1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/kvm_emulate.h 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_EMULATE_H__ 12 #define __ARM64_KVM_EMULATE_H__ 13 14 #include <linux/bitfield.h> 15 #include <linux/kvm_host.h> 16 17 #include <asm/debug-monitors.h> 18 #include <asm/esr.h> 19 #include <asm/kvm_arm.h> 20 #include <asm/kvm_hyp.h> 21 #include <asm/kvm_nested.h> 22 #include <asm/ptrace.h> 23 #include <asm/cputype.h> 24 #include <asm/virt.h> 25 26 #define CURRENT_EL_SP_EL0_VECTOR 0x0 27 #define CURRENT_EL_SP_ELx_VECTOR 0x200 28 #define LOWER_EL_AArch64_VECTOR 0x400 29 #define LOWER_EL_AArch32_VECTOR 0x600 30 31 enum exception_type { 32 except_type_sync = 0, 33 except_type_irq = 0x80, 34 except_type_fiq = 0x100, 35 except_type_serror = 0x180, 36 }; 37 38 #define kvm_exception_type_names \ 39 { except_type_sync, "SYNC" }, \ 40 { except_type_irq, "IRQ" }, \ 41 { except_type_fiq, "FIQ" }, \ 42 { except_type_serror, "SERROR" } 43 44 bool kvm_condition_valid32(const struct kvm_vcpu *vcpu); 45 void kvm_skip_instr32(struct kvm_vcpu *vcpu); 46 47 void kvm_inject_undefined(struct kvm_vcpu *vcpu); 48 void kvm_inject_vabt(struct kvm_vcpu *vcpu); 49 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr); 50 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr); 51 void kvm_inject_size_fault(struct kvm_vcpu *vcpu); 52 53 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu); 54 55 void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu); 56 int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2); 57 int kvm_inject_nested_irq(struct kvm_vcpu *vcpu); 58 59 static inline void kvm_inject_nested_sve_trap(struct kvm_vcpu *vcpu) 60 { 61 u64 esr = FIELD_PREP(ESR_ELx_EC_MASK, ESR_ELx_EC_SVE) | 62 ESR_ELx_IL; 63 64 kvm_inject_nested_sync(vcpu, esr); 65 } 66 67 #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__) 68 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) 69 { 70 return !(vcpu->arch.hcr_el2 & HCR_RW); 71 } 72 #else 73 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) 74 { 75 return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT); 76 } 77 #endif 78 79 static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu) 80 { 81 if (!vcpu_has_run_once(vcpu)) 82 vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS; 83 84 /* 85 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C 86 * get set in SCTLR_EL1 such that we can detect when the guest 87 * MMU gets turned on and do the necessary cache maintenance 88 * then. 89 */ 90 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 91 vcpu->arch.hcr_el2 |= HCR_TVM; 92 } 93 94 static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu) 95 { 96 return (unsigned long *)&vcpu->arch.hcr_el2; 97 } 98 99 static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu) 100 { 101 vcpu->arch.hcr_el2 &= ~HCR_TWE; 102 if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 103 vcpu->kvm->arch.vgic.nassgireq) 104 vcpu->arch.hcr_el2 &= ~HCR_TWI; 105 else 106 vcpu->arch.hcr_el2 |= HCR_TWI; 107 } 108 109 static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu) 110 { 111 vcpu->arch.hcr_el2 |= HCR_TWE; 112 vcpu->arch.hcr_el2 |= HCR_TWI; 113 } 114 115 static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu) 116 { 117 return vcpu->arch.vsesr_el2; 118 } 119 120 static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr) 121 { 122 vcpu->arch.vsesr_el2 = vsesr; 123 } 124 125 static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu) 126 { 127 return (unsigned long *)&vcpu_gp_regs(vcpu)->pc; 128 } 129 130 static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu) 131 { 132 return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate; 133 } 134 135 static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu) 136 { 137 return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT); 138 } 139 140 static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu) 141 { 142 if (vcpu_mode_is_32bit(vcpu)) 143 return kvm_condition_valid32(vcpu); 144 145 return true; 146 } 147 148 static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu) 149 { 150 *vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT; 151 } 152 153 /* 154 * vcpu_get_reg and vcpu_set_reg should always be passed a register number 155 * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on 156 * AArch32 with banked registers. 