xref: /linux/arch/arm64/include/asm/kvm_emulate.h (revision 1785f020b1124c37f59f3d92b7d45ba1d707ee91)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/kvm_emulate.h
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_EMULATE_H__
12 #define __ARM64_KVM_EMULATE_H__
13 
14 #include <linux/bitfield.h>
15 #include <linux/kvm_host.h>
16 
17 #include <asm/debug-monitors.h>
18 #include <asm/esr.h>
19 #include <asm/kvm_arm.h>
20 #include <asm/kvm_hyp.h>
21 #include <asm/kvm_nested.h>
22 #include <asm/ptrace.h>
23 #include <asm/cputype.h>
24 #include <asm/virt.h>
25 
26 #define CURRENT_EL_SP_EL0_VECTOR	0x0
27 #define CURRENT_EL_SP_ELx_VECTOR	0x200
28 #define LOWER_EL_AArch64_VECTOR		0x400
29 #define LOWER_EL_AArch32_VECTOR		0x600
30 
31 enum exception_type {
32 	except_type_sync	= 0,
33 	except_type_irq		= 0x80,
34 	except_type_fiq		= 0x100,
35 	except_type_serror	= 0x180,
36 };
37 
38 #define kvm_exception_type_names		\
39 	{ except_type_sync,	"SYNC"   },	\
40 	{ except_type_irq,	"IRQ"    },	\
41 	{ except_type_fiq,	"FIQ"    },	\
42 	{ except_type_serror,	"SERROR" }
43 
44 bool kvm_condition_valid32(const struct kvm_vcpu *vcpu);
45 void kvm_skip_instr32(struct kvm_vcpu *vcpu);
46 
47 void kvm_inject_undefined(struct kvm_vcpu *vcpu);
48 void kvm_inject_vabt(struct kvm_vcpu *vcpu);
49 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr);
50 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr);
51 void kvm_inject_size_fault(struct kvm_vcpu *vcpu);
52 
53 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu);
54 
55 void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu);
56 int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2);
57 int kvm_inject_nested_irq(struct kvm_vcpu *vcpu);
58 
59 static inline void kvm_inject_nested_sve_trap(struct kvm_vcpu *vcpu)
60 {
61 	u64 esr = FIELD_PREP(ESR_ELx_EC_MASK, ESR_ELx_EC_SVE) |
62 		  ESR_ELx_IL;
63 
64 	kvm_inject_nested_sync(vcpu, esr);
65 }
66 
67 #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__)
68 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
69 {
70 	return !(vcpu->arch.hcr_el2 & HCR_RW);
71 }
72 #else
73 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
74 {
75 	return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
76 }
77 #endif
78 
79 static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
80 {
81 	vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS;
82 	if (has_vhe() || has_hvhe())
83 		vcpu->arch.hcr_el2 |= HCR_E2H;
84 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
85 		/* route synchronous external abort exceptions to EL2 */
86 		vcpu->arch.hcr_el2 |= HCR_TEA;
87 		/* trap error record accesses */
88 		vcpu->arch.hcr_el2 |= HCR_TERR;
89 	}
90 
91 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) {
92 		vcpu->arch.hcr_el2 |= HCR_FWB;
93 	} else {
94 		/*
95 		 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C
96 		 * get set in SCTLR_EL1 such that we can detect when the guest
97 		 * MMU gets turned on and do the necessary cache maintenance
98 		 * then.
