xref: /linux/arch/arm64/include/asm/kvm_emulate.h (revision 1270dad3109770fc12c1f09f7bab4bceaf2fb829)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/kvm_emulate.h
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_EMULATE_H__
12 #define __ARM64_KVM_EMULATE_H__
13 
14 #include <linux/kvm_host.h>
15 
16 #include <asm/debug-monitors.h>
17 #include <asm/esr.h>
18 #include <asm/kvm_arm.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/kvm_nested.h>
21 #include <asm/ptrace.h>
22 #include <asm/cputype.h>
23 #include <asm/virt.h>
24 
25 #define CURRENT_EL_SP_EL0_VECTOR	0x0
26 #define CURRENT_EL_SP_ELx_VECTOR	0x200
27 #define LOWER_EL_AArch64_VECTOR		0x400
28 #define LOWER_EL_AArch32_VECTOR		0x600
29 
30 enum exception_type {
31 	except_type_sync	= 0,
32 	except_type_irq		= 0x80,
33 	except_type_fiq		= 0x100,
34 	except_type_serror	= 0x180,
35 };
36 
37 #define kvm_exception_type_names		\
38 	{ except_type_sync,	"SYNC"   },	\
39 	{ except_type_irq,	"IRQ"    },	\
40 	{ except_type_fiq,	"FIQ"    },	\
41 	{ except_type_serror,	"SERROR" }
42 
43 bool kvm_condition_valid32(const struct kvm_vcpu *vcpu);
44 void kvm_skip_instr32(struct kvm_vcpu *vcpu);
45 
46 void kvm_inject_undefined(struct kvm_vcpu *vcpu);
47 void kvm_inject_vabt(struct kvm_vcpu *vcpu);
48 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr);
49 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr);
50 void kvm_inject_size_fault(struct kvm_vcpu *vcpu);
51 
52 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu);
53 
54 void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu);
55 int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2);
56 int kvm_inject_nested_irq(struct kvm_vcpu *vcpu);
57 
58 #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__)
59 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
60 {
61 	return !(vcpu->arch.hcr_el2 & HCR_RW);
62 }
63 #else
64 static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
65 {
66 	return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
67 }
68 #endif
69 
70 static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
71 {
72 	if (!vcpu_has_run_once(vcpu))
73 		vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS;
74 
75 	/*
76 	 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C
77 	 * get set in SCTLR_EL1 such that we can detect when the guest
78 	 * MMU gets turned on and do the necessary cache maintenance
79 	 * then.
80 	 */
81 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
82 		vcpu->arch.hcr_el2 |= HCR_TVM;
83 }
84 
85 static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu)
86 {
87 	return (unsigned long *)&vcpu->arch.hcr_el2;
88 }
89 
90 static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu)
91 {
92 	vcpu->arch.hcr_el2 &= ~HCR_TWE;
93 	if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
94 	    vcpu->kvm->arch.vgic.nassgireq)
95 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
96 	else
97 		vcpu->arch.hcr_el2 |= HCR_TWI;
98 }
99 
100 static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu)
101 {
102 	vcpu->arch.hcr_el2 |= HCR_TWE;
103 	vcpu->arch.hcr_el2 |= HCR_TWI;
104 }
105 
106 static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu)
107 {
108 	return vcpu->arch.vsesr_el2;
109 }
110 
111 static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr)
112 {
113 	vcpu->arch.vsesr_el2 = vsesr;
114 }
115 
116 static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
117 {
118 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pc;
119 }
120 
121 static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu)
122 {
123 	return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate;
124 }
125 
126 static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu)
127 {
128 	return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT);
129 }
130 
131 static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu)
132 {
133 	if (vcpu_mode_is_32bit(vcpu))
134 		return kvm_condition_valid32(vcpu);
135 
136 	return true;
137 }
138 
139 static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu)
140 {
141 	*vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT;
142 }
143 
144 /*
145  * vcpu_get_reg and vcpu_set_reg should always be passed a register number
146  * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on
147  * AArch32 with banked registers.