157 */ 158 static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu, 159 u8 reg_num) 160 { 161 return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num]; 162 } 163 164 static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num, 165 unsigned long val) 166 { 167 if (reg_num != 31) 168 vcpu_gp_regs(vcpu)->regs[reg_num] = val; 169 } 170 171 static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt) 172 { 173 switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) { 174 case PSR_MODE_EL2h: 175 case PSR_MODE_EL2t: 176 return true; 177 default: 178 return false; 179 } 180 } 181 182 static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu) 183 { 184 return vcpu_is_el2_ctxt(&vcpu->arch.ctxt); 185 } 186 187 static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt) 188 { 189 return (!cpus_have_final_cap(ARM64_HAS_HCR_NV1) || 190 (ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H)); 191 } 192 193 static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu) 194 { 195 return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt); 196 } 197 198 static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt) 199 { 200 return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE; 201 } 202 203 static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu) 204 { 205 return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt); 206 } 207 208 static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt) 209 { 210 /* 211 * We are in a hypervisor context if the vcpu mode is EL2 or 212 * E2H and TGE bits are set. The latter means we are in the user space 213 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost' 214 * 215 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the 216 * rest of the KVM code, and will result in a misbehaving guest. 217 */ 218 return vcpu_is_el2_ctxt(ctxt) || 219 (__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) || 220 __vcpu_el2_tge_is_set(ctxt); 221 } 222 223 static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu) 224 { 225 return vcpu_has_nv(vcpu) && __is_hyp_ctxt(&vcpu->arch.ctxt); 226 } 227 228 /* 229 * The layout of SPSR for an AArch32 state is different when observed from an 230 * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32 231 * view given an AArch64 view. 232 * 233 * In ARM DDI 0487E.a see: 234 * 235 * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426 236 * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256 237 * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280 238 * 239 * Which show the following differences: 240 * 241 * | Bit | AA64 | AA32 | Notes | 242 * +-----+------+------+-----------------------------| 243 * | 24 | DIT | J | J is RES0 in ARMv8 | 244 * | 21 | SS | DIT | SS doesn't exist in AArch32 | 245 * 246 * ... and all other bits are (currently) common. 