99 		 */
100 		vcpu->arch.hcr_el2 |= HCR_TVM;
101 	}
102 
103 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
104 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE))
105 		vcpu->arch.hcr_el2 |= HCR_TID4;
106 	else
107 		vcpu->arch.hcr_el2 |= HCR_TID2;
108 
109 	if (vcpu_el1_is_32bit(vcpu))
110 		vcpu->arch.hcr_el2 &= ~HCR_RW;
111 
112 	if (kvm_has_mte(vcpu->kvm))
113 		vcpu->arch.hcr_el2 |= HCR_ATA;
114 }
115 
116 static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu)
117 {
118 	return (unsigned long *)&vcpu->arch.hcr_el2;
119 }
120 
121 static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu)
122 {
123 	vcpu->arch.hcr_el2 &= ~HCR_TWE;
124 	if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
125 	    vcpu->kvm->arch.vgic.nassgireq)
126 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
127 	else
128 		vcpu->arch.hcr_el2 |= HCR_TWI;
129 }
130 
131 static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu)
132 {
133 	vcpu->arch.hcr_el2 |= HCR_TWE;
134 	vcpu->arch.hcr_el2 |= HCR_TWI;
135 }
136 
137 static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu)
138 {
139 	return vcpu->arch.vsesr_el2;
140 }
141 
142 static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr)
143 {
144 	vcpu->arch.vsesr_el2 = vsesr;
145 }
146 
147 static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
148 {
149 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pc;
150 }
151 
152 static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu)
153 {
154 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate;
155 }
156 
157 static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu)
158 {
159 	return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT);
160 }
161 
162 static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu)
163 {
164 	if (vcpu_mode_is_32bit(vcpu))
165 		return kvm_condition_valid32(vcpu);
166 
167 	return true;
168 }
169 
170 static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu)
171 {
172 	*vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT;
173 }
174 
175 /*
176  * vcpu_get_reg and vcpu_set_reg should always be passed a register number
177  * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on
178  * AArch32 with banked registers.
179  */
180 static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu,
181 					 u8 reg_num)
182 {
183 	return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num];
184 }
185 
186 static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
187 				unsigned long val)
188 {
189 	if (reg_num != 31)
190 		vcpu_gp_regs(vcpu)->regs[reg_num] = val;
191 }
192 
193 static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt)
194 {
195 	switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) {
196 	case PSR_MODE_EL2h:
197 	case PSR_MODE_EL2t:
198 		return true;
199 	default:
200 		return false;
201 	}
202 }
203 
204 static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu)
205 {
206 	return vcpu_is_el2_ctxt(&vcpu->arch.ctxt);
207 }
208 
209 static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt)
210 {
211 	return (!cpus_have_final_cap(ARM64_HAS_HCR_NV1) ||
212 		(ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H));
213 }
214 
215 static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu)
216 {
217 	return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt);
218 }
219 
220 static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt)
221 {
222 	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE;
223 }
224 
225 static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu)
226 {
227 	return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt);
228 }
229 
230 static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt)
231 {
232 	/*
233 	 * We are in a hypervisor context if the vcpu mode is EL2 or
234 	 * E2H and TGE bits are set. The latter means we are in the user space
235 	 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost'
236 	 *
237 	 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the
238 	 * rest of the KVM code, and will result in a misbehaving guest.
239 	 */
240 	return vcpu_is_el2_ctxt(ctxt) ||
241 		(__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) ||
242 		__vcpu_el2_tge_is_set(ctxt);
243 }
244 
245 static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu)
246 {
247 	return vcpu_has_nv(vcpu) && __is_hyp_ctxt(&vcpu->arch.ctxt);
248 }
249 
250 /*
251  * The layout of SPSR for an AArch32 state is different when observed from an
252  * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32
253  * view given an AArch64 view.
254  *
255  * In ARM DDI 0487E.a see:
256  *
257  * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426
258  * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256
259  * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280
260  *
261  * Which show the following differences:
262  *
263  * | Bit | AA64 | AA32 | Notes                       |
264  * +-----+------+------+-----------------------------|
265  * | 24  | DIT  | J    | J is RES0 in ARMv8          |
266  * | 21  | SS   | DIT  | SS doesn't exist in AArch32 |
267  *
268  * ... and all other bits are (currently) common.
