ((set) & CPACR_EL1_SMEN) \ 576 cptr |= CPTR_EL2_TSM; \ 577 if ((clr) & CPACR_EL1_TTA) \ 578 cptr |= CPTR_EL2_TTA; \ 579 if ((clr) & CPTR_EL2_TAM) \ 580 cptr |= CPTR_EL2_TAM; \ 581 if ((clr) & CPTR_EL2_TCPAC) \ 582 cptr |= CPTR_EL2_TCPAC; \ 583 \ 584 cptr; \ 585 }) 586 587 #define __cpacr_to_cptr_set(clr, set) \ 588 ({ \ 589 u64 cptr = 0; \ 590 \ 591 if ((clr) & CPACR_EL1_FPEN) \ 592 cptr |= CPTR_EL2_TFP; \ 593 if ((clr) & CPACR_EL1_ZEN) \ 594 cptr |= CPTR_EL2_TZ; \ 595 if ((clr) & CPACR_EL1_SMEN) \ 596 cptr |= CPTR_EL2_TSM; \ 597 if ((set) & CPACR_EL1_TTA) \ 598 cptr |= CPTR_EL2_TTA; \ 599 if ((set) & CPTR_EL2_TAM) \ 600 cptr |= CPTR_EL2_TAM; \ 601 if ((set) & CPTR_EL2_TCPAC) \ 602 cptr |= CPTR_EL2_TCPAC; \ 603 \ 604 cptr; \ 605 }) 606 607 #define cpacr_clear_set(clr, set) \ 608 do { \ 609 BUILD_BUG_ON((set) & CPTR_VHE_EL2_RES0); \ 610 BUILD_BUG_ON((clr) & CPACR_EL1_E0POE); \ 611 __build_check_all_or_none((clr), CPACR_EL1_FPEN); \ 612 __build_check_all_or_none((set), CPACR_EL1_FPEN); \ 613 __build_check_all_or_none((clr), CPACR_EL1_ZEN); \ 614 __build_check_all_or_none((set), CPACR_EL1_ZEN); \ 615 __build_check_all_or_none((clr), CPACR_EL1_SMEN); \ 616 __build_check_all_or_none((set), CPACR_EL1_SMEN); \ 617 \ 618 if (has_vhe() || has_hvhe()) \ 619 sysreg_clear_set(cpacr_el1, clr, set); \ 620 else \ 621 sysreg_clear_set(cptr_el2, \ 622 __cpacr_to_cptr_clr(clr, set), \ 623 __cpacr_to_cptr_set(clr, set));\ 624 } while (0) 625 626 /* 627 * Returns a 'sanitised' view of CPTR_EL2, translating from nVHE to the VHE 628 * format if E2H isn't set. 629 */ 630 static inline u64 vcpu_sanitised_cptr_el2(const struct kvm_vcpu *vcpu) 631 { 632 u64 cptr = __vcpu_sys_reg(vcpu, CPTR_EL2); 633 634 if (!vcpu_el2_e2h_is_set(vcpu)) 635 cptr = translate_cptr_el2_to_cpacr_el1(cptr); 636 637 return cptr; 638 } 639 640 static inline bool ____cptr_xen_trap_enabled(const struct kvm_vcpu *vcpu, 641 unsigned int xen) 642 { 643 switch (xen) { 644 case 0b00: 645 case 0b10: 646 return true; 647 case 0b01: 648 return vcpu_el2_tge_is_set(vcpu) && !vcpu_is_el2(vcpu); 649 case 0b11: 650 default: 651 return false; 652 } 653 } 654 655 #define __guest_hyp_cptr_xen_trap_enabled(vcpu, xen) \ 656 (!vcpu_has_nv(vcpu) ? false : \ 657 ____cptr_xen_trap_enabled(vcpu, \ 658 SYS_FIELD_GET(CPACR_EL1, xen, \ 659 vcpu_sanitised_cptr_el2(vcpu)))) 660 661 static inline bool guest_hyp_fpsimd_traps_enabled(const struct kvm_vcpu *vcpu) 662 { 663 return __guest_hyp_cptr_xen_trap_enabled(vcpu, FPEN); 664 } 665 666 static inline bool guest_hyp_sve_traps_enabled(const struct kvm_vcpu *vcpu) 667 { 668 return __guest_hyp_cptr_xen_trap_enabled(vcpu, ZEN); 669 } 670 671 static inline void vcpu_set_hcrx(struct kvm_vcpu *vcpu) 672 { 673 struct kvm *kvm = vcpu->kvm; 674 675 if (cpus_have_final_cap(ARM64_HAS_HCX)) { 676 /* 677 * In general, all HCRX_EL2 bits are gated by a feature. 678 * The only reason we can set SMPME without checking any 679 * feature is that its effects are not directly observable 680 * from the guest. 681 */ 682 vcpu->arch.hcrx_el2 = HCRX_EL2_SMPME; 683 684 if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) 685 vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); 686 687 if (kvm_has_tcr2(kvm)) 688 vcpu->arch.hcrx_el2 |= HCRX_EL2_TCR2En; 689 690 if (kvm_has_fpmr(kvm)) 691 vcpu->arch.hcrx_el2 |= HCRX_EL2_EnFPM; 692 } 693 } 694 #endif /* __ARM64_KVM_EMULATE_H__ */ 695