247 */ 248 static inline unsigned long host_spsr_to_spsr32(unsigned long spsr) 249 { 250 const unsigned long overlap = BIT(24) | BIT(21); 251 unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT); 252 253 spsr &= ~overlap; 254 255 spsr |= dit << 21; 256 257 return spsr; 258 } 259 260 static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu) 261 { 262 u32 mode; 263 264 if (vcpu_mode_is_32bit(vcpu)) { 265 mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK; 266 return mode > PSR_AA32_MODE_USR; 267 } 268 269 mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK; 270 271 return mode != PSR_MODE_EL0t; 272 } 273 274 static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu) 275 { 276 return vcpu->arch.fault.esr_el2; 277 } 278 279 static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu) 280 { 281 u64 esr = kvm_vcpu_get_esr(vcpu); 282 283 if (esr & ESR_ELx_CV) 284 return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT; 285 286 return -1; 287 } 288 289 static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu) 290 { 291 return vcpu->arch.fault.far_el2; 292 } 293 294 static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu) 295 { 296 return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8; 297 } 298 299 static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu) 300 { 301 return vcpu->arch.fault.disr_el1; 302 } 303 304 static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu) 305 { 306 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK; 307 } 308 309 static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu) 310 { 311 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV); 312 } 313 314 static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu) 315 { 316 return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC); 317 } 318 319 static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu) 320 { 321 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE); 322 } 323 324 static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu) 325 { 326 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF); 327 } 328 329 static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu) 330 { 331 return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT; 332 } 333 334 static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu) 335 { 336 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW); 337 } 338 339 /* Always check for S1PTW *before* using this. */ 340 static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu) 341 { 342 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR; 343 } 344 345 static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu) 346 { 347 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM); 348 } 349 350 static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu) 351 { 352 return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT); 353 } 354 355 /* This one is not specific to Data Abort */ 356 static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu) 357 { 358 return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL); 359 } 360 361 static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu) 362 { 363 return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu)); 364 } 365 366 static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu) 367 { 368 return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW; 369 } 370 371 static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu) 372 { 373 return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu); 374 } 375 376 static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu) 377 { 378 return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC; 379 } 380 381 static inline 382 bool kvm_vcpu_trap_is_permission_fault(const struct kvm_vcpu *vcpu) 383 { 384 return esr_fsc_is_permission_fault(kvm_vcpu_get_esr(vcpu)); 385 } 386 387 static inline 388 bool kvm_vcpu_trap_is_translation_fault(const struct kvm_vcpu *vcpu) 389 { 390 return esr_fsc_is_translation_fault(kvm_vcpu_get_esr(vcpu)); 391 } 392 393 static inline 394 u64 kvm_vcpu_trap_get_perm_fault_granule(const struct kvm_vcpu *vcpu) 395 { 396 unsigned long esr = kvm_vcpu_get_esr(vcpu); 397 398 BUG_ON(!esr_fsc_is_permission_fault(esr)); 399 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(esr & ESR_ELx_FSC_LEVEL)); 400 } 401 402 static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu) 403 { 404 switch (kvm_vcpu_trap_get_fault(vcpu)) { 405 case