269  */
270 static inline unsigned long host_spsr_to_spsr32(unsigned long spsr)
271 {
272 	const unsigned long overlap = BIT(24) | BIT(21);
273 	unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT);
274 
275 	spsr &= ~overlap;
276 
277 	spsr |= dit << 21;
278 
279 	return spsr;
280 }
281 
282 static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu)
283 {
284 	u32 mode;
285 
286 	if (vcpu_mode_is_32bit(vcpu)) {
287 		mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK;
288 		return mode > PSR_AA32_MODE_USR;
289 	}
290 
291 	mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK;
292 
293 	return mode != PSR_MODE_EL0t;
294 }
295 
296 static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
297 {
298 	return vcpu->arch.fault.esr_el2;
299 }
300 
301 static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu)
302 {
303 	u64 esr = kvm_vcpu_get_esr(vcpu);
304 
305 	if (esr & ESR_ELx_CV)
306 		return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
307 
308 	return -1;
309 }
310 
311 static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu)
312 {
313 	return vcpu->arch.fault.far_el2;
314 }
315 
316 static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu)
317 {
318 	return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8;
319 }
320 
321 static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu)
322 {
323 	return vcpu->arch.fault.disr_el1;
324 }
325 
326 static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
327 {
328 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK;
329 }
330 
331 static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
332 {
333 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV);
334 }
335 
336 static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu)
337 {
338 	return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC);
339 }
340 
341 static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu)
342 {
343 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE);
344 }
345 
346 static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu)
347 {
348 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF);
349 }
350 
351 static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu)
352 {
353 	return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT;
354 }
355 
356 static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu)
357 {
358 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW);
359 }
360 
361 /* Always check for S1PTW *before* using this. */
362 static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu)
363 {
364 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR;
365 }
366 
367 static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu)
368 {
369 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM);
370 }
371 
372 static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu)
373 {
374 	return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT);
375 }
376 
377 /* This one is not specific to Data Abort */
378 static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu)
379 {
380 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL);
381 }
382 
383 static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu)
384 {
385 	return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
386 }
387 
388 static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
389 {
390 	return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW;
391 }
392 
393 static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu)
394 {
395 	return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu);
396 }
397 
398 static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu)
399 {
400 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC;
401 }
402 
403 static inline
404 bool kvm_vcpu_trap_is_permission_fault(const struct kvm_vcpu *vcpu)
405 {
406 	return esr_fsc_is_permission_fault(kvm_vcpu_get_esr(vcpu));
407 }
408 
409 static inline
410 bool kvm_vcpu_trap_is_translation_fault(const struct kvm_vcpu *vcpu)
411 {
412 	return esr_fsc_is_translation_fault(kvm_vcpu_get_esr(vcpu));
413 }
414 
415 static inline
416 u64 kvm_vcpu_trap_get_perm_fault_granule(const struct kvm_vcpu *vcpu)
417 {
418 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
419 
420 	BUG_ON(!esr_fsc_is_permission_fault(esr));
421 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(esr & ESR_ELx_FSC_LEVEL));
422 }
423 
424 static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
425 {
426 	switch (kvm_vcpu_trap_get_fault(vcpu)) {
427 	case ESR_ELx_FSC_EXTABT:
428 	case ESR_ELx_FSC_SEA_TTW(-1) ... ESR_ELx_FSC_SEA_TTW(3):
429 	case ESR_ELx_FSC_SECC:
430 	case ESR_ELx_FSC_SECC_TTW(-1) ... ESR_ELx_FSC_SECC_TTW(3):
431 		return true;
432 	default:
433 		return false;
434 	}
435 }
436 
437 static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
438 {
439 	u64 esr = kvm_vcpu_get_esr(vcpu);
440 	return ESR_ELx_SYS64_ISS_RT(esr);
441 }
442 
443 static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
444 {
445 	if (kvm_vcpu_abt_iss1tw(vcpu)) {
446 		/*
447 		 * Only a permission fault on a S1PTW should be
448 		 * considered as a write. Otherwise, page tables baked
449 		 * in a read-only memslot will result in an exception
450 		 * being delivered in the guest.
451 		 *
452 		 * The drawback is that we end-up faulting twice if the
453 		 * guest is using any of HW AF/DB: a translation fault
454 		 * to map the page containing the PT (read only at
455 		 * first), then a permission fault to allow the flags
456 		 * to be set.