148  */
149 static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu,
150 					 u8 reg_num)
151 {
152 	return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num];
153 }
154 
155 static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
156 				unsigned long val)
157 {
158 	if (reg_num != 31)
159 		vcpu_gp_regs(vcpu)->regs[reg_num] = val;
160 }
161 
162 static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt)
163 {
164 	switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) {
165 	case PSR_MODE_EL2h:
166 	case PSR_MODE_EL2t:
167 		return true;
168 	default:
169 		return false;
170 	}
171 }
172 
173 static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu)
174 {
175 	return vcpu_is_el2_ctxt(&vcpu->arch.ctxt);
176 }
177 
178 static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt)
179 {
180 	return (!cpus_have_final_cap(ARM64_HAS_HCR_NV1) ||
181 		(ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H));
182 }
183 
184 static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu)
185 {
186 	return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt);
187 }
188 
189 static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt)
190 {
191 	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE;
192 }
193 
194 static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu)
195 {
196 	return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt);
197 }
198 
199 static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt)
200 {
201 	/*
202 	 * We are in a hypervisor context if the vcpu mode is EL2 or
203 	 * E2H and TGE bits are set. The latter means we are in the user space
204 	 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost'
205 	 *
206 	 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the
207 	 * rest of the KVM code, and will result in a misbehaving guest.
208 	 */
209 	return vcpu_is_el2_ctxt(ctxt) ||
210 		(__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) ||
211 		__vcpu_el2_tge_is_set(ctxt);
212 }
213 
214 static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu)
215 {
216 	return vcpu_has_nv(vcpu) && __is_hyp_ctxt(&vcpu->arch.ctxt);
217 }
218 
219 /*
220  * The layout of SPSR for an AArch32 state is different when observed from an
221  * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32
222  * view given an AArch64 view.
223  *
224  * In ARM DDI 0487E.a see:
225  *
226  * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426
227  * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256
228  * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280
229  *
230  * Which show the following differences:
231  *
232  * | Bit | AA64 | AA32 | Notes                       |
233  * +-----+------+------+-----------------------------|
234  * | 24  | DIT  | J    | J is RES0 in ARMv8          |
235  * | 21  | SS   | DIT  | SS doesn't exist in AArch32 |
236  *
237  * ... and all other bits are (currently) common.
238  */
239 static inline unsigned long host_spsr_to_spsr32(unsigned long spsr)
240 {
241 	const unsigned long overlap = BIT(24) | BIT(21);
242 	unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT);
243 
244 	spsr &= ~overlap;
245 
246 	spsr |= dit << 21;
247 
248 	return spsr;
249 }
250 
251 static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu)
252 {
253 	u32 mode;
254 
255 	if (vcpu_mode_is_32bit(vcpu)) {
256 		mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK;
257 		return mode > PSR_AA32_MODE_USR;
258 	}
259 
260 	mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK;
261 
262 	return mode != PSR_MODE_EL0t;
263 }
264 
265 static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
266 {
267 	return vcpu->arch.fault.esr_el2;
268 }
269 
270 static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu)
271 {
272 	u64 esr = kvm_vcpu_get_esr(vcpu);
273 
274 	if (esr & ESR_ELx_CV)
275 		return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
276 
277 	return -1;
278 }
279 
280 static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu)
281 {
282 	return vcpu->arch.fault.far_el2;
283 }
284 
285 static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu)
286 {
287 	return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8;
288 }
289 
290 static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu)
291 {
292 	return vcpu->arch.fault.disr_el1;
293 }
294 
295 static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
296 {
297 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK;
298 }
299 
300 static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
301 {
302 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV);
303 }
304 
305 static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu)
306 {
307 	return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC);
308 }
309 
310 static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu)
311 {
312 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE);
313 }
314 
315 static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu)
316 {
317 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF);
318 }
319 
320 static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu)
321 {
322 	return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT;
323 }
324 
325 static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu)
326 {
327 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW);
328 }
329 
330 /* Always check for S1PTW *before* using this. */
331 static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu)
332 {
333 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR;
334 }
335 
336 static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu)
337 {
338 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM);
339 }
340 
341 static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu)
342 {
343 	return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT);
344 }
345 
346 /* This one is not specific to Data Abort */
347 static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu)
348 {
349 	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL);
350 }
351 
352 static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu)
353 {
354 	return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
355 }
356 
357 static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
358 {
359 	return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW;
360 }
361 
362 static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu)
363 {
364 	return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu);
365 }
366 
367 static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu)
368 {
369 	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC;
370 }
371 
372 static inline
373 bool kvm_vcpu_trap_is_permission_fault(const struct kvm_vcpu *vcpu)
374 {
375 	return esr_fsc_is_permission_fault(kvm_vcpu_get_esr(vcpu));
376 }
377 
378 static inline
379 bool kvm_vcpu_trap_is_translation_fault(const struct kvm_vcpu *vcpu)
380 {
381 	return esr_fsc_is_translation_fault(kvm_vcpu_get_esr(vcpu));
382 }
383 
384 static inline
385 u64 kvm_vcpu_trap_get_perm_fault_granule(const struct kvm_vcpu *vcpu)
386 {
387 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
388 
389 	BUG_ON(!esr_fsc_is_permission_fault(esr));
390 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(esr & ESR_ELx_FSC_LEVEL));
391 }
392 
393 static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
394 {
395 	switch (kvm_vcpu_trap_get_fault(vcpu)) {
396 	case ESR_ELx_FSC_EXTABT:
397 	case ESR_ELx_FSC_SEA_TTW(-1) ... ESR_ELx_FSC_SEA_TTW(3):
398 	case ESR_ELx_FSC_SECC:
399 	case ESR_ELx_FSC_SECC_TTW(-1) ... ESR_ELx_FSC_SECC_TTW(3):
400 		return true;
401 	default:
402 		return false;
403 	}
404 }
405 
406 static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
407 {
408 	u64 esr = kvm_vcpu_get_esr(vcpu);
409 	return ESR_ELx_SYS64_ISS_RT(esr);
410 }
411 
412 static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
413 {
414 	if (kvm_vcpu_abt_iss1tw(vcpu)) {
415 		/*
416 		 * Only a permission fault on a S1PTW should be
417 		 * considered as a write. Otherwise, page tables baked
418 		 * in a read-only memslot will result in an exception
419 		 * being delivered in the guest.