ESR_ELx_FSC_EXTABT: 406 case ESR_ELx_FSC_SEA_TTW(-1) ... ESR_ELx_FSC_SEA_TTW(3): 407 case ESR_ELx_FSC_SECC: 408 case ESR_ELx_FSC_SECC_TTW(-1) ... ESR_ELx_FSC_SECC_TTW(3): 409 return true; 410 default: 411 return false; 412 } 413 } 414 415 static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu) 416 { 417 u64 esr = kvm_vcpu_get_esr(vcpu); 418 return ESR_ELx_SYS64_ISS_RT(esr); 419 } 420 421 static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu) 422 { 423 if (kvm_vcpu_abt_iss1tw(vcpu)) { 424 /* 425 * Only a permission fault on a S1PTW should be 426 * considered as a write. Otherwise, page tables baked 427 * in a read-only memslot will result in an exception 428 * being delivered in the guest. 429 * 430 * The drawback is that we end-up faulting twice if the 431 * guest is using any of HW AF/DB: a translation fault 432 * to map the page containing the PT (read only at 433 * first), then a permission fault to allow the flags 434 * to be set. 435 */ 436 return kvm_vcpu_trap_is_permission_fault(vcpu); 437 } 438 439 if (kvm_vcpu_trap_is_iabt(vcpu)) 440 return false; 441 442 return kvm_vcpu_dabt_iswrite(vcpu); 443 } 444 445 static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu) 446 { 447 return __vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK; 448 } 449 450 static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu) 451 { 452 if (vcpu_mode_is_32bit(vcpu)) { 453 *vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT; 454 } else { 455 u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1); 456 sctlr |= SCTLR_ELx_EE; 457 vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1); 458 } 459 } 460 461 static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu) 462 { 463 if (vcpu_mode_is_32bit(vcpu)) 464 return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT); 465 466 if (vcpu_mode_priv(vcpu)) 467 return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE); 468 else 469 return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E); 470 } 471 472 static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu, 473 unsigned long data, 474 unsigned int len) 475 { 476 if (kvm_vcpu_is_be(vcpu)) { 477 switch (len) { 478 case 1: 479 return data & 0xff; 480 case 2: 481 return be16_to_cpu(data & 0xffff); 482 case 4: 483 return be32_to_cpu(data & 0xffffffff); 484 default: 485 return be64_to_cpu(data); 486 } 487 } else { 488 switch (len) { 489 case 1: 490 return data & 0xff; 491 case 2: 492 return le16_to_cpu(data & 0xffff); 493 case 4: 494 return le32_to_cpu(data & 0xffffffff); 495 default: 496 return le64_to_cpu(data); 497 } 498 } 499 500 return data; /* Leave LE untouched */ 501 } 502 503 static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu, 504 unsigned long data, 505 unsigned int len) 506 { 507 if (kvm_vcpu_is_be(vcpu)) { 508 switch (len) { 509 case 1: 510 return data & 0xff; 511 case 2: 512 return cpu_to_be16(data & 0xffff); 513 case 4: 514 return cpu_to_be32(data & 0xffffffff); 515 default: 516 return cpu_to_be64(data); 517 } 518 } else { 519 switch (len) { 520 case 1: 521 return data & 0xff; 522 case 2: 523 return cpu_to_le16(data & 0xffff); 524 case 4: 525 return cpu_to_le32(data & 0xffffffff); 526 default: 527 return cpu_to_le64(data); 528 } 529 } 530 531 return data; /* Leave LE untouched */ 532 } 533 534 static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu) 535 { 536 WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION)); 537 vcpu_set_flag(vcpu, INCREMENT_PC); 538 } 539 540 #define kvm_pend_exception(v, e) \ 541 do { \ 542 WARN_ON(vcpu_get_flag((v), INCREMENT_PC)); \ 543 vcpu_set_flag((v), PENDING_EXCEPTION); \ 544 vcpu_set_flag((v), e); \ 545 } while (0) 546 547 #define __build_check_all_or_none(r, bits) \ 548 BUILD_BUG_ON(((r) & (bits)) && ((r) & (bits)) != (bits)) 549 550 #define __cpacr_to_cptr_clr(clr, set) \ 551 ({ \ 552 u64 cptr = 0; \ 553 \ 554 if ((set) & CPACR_ELx_FPEN) \ 555 cptr |= CPTR_EL2_TFP; \ 556 if ((set) & CPACR_ELx_ZEN) \ 557 cptr |= CPTR_EL2_TZ; \ 558 if ((set) & CPACR_ELx_SMEN) \ 559 cptr |= CPTR_EL2_TSM; \ 560 if ((clr) & CPACR_ELx_TTA) \ 561 cptr |= CPTR_EL2_TTA; \ 562 if ((clr) & CPTR_EL2_TAM) \ 563 cptr |= CPTR_EL2_TAM; \ 564 if ((clr) & CPTR_EL2_TCPAC) \ 565 cptr |= CPTR_EL2_TCPAC; \ 566 \ 567 cptr; \ 568 }) 569 570 #define __cpacr_to_cptr_set(clr, set) \ 571 ({ \ 572 u64 cptr = 0; \ 573 \ 574 if ((clr) & CPACR_ELx_FPEN) \ 575 cptr |= CPTR_EL2_TFP; \ 576 if ((clr) & CPACR_ELx_ZEN) \ 577 cptr |= CPTR_EL2_TZ; \ 578 if ((clr) & CPACR_ELx_SMEN) \ 579 cptr |= CPTR_EL2_TSM; \ 580 if ((set) & CPACR_ELx_TTA) \ 581 cptr |= CPTR_EL2_TTA; \ 582 if ((set) & CPTR_EL2_TAM) \ 583 cptr |= CPTR_EL2_TAM; \ 584 if ((set) & CPTR_EL2_TCPAC) \ 585 cptr |= CPTR_EL2_TCPAC; \ 586 \ 587 cptr; \ 588 }) 589 590 #define cpacr_clear_set(clr, set) \ 591 do { \ 592 BUILD_BUG_ON((set) & CPTR_VHE_EL2_RES0); \ 593 BUILD_BUG_ON((clr) & CPACR_ELx_E0POE); \ 594 __build_check_all_or_none((clr), CPACR_ELx_FPEN); \ 595 __build_check_all_or_none((set), CPACR_ELx_FPEN); \ 596 __build_check_all_or_none((clr), CPACR_ELx_ZEN); \ 597 __build_check_all_or_none((set), CPACR_ELx_ZEN); \ 598 __build_check_all_or_none((clr), CPACR_ELx_SMEN); \ 599 __build_check_all_or_none((set), CPACR_ELx_SMEN); \ 600 \ 601 if (has_vhe() || has_hvhe()) \ 602 sysreg_clear_set(cpacr_el1, clr, set); \ 603 else \ 604 sysreg_clear_set(cptr_el2, \ 605 __cpacr_to_cptr_clr(clr, set), \ 606 __cpacr_to_cptr_set(clr, set));\ 607 } while (0) 608 609 static __always_inline void kvm_write_cptr_el2(u64 val) 610 { 611 if (has_vhe() || has_hvhe()) 612 write_sysreg(val, cpacr_el1); 613 else 614 write_sysreg(val, cptr_el2); 615 } 616 617 static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu) 618 { 619 u64 val; 620 621 if (has_vhe()) { 622 val = (CPACR_ELx_FPEN | CPACR_EL1_ZEN_EL1EN); 623 if (cpus_have_final_cap(ARM64_SME)) 624 val |= CPACR_EL1_SMEN_EL1EN; 625 } else if (has_hvhe()) { 626 val = CPACR_ELx_FPEN; 627 628 if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs()) 629 val |= CPACR_ELx_ZEN; 630 if (cpus_have_final_cap(ARM64_SME)) 631 val |= CPACR_ELx_SMEN; 632 } else { 633 val = CPTR_NVHE_EL2_RES1; 634 635 if (vcpu_has_sve(vcpu) && guest_owns_fp_regs()) 636 val |= CPTR_EL2_TZ; 637 if (cpus_have_final_cap(ARM64_SME)) 638 val &= ~CPTR_EL2_TSM; 639 } 640 641 return val; 642 } 643 644 static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu) 645 { 646 u64 val = kvm_get_reset_cptr_el2(vcpu); 647 648 kvm_write_cptr_el2(val); 649 } 650 651 /* 652 * Returns a 'sanitised' view of CPTR_EL2, translating from nVHE to the VHE 653 * format if E2H isn't set. 654 */ 655 static inline u64 vcpu_sanitised_cptr_el2(const struct kvm_vcpu *vcpu) 656 { 657 u64 cptr = __vcpu_sys_reg(vcpu, CPTR_EL2); 658 659 if (!vcpu_el2_e2h_is_set(vcpu)) 660 cptr = translate_cptr_el2_to_cpacr_el1(cptr); 661 662 return cptr; 663 } 664 665 static inline bool ____cptr_xen_trap_enabled(const struct kvm_vcpu *vcpu, 666 unsigned int xen) 667 { 668 switch (xen) { 669 case 0b00: 670 case 0b10: 671 return true; 672 case 0b01: 673 return vcpu_el2_tge_is_set(vcpu) && !vcpu_is_el2(vcpu); 674 case 0b11: 675 default: 676 return false; 677 } 678 } 679 680 #define __guest_hyp_cptr_xen_trap_enabled(vcpu, xen) \ 681 (!vcpu_has_nv(vcpu) ? false : \ 682 ____cptr_xen_trap_enabled(vcpu, \ 683 SYS_FIELD_GET(CPACR_ELx, xen, \ 684 vcpu_sanitised_cptr_el2(vcpu)))) 685 686 static inline bool guest_hyp_fpsimd_traps_enabled(const struct kvm_vcpu *vcpu) 687 { 688 return __guest_hyp_cptr_xen_trap_enabled(vcpu, FPEN); 689 } 690 691 static inline bool guest_hyp_sve_traps_enabled(const struct kvm_vcpu *vcpu) 692 { 693 return __guest_hyp_cptr_xen_trap_enabled(vcpu, ZEN); 694 } 695 696 #endif /* __ARM64_KVM_EMULATE_H__ */ 697