457 		 */
458 		return kvm_vcpu_trap_is_permission_fault(vcpu);
459 	}
460 
461 	if (kvm_vcpu_trap_is_iabt(vcpu))
462 		return false;
463 
464 	return kvm_vcpu_dabt_iswrite(vcpu);
465 }
466 
467 static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
468 {
469 	return __vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;
470 }
471 
472 static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)
473 {
474 	if (vcpu_mode_is_32bit(vcpu)) {
475 		*vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT;
476 	} else {
477 		u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
478 		sctlr |= SCTLR_ELx_EE;
479 		vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1);
480 	}
481 }
482 
483 static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu)
484 {
485 	if (vcpu_mode_is_32bit(vcpu))
486 		return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT);
487 
488 	if (vcpu_mode_priv(vcpu))
489 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE);
490 	else
491 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E);
492 }
493 
494 static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu,
495 						    unsigned long data,
496 						    unsigned int len)
497 {
498 	if (kvm_vcpu_is_be(vcpu)) {
499 		switch (len) {
500 		case 1:
501 			return data & 0xff;
502 		case 2:
503 			return be16_to_cpu(data & 0xffff);
504 		case 4:
505 			return be32_to_cpu(data & 0xffffffff);
506 		default:
507 			return be64_to_cpu(data);
508 		}
509 	} else {
510 		switch (len) {
511 		case 1:
512 			return data & 0xff;
513 		case 2:
514 			return le16_to_cpu(data & 0xffff);
515 		case 4:
516 			return le32_to_cpu(data & 0xffffffff);
517 		default:
518 			return le64_to_cpu(data);
519 		}
520 	}
521 
522 	return data;		/* Leave LE untouched */
523 }
524 
525 static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu,
526 						    unsigned long data,
527 						    unsigned int len)
528 {
529 	if (kvm_vcpu_is_be(vcpu)) {
530 		switch (len) {
531 		case 1:
532 			return data & 0xff;
533 		case 2:
534 			return cpu_to_be16(data & 0xffff);
535 		case 4:
536 			return cpu_to_be32(data & 0xffffffff);
537 		default:
538 			return cpu_to_be64(data);
539 		}
540 	} else {
541 		switch (len) {
542 		case 1:
543 			return data & 0xff;
544 		case 2:
545 			return cpu_to_le16(data & 0xffff);
546 		case 4:
547 			return cpu_to_le32(data & 0xffffffff);
548 		default:
549 			return cpu_to_le64(data);
550 		}
551 	}
552 
553 	return data;		/* Leave LE untouched */
554 }
555 
556 static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu)
557 {
558 	WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION));
559 	vcpu_set_flag(vcpu, INCREMENT_PC);
560 }
561 
562 #define kvm_pend_exception(v, e)					\
563 	do {								\
564 		WARN_ON(vcpu_get_flag((v), INCREMENT_PC));		\
565 		vcpu_set_flag((v), PENDING_EXCEPTION);			\
566 		vcpu_set_flag((v), e);					\
567 	} while (0)
568 
569 #define __build_check_all_or_none(r, bits)				\
570 	BUILD_BUG_ON(((r) & (bits)) && ((r) & (bits)) != (bits))
571 
572 #define __cpacr_to_cptr_clr(clr, set)					\
573 	({								\
574 		u64 cptr = 0;						\
575 									\
576 		if ((set) & CPACR_ELx_FPEN)				\
577 			cptr |= CPTR_EL2_TFP;				\
578 		if ((set) & CPACR_ELx_ZEN)				\
579 			cptr |= CPTR_EL2_TZ;				\
580 		if ((set) & CPACR_ELx_SMEN)				\
581 			cptr |= CPTR_EL2_TSM;				\
582 		if ((clr) & CPACR_ELx_TTA)				\
583 			cptr |= CPTR_EL2_TTA;				\
584 		if ((clr) & CPTR_EL2_TAM)				\
585 			cptr |= CPTR_EL2_TAM;				\
586 		if ((clr) & CPTR_EL2_TCPAC)				\
587 			cptr |= CPTR_EL2_TCPAC;				\
588 									\
589 		cptr;							\
590 	})
591 
592 #define __cpacr_to_cptr_set(clr, set)					\
593 	({								\