420 		 *
421 		 * The drawback is that we end-up faulting twice if the
422 		 * guest is using any of HW AF/DB: a translation fault
423 		 * to map the page containing the PT (read only at
424 		 * first), then a permission fault to allow the flags
425 		 * to be set.
426 		 */
427 		return kvm_vcpu_trap_is_permission_fault(vcpu);
428 	}
429 
430 	if (kvm_vcpu_trap_is_iabt(vcpu))
431 		return false;
432 
433 	return kvm_vcpu_dabt_iswrite(vcpu);
434 }
435 
436 static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
437 {
438 	return __vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;
439 }
440 
441 static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)
442 {
443 	if (vcpu_mode_is_32bit(vcpu)) {
444 		*vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT;
445 	} else {
446 		u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
447 		sctlr |= SCTLR_ELx_EE;
448 		vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1);
449 	}
450 }
451 
452 static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu)
453 {
454 	if (vcpu_mode_is_32bit(vcpu))
455 		return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT);
456 
457 	if (vcpu_mode_priv(vcpu))
458 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE);
459 	else
460 		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E);
461 }
462 
463 static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu,
464 						    unsigned long data,
465 						    unsigned int len)
466 {
467 	if (kvm_vcpu_is_be(vcpu)) {
468 		switch (len) {
469 		case 1:
470 			return data & 0xff;
471 		case 2:
472 			return be16_to_cpu(data & 0xffff);
473 		case 4:
474 			return be32_to_cpu(data & 0xffffffff);
475 		default:
476 			return be64_to_cpu(data);
477 		}
478 	} else {
479 		switch (len) {
480 		case 1:
481 			return data & 0xff;
482 		case 2:
483 			return le16_to_cpu(data & 0xffff);
484 		case 4:
485 			return le32_to_cpu(data & 0xffffffff);
486 		default:
487 			return le64_to_cpu(data);
488 		}
489 	}
490 
491 	return data;		/* Leave LE untouched */
492 }
493 
494 static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu,
495 						    unsigned long data,
496 						    unsigned int len)
497 {
498 	if (kvm_vcpu_is_be(vcpu)) {
499 		switch (len) {
500 		case 1:
501 			return data & 0xff;
502 		case 2:
503 			return cpu_to_be16(data & 0xffff);
504 		case 4:
505 			return cpu_to_be32(data & 0xffffffff);
506 		default:
507 			return cpu_to_be64(data);
508 		}
509 	} else {
510 		switch (len) {
511 		case 1:
512 			return data & 0xff;
513 		case 2:
514 			return cpu_to_le16(data & 0xffff);
515 		case 4:
516 			return cpu_to_le32(data & 0xffffffff);
517 		default:
518 			return cpu_to_le64(data);
519 		}
520 	}
521 
522 	return data;		/* Leave LE untouched */
523 }
524 
525 static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu)
526 {
527 	WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION));
528 	vcpu_set_flag(vcpu, INCREMENT_PC);
529 }
530 
531 #define kvm_pend_exception(v, e)					\
532 	do {								\
533 		WARN_ON(vcpu_get_flag((v), INCREMENT_PC));		\
534 		vcpu_set_flag((v), PENDING_EXCEPTION);			\
535 		vcpu_set_flag((v), e);					\
536 	} while (0)
537 