594 		u64 cptr = 0;						\
595 									\
596 		if ((clr) & CPACR_ELx_FPEN)				\
597 			cptr |= CPTR_EL2_TFP;				\
598 		if ((clr) & CPACR_ELx_ZEN)				\
599 			cptr |= CPTR_EL2_TZ;				\
600 		if ((clr) & CPACR_ELx_SMEN)				\
601 			cptr |= CPTR_EL2_TSM;				\
602 		if ((set) & CPACR_ELx_TTA)				\
603 			cptr |= CPTR_EL2_TTA;				\
604 		if ((set) & CPTR_EL2_TAM)				\
605 			cptr |= CPTR_EL2_TAM;				\
606 		if ((set) & CPTR_EL2_TCPAC)				\
607 			cptr |= CPTR_EL2_TCPAC;				\
608 									\
609 		cptr;							\
610 	})
611 
612 #define cpacr_clear_set(clr, set)					\
613 	do {								\
614 		BUILD_BUG_ON((set) & CPTR_VHE_EL2_RES0);		\
615 		BUILD_BUG_ON((clr) & CPACR_ELx_E0POE);			\
616 		__build_check_all_or_none((clr), CPACR_ELx_FPEN);	\
617 		__build_check_all_or_none((set), CPACR_ELx_FPEN);	\
618 		__build_check_all_or_none((clr), CPACR_ELx_ZEN);	\
619 		__build_check_all_or_none((set), CPACR_ELx_ZEN);	\
620 		__build_check_all_or_none((clr), CPACR_ELx_SMEN);	\
621 		__build_check_all_or_none((set), CPACR_ELx_SMEN);	\
622 									\
623 		if (has_vhe() || has_hvhe())				\
624 			sysreg_clear_set(cpacr_el1, clr, set);		\
625 		else							\
626 			sysreg_clear_set(cptr_el2,			\
627 					 __cpacr_to_cptr_clr(clr, set),	\
628 					 __cpacr_to_cptr_set(clr, set));\
629 	} while (0)
630 
631 static __always_inline void kvm_write_cptr_el2(u64 val)
632 {
633 	if (has_vhe() || has_hvhe())
634 		write_sysreg(val, cpacr_el1);
635 	else
636 		write_sysreg(val, cptr_el2);
637 }
638 
639 static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu)
640 {
641 	u64 val;
642 
643 	if (has_vhe()) {
644 		val = (CPACR_ELx_FPEN | CPACR_EL1_ZEN_EL1EN);
645 		if (cpus_have_final_cap(ARM64_SME))
646 			val |= CPACR_EL1_SMEN_EL1EN;
647 	} else if (has_hvhe()) {
648 		val = CPACR_ELx_FPEN;
649 
650 		if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs())
651 			val |= CPACR_ELx_ZEN;
652 		if (cpus_have_final_cap(ARM64_SME))
653 			val |= CPACR_ELx_SMEN;
654 	} else {
655 		val = CPTR_NVHE_EL2_RES1;
656 
657 		if (vcpu_has_sve(vcpu) && guest_owns_fp_regs())
658 			val |= CPTR_EL2_TZ;
659 		if (cpus_have_final_cap(ARM64_SME))
660 			val &= ~CPTR_EL2_TSM;
661 	}
662 
663 	return val;
664 }
665 
666 static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu)
667 {
668 	u64 val = kvm_get_reset_cptr_el2(vcpu);
669 
670 	kvm_write_cptr_el2(val);
671 }
672 
673 /*
674  * Returns a 'sanitised' view of CPTR_EL2, translating from nVHE to the VHE
675  * format if E2H isn't set.
676  */
677 static inline u64 vcpu_sanitised_cptr_el2(const struct kvm_vcpu *vcpu)
678 {
679 	u64 cptr = __vcpu_sys_reg(vcpu, CPTR_EL2);
680 
681 	if (!vcpu_el2_e2h_is_set(vcpu))
682 		cptr = translate_cptr_el2_to_cpacr_el1(cptr);
683 
684 	return cptr;
685 }
686 
687 static inline bool ____cptr_xen_trap_enabled(const struct kvm_vcpu *vcpu,
688 					     unsigned int xen)
689 {
690 	switch (xen) {
691 	case 0b00:
692 	case 0b10:
693 		return true;
694 	case 0b01:
695 		return vcpu_el2_tge_is_set(vcpu) && !vcpu_is_el2(vcpu);
696 	case 0b11:
697 	default:
698 		return false;
699 	}
700 }
701 
702 #define __guest_hyp_cptr_xen_trap_enabled(vcpu, xen)				\
703 	(!vcpu_has_nv(vcpu) ? false :						\
704 	 ____cptr_xen_trap_enabled(vcpu,					\
705 				   SYS_FIELD_GET(CPACR_ELx, xen,		\
706 						 vcpu_sanitised_cptr_el2(vcpu))))
707 
708 static inline bool guest_hyp_fpsimd_traps_enabled(const struct kvm_vcpu *vcpu)
709 {
710 	return __guest_hyp_cptr_xen_trap_enabled(vcpu, FPEN);
711 }
712 
713 static inline bool guest_hyp_sve_traps_enabled(const struct kvm_vcpu *vcpu)
714 {
715 	return __guest_hyp_cptr_xen_trap_enabled(vcpu, ZEN);
716 }
717 
718 #endif /* __ARM64_KVM_EMULATE_H__ */
719