538 #define __build_check_all_or_none(r, bits)				\
539 	BUILD_BUG_ON(((r) & (bits)) && ((r) & (bits)) != (bits))
540 
541 #define __cpacr_to_cptr_clr(clr, set)					\
542 	({								\
543 		u64 cptr = 0;						\
544 									\
545 		if ((set) & CPACR_ELx_FPEN)				\
546 			cptr |= CPTR_EL2_TFP;				\
547 		if ((set) & CPACR_ELx_ZEN)				\
548 			cptr |= CPTR_EL2_TZ;				\
549 		if ((set) & CPACR_ELx_SMEN)				\
550 			cptr |= CPTR_EL2_TSM;				\
551 		if ((clr) & CPACR_ELx_TTA)				\
552 			cptr |= CPTR_EL2_TTA;				\
553 		if ((clr) & CPTR_EL2_TAM)				\
554 			cptr |= CPTR_EL2_TAM;				\
555 		if ((clr) & CPTR_EL2_TCPAC)				\
556 			cptr |= CPTR_EL2_TCPAC;				\
557 									\
558 		cptr;							\
559 	})
560 
561 #define __cpacr_to_cptr_set(clr, set)					\
562 	({								\
563 		u64 cptr = 0;						\
564 									\
565 		if ((clr) & CPACR_ELx_FPEN)				\
566 			cptr |= CPTR_EL2_TFP;				\
567 		if ((clr) & CPACR_ELx_ZEN)				\
568 			cptr |= CPTR_EL2_TZ;				\
569 		if ((clr) & CPACR_ELx_SMEN)				\
570 			cptr |= CPTR_EL2_TSM;				\
571 		if ((set) & CPACR_ELx_TTA)				\
572 			cptr |= CPTR_EL2_TTA;				\
573 		if ((set) & CPTR_EL2_TAM)				\
574 			cptr |= CPTR_EL2_TAM;				\
575 		if ((set) & CPTR_EL2_TCPAC)				\
576 			cptr |= CPTR_EL2_TCPAC;				\
577 									\
578 		cptr;							\
579 	})
580 
581 #define cpacr_clear_set(clr, set)					\
582 	do {								\
583 		BUILD_BUG_ON((set) & CPTR_VHE_EL2_RES0);		\
584 		BUILD_BUG_ON((clr) & CPACR_ELx_E0POE);			\
585 		__build_check_all_or_none((clr), CPACR_ELx_FPEN);	\
586 		__build_check_all_or_none((set), CPACR_ELx_FPEN);	\
587 		__build_check_all_or_none((clr), CPACR_ELx_ZEN);	\
588 		__build_check_all_or_none((set), CPACR_ELx_ZEN);	\
589 		__build_check_all_or_none((clr), CPACR_ELx_SMEN);	\
590 		__build_check_all_or_none((set), CPACR_ELx_SMEN);	\
591 									\
592 		if (has_vhe() || has_hvhe())				\
593 			sysreg_clear_set(cpacr_el1, clr, set);		\
594 		else							\
595 			sysreg_clear_set(cptr_el2,			\
596 					 __cpacr_to_cptr_clr(clr, set),	\
597 					 __cpacr_to_cptr_set(clr, set));\
598 	} while (0)
599 
600 static __always_inline void kvm_write_cptr_el2(u64 val)
601 {
602 	if (has_vhe() || has_hvhe())
603 		write_sysreg(val, cpacr_el1);
604 	else
605 		write_sysreg(val, cptr_el2);
606 }
607 
608 static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu)
609 {
610 	u64 val;
611 
612 	if (has_vhe()) {
613 		val = (CPACR_ELx_FPEN | CPACR_EL1_ZEN_EL1EN);
614 		if (cpus_have_final_cap(ARM64_SME))
615 			val |= CPACR_EL1_SMEN_EL1EN;
616 	} else if (has_hvhe()) {
617 		val = CPACR_ELx_FPEN;
618 
619 		if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs())
620 			val |= CPACR_ELx_ZEN;
621 		if (cpus_have_final_cap(ARM64_SME))
622 			val |= CPACR_ELx_SMEN;
623 	} else {
624 		val = CPTR_NVHE_EL2_RES1;
625 
626 		if (vcpu_has_sve(vcpu) && guest_owns_fp_regs())
627 			val |= CPTR_EL2_TZ;
628 		if (cpus_have_final_cap(ARM64_SME))
629 			val &= ~CPTR_EL2_TSM;
630 	}
631 
632 	return val;
633 }
634 
635 static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu)
636 {
637 	u64 val = kvm_get_reset_cptr_el2(vcpu);
638 
639 	kvm_write_cptr_el2(val);
640 }
641 #endif /* __ARM64_KVM_EMULATE_H__ */
642